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Abstract: In this paper, we study a quadratic nonlinear equation from the fractional point of view.
An explicit solution is given in terms of the Lambert special function. A new phenomenon appears
involving the collapsing of the solution and the blow-up of the derivative. The explicit representation
of the solution reveals the non-elementary nature of the solution.
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1. Introduction

In logistic population growth, the concept of environmental carrying capacity is
modelled by the classical logistic ordinary differential equation [1]:

x′(t) = a · x(t) ·
[

1− x(t)
K

]
. (1)

The Richards ordinary differential equation is a generalization of the above logistic
differential equation by introducing a new parameter, β:

x′(t) = a · x(t) ·
[

1−
(

x(t)
K

)β
]

.

The latter equation can be explicitly solved

x(t) =
K

[1 + c · exp(−aβ(t− t0))]1/β
,

and for β = 1 it gives the solution of the logistic differential Equation (1). We note that the
exponential term in the Richards equation has a one-to-one nonlinear correspondence with
the basic reproduction number of the SIR (susceptible–infectious–recovered) compartmental
epidemiological model [2]. Recently, some researchers have discovered the connection of
the Richards model to the epidemic dynamics of COVID-19 [3,4].

For 0 < α < 1, we have already considered the logistic fractional differential equation
(see e.g., [5])

Dαx(t) = a · x(t) ·
[

1− x(t)
K

]
,
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as well as the fractional Richards differential equation for β > 0,

Dαx(t) = a · x(t) ·
[

1−
(

x(t)
K

)β
]

.

The fractional Richards equation has been considered in very few articles. For example,
it has been considered for water transport [6], but has only been approximated numerically
or using peridynamic theory as in [7]. It therefore seems of interest to study the more
general nonlinear fractional differential equation

Dαx(t) = f (t, x(t)).

This is our main motivation in this brief report. We point out that even simple nonlinear
equations such as the Caputo fractional logistic equation have no analytical known solution.

For some general references on fractional differential equations and their applications,
refer to [8]. If Dα represents the Caputo–Fabrizio fractional derivative [9], then integrating
by using the Losada–Nieto fractional integral we obtain

x(t)− x0 = (1− α)[ f (t, x(t))− f (0, x(0))] + α
∫ t

0
f (s, x(s))ds.

Thus,

x′(t) = (1− α)[
∂ f
∂t

(t, x(t)) +
∂ f
∂x

(t, x(t))x′(t)] + α f (t, x(t))

or equivalently

x′(t) · [1− (1− α)
∂ f
∂x

f (t, x(t))] = α f (t, x(t))− (1− α)
∂ f
∂t

(t, x(t)).

If, for an initial condition x(t0) = x0, one has that

(1− α)
∂ f
∂x

(t0, x0) 6= 1,

then the previous equation is equivalent, in a neighbourhood of (t0, x0), to

x′ = fα(t, x)

with

fα(t, x) =
α f (t, x)− (1− α)

∂ f
∂t

(t, x(t))

1− (1− α)
∂ f
∂x

(t, x)
.

In general, it is not possible to obtain an exact solution.

In this paper, we focus on the nonlinear fractional equation

Dαx(t) = x2(t). (2)

For some biological applications, see [10]. Even for α = 1, the solution of (2) is local. Indeed,
for the initial condition x(0) = x0 > 0, the solution is given by

x(t) =
x0

1− x0t

and the right maximal interval of existence is (0, 1/x0).
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Note that f (t, x) = x2 and then

∂ f
∂x

(t, x) = 2x and fα(x) =
αx2

1− (1− α)2x
.

If Dα represents the Caputo–Fabrizio fractional derivative, then (2) is equivalent to

x′ − (1− α)2xx′ = αx2.

For an initial condition x0 6= 1
2(1−α)

, we have to solve the equation

x′ =
αx2

1− (1− α)2x
.

Integrating

− 1
αx

+
2(α− 1)

α
· log x = t + cα. (3)

For an initial condition x(0) = x0, we can find the value of cα as

cα =
−1
αx0

+
2(α− 1) log x0

α
. (4)

Then, (2) is equivalent to

− 1
2(1− α)x

+ log
1

2(1− α)x
+ log (2(1− α)) =

−α(t + cα)

2(α− 1)
.

Taking the exponential in both sides,

− 1
2(1− α)x

· exp
(

−1
2(1− α)x

)
= − 1

2(1− α)
· exp

(
−α(t + cα)

2(1− α)

)
.

Setting

z = − 1
2(1− α)

· exp
(
−α(t + cα)

2(α− 1)

)
and

w = − 1
2(1− α)x

.

We observe that
w · exp(w) = z, (5)

that is, w = Wk(z), being W the Lambert function or product logarithm [11], for some
integer k. This gives the solution x as

x(t) =
−1

2(1− α)W
(

1
2(1−α)

· exp
(
−α(t+cα)

2(α−1)

)) .

Using the value of the constant cα given in (4), one can finally write the solution x(t) to (2)
in terms of the initial condition:

x(t) =
−1

2(1− α)W
(

−1
2(1−α)x0

· exp
(

αt
2(1−α)

− 1
2(1−α)x0

)) .

Noting that the Lambert function cannot be expressed in terms of elementary func-
tions [12], one can conclude that the solution to (2) just obtained is non-elementary.
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2. Example

Let us consider α = 1/2, x0 = 1/2. Then, the equation is

x′ =
1
2 x

1− x
(6)

and the particular solution is given by

x(t) =
1

W
(
−2 exp

( t
2 − 2

)) .

