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Abstract: This article addresses the issue of drive–response synchronization in fractional-order multi-
link memristive neural networks (FMMNN) with multiple delays, under hybrid impulsive feedback
control. To address the impact of multiple delays on system synchronization, an extended fractional-
order delayed comparison principle incorporating impulses is established. By leveraging Laplace
transform, Mittag–Leffler functions, the generalized comparison principle, and hybrid impulsive
feedback control schemes, several new sufficient conditions are derived to ensure synchronization
in the addressed FMMNN. Unlike existing studies on fractional-order single-link memristor-based
systems, our response network is a multi-link model that considers impulsive effects. Notably, the
impulsive gains αi are not limited to a small interval, thus expanding the application range of our
approach (αi ∈ (−2, 0) ∪ (−∞,−2) ∪ (0,+∞)). This feature allows one to choose impulsive gains
and corresponding impulsive intervals that are appropriate for the system environment and control
requirements. The theoretical results obtained in this study contribute to expanding the relevant
theoretical achievements of fractional-order neural networks incorporating memristive characteristics.

Keywords: multi-link; neural networks; synchronization; Mittag–Leffler functions; memristor-based

1. Introduction

Memristive neural networks (MNNs) are a class of state-dependent switching models
that have been widely applied in various fields, including machine learning, stability
analysis, image encryption, and fault detection [1–6]. Due to the memory characteristics of
memristors, which are similar to the behavior of neuronal synapses, MNNs can model the
working mechanisms of neurons in the human brain effectively. Moreover, memristor-based
neural networks significantly improve the parallel computing and adaptive capabilities of
conventional network models. Many researchers have investigated the dynamic behavior
of neural networks, with synchronization being one of the most significant aggregation
behaviors, which naturally attracts a lot of attention [7,8].

Currently, there exist several notable research contributions related to the synchro-
nization of MNN. For example, Bao et al. [9] investigated the exponential synchroniza-
tion of MNN with stochastic features and various delays under the Filippov framework.
Li et al. [10] focused on the drive–response synchronization of MNN with delayed coupling
and discrete activation functions in finite time. Yu et al. [11] discussed the finite-time syn-
chronization of memristor-based neural networks with complex variable parameters using
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the Lyapunov stability theory. In [12], Yang et al. studied the global synchronization of non-
linear coupled neural networks, including uncertain disturbances, and obtained sufficient
conditions by employing hybrid control schemes and graph topologies. The finite-time
synchronization problems of uncertain MNN were addressed in [13], and more practical
synchronization criteria were derived via aperiodically intermittent adjustment. Further-
more, various other research results on memristive neural networks can be found in [14–16].

Most research on network synchronization has mainly focused on integer-order neural
networks. However, fractional calculus, which is a significant theoretical extension of
integer calculus, provides a regulable free degree to classical calculus and has several dis-
tinct properties, including infinite memory and heredity, that the integer calculus operator
does not possess [17,18]. Furthermore, the key advantage of the extension operator is the
nonlocality, which means its future state is not only related to the current state information
but also related to the past state information [19–21]. As a result, fractional-order systems
can more accurately describe natural phenomena, especially actual change processes, such
as Fourier heat conduction, viscoelastic phenomena, and reaction–diffusion processes.
However, increasing the degree of freedom improves the simulation accuracy but also
makes the fractional-order model exhibit more complex properties [22–24]. Due to the
particularity of fractional calculus operators, the stability theory of traditional integer-order
systems is not applicable to fractional-order models.

Recently, there has been growing interest in the synchronization of fractional-order
memristive neural networks (FMNN). For instance, Chen et al. [25] explored the global
synchronization problem of FMNN without delays using a continuous state feedback
control method. Bao et al. [26] investigated the global projective synchronization for a
class of FMNNs via adaptive feedback control technologies. In [27], Jiang et al. considered
drive–response synchronization of generalized FMNN in finite time under a memoryless
controller. However, these studies did not consider the effect of time delays on system
stability. Time delays are inevitable in the process of neuronal information transmission in
memristor-based neural networks due to limited transmission speed and communication
congestion. To obtain a more realistic synchronization criterion, a constant time delay
was introduced into the fractional-order memristive model in [28]. Subsequently, more
fractional-order memristive systems involving time delays have attracted researchers’
attention. For example, Velmurugan et al. [29] proposed a method to achieve global
projective synchronization of FMNN including time delays based on differential inclusion
and fractional-order stability theories as well as linear feedback control. The drive–response
synchronization of delayed FMNN with an order µ ∈ (0, 1) or µ ∈ (1, 2) in finite time
was studied in [30], while the global synchronization of FMNN containing multi-delays
was deliberated by building a generalized fractional-order delayed comparison principle
without impulses in [31]. Several other interesting results about the synchronization of
FMNN can be found in [32,33].

Notably, most existing studies have focused on the synchronization of single-link
systems based on continuous feedback control methods, while few works have addressed
the drive–response synchronization of FMMNN with multi-delays using hybrid impulsive
feedback control schemes. In memristive neural networks, multi-link structures refer
to the presence of multiple connections or links between the neurons in the network.
Compared with single-link structures, the multi-link structure allows for the formation of
more complex and intricate neural pathways, which can enable the network to perform
more complex computations and facilitate the emergence of collective behavior, enhance
the robustness and fault tolerance of the network by providing redundant pathways for
signal transmission, and improve the learning ability of the network by allowing for the
reinforcement of specific pathways and the suppression of others. Therefore, when studying
memristive neural networks, it is important to consider the impact of multi-link structures
on the network’s behavior and performance.

However, it is evident that conventional impulsive control techniques and delayed
comparison principles are insufficient to address the synchronization problems in fractional-
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order neural networks, particularly in the case of multi-delay neural networks with multiple
links utilizing impulsive control. Achieving synchronization in such networks remains a
challenging and unresolved issue. Therefore, this study aims to establish a fractional-order
multi-delay comparison principle that incorporates impulses to overcome this challenge
and investigate the drive–response synchronization of FMMNN with multi-delays. The key
contributions of this research are as follows. Firstly, unlike prior studies [25–30] concerning
fractional-order single-link memristor-based systems, our drive and response networks
contain multi-links, and multi-delays and impulsive are also included in our model. Sec-
ondly, the effects of impulses were neglected in the existing fractional-order comparison
principles in [19,23,31], while we construct a more generalized fractional-order comparison
principle that incorporates multi-delays and impulses to address the impact of delays
on system stability. Thirdly, hybrid impulsive feedback control schemes are proposed to
achieve synchronization in FMMNN, with the advantages of simple implementation and
increased safety during signal transmission, which improves pure state feedback control
schemes utilized in previous studies [31–33]. It should be also mentioned that the impulsive
gain in [7] is limited to the interval (−2, 0). Notably, in this paper, the impulsive gains in
the proposed synchronization conditions can be selected to be any value except −2 and 0,
which are not limited to a small interval as in the previous literature. Finally, several novel
synchronization criteria dependent on the impulsive interval, fractional order, and control
gains are derived to ensure the drive–response synchronization of FMMNN.

2. Preliminary Knowledge and Mathematical Model

In this section, we begin by providing an overview of some important definitions,
assumptions, and lemmas. We then introduce an extended fractional-order multi-delay
comparison principle that incorporates impulses and present a mathematical model.

Definition 1. The fractional integral for an integrable function C(t) is defined as

Iµ
t C(t) =

1
Γ(µ)

∫ t

t0

(t− τ̄)µ−1C(τ̄)dτ̄,

where t ≥ t0, Γ(µ) =
∫ ∞

0 tµ−1e−tdt, and µ > 0 represents the order [18].

Definition 2. The Liouville–Caputo fractional derivative for a differentiable function C(t) is defined
as

LCDµ
t C(t) =

1
Γ(m− µ)

∫ t

t0

(t− τ̄)m−µ−1C(m)(τ̄)dτ̄,

where t ≥ t0, 0 ≤ m− 1 < µ < m, and m ∈ Z+ [18].

Definition 3. The Mittag–Leffler function containing one parameter is defined by

Eµ(z) =
∞

∑
k=0

zk

Γ(µk + 1)
,

where µ > 0, and z ∈ C [18].

Remark 1. The Liouville–Caputo derivative is used to establish fractional-order neural network
models in this study since the starting conditions of fractional differential systems including the
Liouville–Caputo derivative have similar modalities as integer-order differential systems, which
have acceptable physical meanings.
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Assumption 1. The feedback functions β j, γj, β j(±Tj) = γj(±Tj) = 0, conform to the following
Lipschitz conditions

|β j(v)− β j(w)| ≤ β̃ j|v− w|, |γj(v)− γj(w)| ≤ γ̃j|v− w|, (β̃ j > 0, γ̃j > 0),

for ∀v, w ∈ R, and j = 1, 2, · · · , n.