The solution exists locally. Noting that x′(t) is positive for t > 0, it is increasing and blows
up when x approaches 1− (see Figure 1); that is,

lim
t→t∞

x′(t) = +∞.

To find the maximal interval of existence, we recall that the Lambert function is defined
only for z < 0 when z > − 1

e . Therefore, we have the condition

− exp(−1) ≤ −2 exp
(

t
2
− 2
)

or
t ≥ 2− 2 · log (2) := t∞ ≈ 0.613706.

0.1 0.2 0.3 0.4 0.5 0.6

0.6

0.7

0.8

0.9

1.0

Figure 1. Solution x(t) to (6) in [0, t∞ ≈ 0.613706] with x0 = 1/2.

Observe that lim
t→t∞

x(t) = +∞ for the initial condition (t∞, 1), and one cannot solve the

differential equation. However, we can ask whether there exists a solution starting at (0, ξ)
that passes through that point (t∞, 1). Such a solution is given by

x(t) =
−1

W
(
−1
ξ exp

( t
2 − 2

)) . (7)

Imposing the condition x(t∞) = 1, we need

W
(
−1
ξ

exp
(

t∞

2
− 2
))

= −1,

that is,
−1
ξ

exp
(

t∞

2
− 2
)
= − exp(−1).
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Therefore,
−1
ξ

exp
(
−1
ξ

)
exp(1− log 2) = − exp(−1)

and (see Figure 2)

ξ =
−1

W( −2
exp(2) )

≈ 2.46078.

0.1 0.2 0.3 0.4 0.5 0.6

1.0

1.5

2.0

2.5

Figure 2. In orange is the solution x(t) to (6) in [0, t∞ ≈ 0.613706] with x0 = 1/2. In blue, x(t) given
in (7) for ξ ≈ 2.46078.

3. Lambert Function

Given a complex number z, we want to solve Equation (5). It has many solutions and
hence it is a multivalued function. Thus, (5) is equivalent to

w =Wk(z)

for some integer k, where Wk is a branch of the inverse function w → w · exp w. The
principal branch isW0 and denoted simply byW .

The LambertW relation cannot be expressed in terms of elementary functions, i.e., it
is non-elementary. In particular it is non-Liouvillian [12].

For a real number x, the equation

w · exp w = x

has a real solution if and only if (see Figure 3)

x ≥ −1
e

.

-0.2 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

Figure 3. Principal branch of the function z = wew for x > −1/e ≈ −0.367879.
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For z ≥ 0, the equation has a single real solution given byW(z), and for 1/e < z < 0
we have two solutions: W(z) andW−1(z). For z = −1/e,W(−1/e) = −1.

The Lambert function satisfies the ordinary differential equation

W ′(z) =
1

z + exp(W(z))
, z 6= −1/e.

Moreover,

W(x) =
∞

∑
n=1

(−n)n−1

n!
xn

with a radius of convergence equal to 1/e.
As another known but very relevant application of the Lambert function, let us compute

the final population S∞ in the classical compartmental SIR epidemic model [13,14]:

S′(t) = −βS(t)I(t),

I′(t) = βS(t)I(t)− γI(t),

R′(t) = γI(t).

Here, as usual, S, I and R represent the susceptible, infectious and recovered population,
respectively.

Recall that the basic reproduction number is the initial replacement number when just
one infectious individual is introduced into a population of all susceptible individuals:

R0 =
β

γ
.

We have

S′ = −βSI = −βS
R′

γ
.

Then,
S′

S
= −R0R′

and
ln S(t)− ln S0 = −R0 · [R(t)− R0].

This gives S(t) as the following function of R(t)

S(t) = S0 · exp(−R0 · [R(t)− R0]).

Taking the limit as t→ ∞,

1−R∞ = S∞ = S0 · exp(−R0 · [R∞ − R0])

= S0 · exp(−R0 · [R∞ − 1]) · exp(−R0 · [1− R0]).

Equivalently,

−R0 · (R∞ − 1) · exp(−R0 · [R∞ − 1]) = −R0 · S0 · exp(−R0 · [1− R0])

and
R0 · (R∞ − 1) = −W(−R0 · S0 · exp(−R0 · [1− R0])).

Finally,

R∞ = 1− 1
R0
W(−R0 · S0 · exp(−R0 · [1− R0])),
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and
S∞ =

1
R0
W(−R0 · S0 · exp(−R0 · [1− R0])).

It is important to note that the solution I is a non-elementary function (see, for example,
Theorem 10.3 in [14]).

We recall that an elementary function is defined as a function generated from a
finite number of combinations and compositions of algebraic, exponential and logarithm
functions under the four algebraic operations. A Liouvillian function is a function lying in
some Liouvillian extension of (C(x),′ ) for a constant field C.

Indeed, using the representation of S as a function of I through the Lambert function,
it is possible to prove that the solution I(t) is not Liouvillian.

4. Conclusions

We have solved a fractional Richards differential equation.
New aspects of the methodology of solving it and the form of the solution are pre-

sented, and further research will be necessary to clearly reveal the complexity of nonlinear
differential equations.

It will be of interest to explore fractional Richards differential equations in relation to
the dynamics of epidemic compartmental models.

The dependence of the solution on the order of derivation would be of interest.
The case when α > 1 will be also contemplated.
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