Assumption 2. For the bounded feedback functions β j and γj, there exist constants Mj ∈ R,
M̄j ∈ R, such that

|β j(v)| ≤ Mj, |γj(v)| ≤ M̄j,

hold for ∀v ∈ R, j = 1, 2, · · · , n.

Consider a class of fractional-order multi-link memristive neural networks including
multi-delays, which can be characterized by

LCDµ
t vi(t) = −bivi(t) +

n

∑
j=1

cij(vi(t))β j(vj(t)) +
h

∑
m=1

n

∑
j=1

dm
ij (vi(t))γj(vj(t− τm)) + Ii, t ≥ 0, (1)

where i = 1, 2, · · · , n, and 0 < µ < 1. bi > 0 represents the self-feedback connection
parameter. τm is the mth transmission delay and Ii is the external input. vj(t) represents
the state variable affiliated with the jth neuron. β j(vj(t)) and γj(vj(t− τm)) denote the
non-delay and delayed feedback functions. The initial values of neural networks (1) are
v(s) = χ(s) = (χ1(s), χ2(s), · · · , χn(s))T ∈ C([−τ, 0], Rn), where τ = max{τ1, τ2, · · · , τh}.
Based on the peculiarities of the memristor and current voltage, cij(vi(t)) and dm

ij (vi(t))
stand for memristive connective weights meeting the requirements below:

cij(vi(t)) =

{
ĉij, |vi(t)| < Ti,
čij, |vi(t)| > Ti,

dm
ij (vi(t)) =

{
d̂m

ij , |vi(t)| < Ti,

ďm
ij , |vi(t)| > Ti,

(2)

where i, j = 1, 2, · · · , n, m = 1, 2, · · · , h, cij(±Ti) = čij or ĉij, dm
ij (±Ti) = ďm

ij or d̂m
ij , and the

switching jumps Ti > 0. ĉij, čij, d̂m
ij , and ďm

ij represent known constants with regard to mem-
ristances.

Since fractional-order differential Equation (1) includes discontinuous right-hand
sides, there is no solution for this system in the traditional sense. Using the differential
inclusion theory and the Filippov solution in [34], one can redescribe system (1) as

LCDµ
t vi(t) ∈ −bivi(t) +

n

∑
j=1

(co[cij, c̄ij])β j(vj(t)) +
h

∑
m=1

n

∑
j=1

(co[dm
ij , d̄m

ij ])γj(vj(t− τm)) + Ii, t ≥ 0, (3)

where i = 1, 2, · · · , n, c̄ij = max{ĉij, čij}, cij = min{ĉij, čij}, d̄m
ij = max{d̂m

ij , ďm
ij } and dm

ij =

min{d̂m
ij , ďm

ij }.
Equivalently, one can find suitable functions φij(t) ∈ co[cij, c̄ij], ψm

ij (t) ∈ co[dm
ij , d̄m

ij ],
for i, j = 1, 2, · · · , n, m = 1, 2, · · · , h, such that

LCDµ
t vi(t) = −bivi(t) +

n

∑
j=1

φij(t)β j(vj(t)) +
h

∑
m=1

n

∑
j=1

ψm
ij (t)γj(vj(t− τm)) + Ii. (4)
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Remark 2. With regard to network synchronization, most of the fractional-order neural networks
including memristor characteristics studied can be summarized in the following forms:

LCDµ
t vi(t) = −bivi(t) +

n

∑
j=1

cij(vi(t))β j(vj(t)) + Ii, t ≥ 0,

LCDµ
t vi(t) = −bivi(t) +

n

∑
j=1

cij(vi(t))β j(vj(t)) +
n

∑
j=1

dij(vi(t))γj(vj(t− τ)) + Ii, t ≥ 0,

LCDµ
t vi(t) = −bivi(t) +

n

∑
j=1

cij(vi(t))β j(vj(t)) +
n

∑
j=1

dij(vi(t))γj(vj(t− τj)) + Ii, t ≥ 0.

It is important to emphasize that the connections among neurons in real neural networks
are complex and include multiple links. The mathematical model considered in this study is more
generalized than the aforementioned models. When m = 1, our fractional-order multi-link system (1)
can be reduced to the aforementioned single-link version.

Lemma 1. Suppose that all eigenvalues of Q + H conform to |arg(λ)| > π
2 and the characteristic

equation det(∆(s)) = 0 has no purely imaginary solutions for ∀ τij > 0, i, j = 1, 2, ..., n, one can
obtain the zero solution of the system

LCDµ
t X(t) = HX(t) + X(tτ), µ ∈ (0, 1),

is globally asymptotically stable, where H = (hij) ∈ Rn×n, Q = (qij) ∈ Rn×n, X(t) =

(x1(t), x2(t) , ..., xn(t))T , X(tτ) = (∑n
j=1 q1jxj(t− τ1j), ∑n

j=1 q2jxj(t− τ2j), ..., ∑n
j=1 qnjxj(t−

τnj))
T , B = (bij) = (qije

−sτij + hij) ∈ Rn×n, i, j = 1, 2, ..., n and ∆(s) = sµ In − B [23].

Lemma 2. Suppose that 0 < µ < 1, z(t) ∈ C([t0,+∞), R) is differentiable. If there is a point
t? > t0 such that z(t?) = 0 and z(t) < 0 for t0 ≤ t < t?, then one can derive LCDµ

t?z(t?) > 0 [35].

Lemma 3. If v(t) ∈ Rn is a derivable function, then one can obtain the inequality below [36]

LCDµ
t vT(t)v(t) ≤ 2vT(t)LCDµ

t v(t), t ≥ t0, 0 < µ < 1.

Lemma 4. Under Assumption 1, if β j(±Tj) = 0, γj(±Tj) = 0, j = 1, 2, · · · , n, then

|co[cij, c̄ij]β j(vj(t))− co[cij, c̄ij]β j(wj(t))| ≤ c∗ij β̃ j|vj(t)− wj(t)|,

|co[dm
ij , d̄m

ij ]γj(vj(t))− co[dm
ij , d̄m

ij ]γj(wj(t))| ≤ dm∗
ij γ̃j|vj(t)− wj(t)|,

that is, for any φij(t), φ̄ij(t) ∈ co[cij, c̄ij], ψm
ij (t), ψ̄m

ij (t) ∈ co[dij, d̄ij], one has

|φij(t)β j(vj(t))− φ̄ij(t)β j(wj(t))| ≤ c∗ij β̃ j|vj(t)− wj(t)|,

|ψm
ij (t)γj(vj(t))− ψ̄m

ij (t)γj(wj(t))| ≤ dm∗
ij γ̃j|vj(t)− wj(t)|,

where c∗ij = max{|čij|, |ĉij|}, dm∗
ij = max{|ďm

ij |, |d̂m
ij |} for i, j = 1, 2, · · · , n [31].

Lemma 5. Let w(t) be a continuous function on [t0,+∞), which conforms to the following
condition

LCDµ
t w(t) ≤ $w(t), (5)

where 0 < µ < 1, $ ∈ R and t0 represents the initial time, then one can derive

w(t) ≤ w(t0)Eµ[$(t− t0)
µ], (6)

where Eµ(·) represents the famous Mittag–Leffler function [24].
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Lemma 6. (Schur complement) The following matrix inequality[
R11 R12
RT

12 R22

]
< 0

is equal to one of the following requirements:

(a) R11 < 0, R22 − RT
12R−1

11 R12 < 0;

(b) R22 < 0, R11 − R12R−1
22 RT

12 < 0,

where RT
11 = R11 and RT

22 = R22 [37].

Lemma 7. Assume that two nonnegative functions w(t) and v(t) meet
LCDµ

t w(t) ≤ −pw(t) + q1w(t− τ1(t)) + q2w(t− τ2(t)) + · · ·+ qhw(t− τh(t)), t 6= tk,
w(tk) ≤ εkw(t−k ), k ∈ Z+,
w(t) = x(t), t ∈ [t0 − τ̂, t0],

(7)

and{
LCDµ

t v(t) = −pv(t) + q1v(t− τ1(t)) + q2v(t− τ2(t)) + · · ·+ qhv(t− τh(t)), t 6= tk,
v(t) = y(t), t ∈ [t0 − τ̂, t0],

(8)

where 0 < µ < 1, 0 ≤ τi(t) ≤ τ̂(i = 1, 2, · · · , h), 0 < εk ≤ 1, p ∈ R and qi ≥ 0
(i = 1, 2 · · · , h). Then x(t) ≤ y(t) for t0 − τ̂ ≤ t ≤ t0 yields that w(t) ≤ v(t) for t ≥ t0.

Proof. Consider using mathematical induction to prove this lemma. First, we need to
prove that w(t) ≤ v(t), t ∈ [t0, t1). Obviously, w(t) ≤ v(t) is equivalent to w(t) < δv(t)
if δ > 1 is an arbitrary constant. Assume that w(t) ≤ v(t) for t ∈ [t0, t1) does not hold.
Note that x(t) ≤ y(t) for t ∈ [t0 − τ̂, t0] and the continuity of w(t) and v(t) on the interval
[t0, t1), one can find t? ∈ [t0, t1) such that{

w(t) < δv(t), t ∈ [t0 − τ̂, t?),
w(t?) = δv(t?),

(9)

where δ > 1 is an arbitrary constant. Using Lemma 2, one can easily obtain

LCDµ
t?w(t?) > δLCDµ

t?v(t?). (10)

On the other hand, it follows from mathematical expressions (7)–(9) that

LCDµ
t?w(t?) ≤− pw(t?) + q1w(t? − τ1(t?)) + q2w(t? − τ2(t?)) + · · ·+ qhw(t? − τh(t?))

≤− pδv(t?) + q1δv(t? − τ1(t?)) + q2δv(t? − τ2(t?)) + · · ·+ qhδv(t? − τh(t?))

=δLCDµ
t?v(t?), (11)

which contradicts with (10), and we can derive that

w(t) < δv(t), t ∈ [t0, t1). (12)

Let δ → 1, we can future obtain that w(t) ≤ v(t) for t ∈ [t0, t1). Assume that there
exists m ∈ Z+ such that w(t) ≤ v(t), t ∈ [tk−1, tk), k = 2, 3, · · · , m, then one has w(t) ≤ v(t)
for t0 − τ̂ ≤ t < tm and w(tm) ≤ εmw(t−m) ≤ εmv(t−m) ≤ v(t−m) = v(tm). Since v(t) is
continuous on [t0 − τ̂, ∞), repeating the similar steps as the proof of w(t) ≤ v(t) on the
interval [t0, t1), one can obtain w(t) ≤ v(t) for t ∈ [tm, tm+1). Hence, the proof of Lemma 7
is finished.
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Remark 3. Unlike the existing fractional-order comparison principle without impulses in [19,23,31],
the fractional-order comparison principle in this paper includes not only multiple time delays but
also the impact of impulse factors on the system. Hence, our comparison principle can be applied
to fractional-order impulsive systems and can be seen as an effective expansion from continuous
models to discontinuous models.

In this article, we mainly pay attention to the drive–response synchronization issue.
Take neural networks (1) as the drive system, then the corresponding response networks
are given as

LCDµ
t wi(t) = −biwi(t) +

n

∑
j=1

cij(wi(t))β j(wj(t)) +
h

∑
m=1

n

∑
j=1

dm
ij (wi(t))γj(wj(t− τm)) + Ii + Ui(t), (13)

where t ≥ 0, i = 1, 2, · · · , n, and Ui(t) represents the hybrid impulsive feedback controller
to be designed later. The initial values of system (13) are

w(s) = χ(s) = (χ1(s), χ2(s), · · · , χn(s))
T ∈ C([−τ, 0], Rn).

Similarly, the connective weight parameters in (13) could be obtained as

cij(wi(t)) =

{
ĉij, |wi(t)| < Ti,
čij, |wi(t)| > Ti,

dm
ij (wi(t)) =

{
d̂m

ij , |wi(t)| < Ti,

ďm
ij , |wi(t)| > Ti,

(14)

where i, j = 1, 2, · · · , n, m = 1, 2, · · · , h. Using the differential inclusion theory, response
networks (13) can be redescribed as

LCDµ
t wi(t) ∈− biwi(t) +

n

∑
j=1

(co[cij, c̄ij])β j(wj(t)) +
h

∑
m=1

n

∑
j=1

(co[dm
ij , d̄m

ij ])γj(wj(t− τm))

+ Ii + Ui(t), (15)

where t ≥ 0 and i = 1, 2, · · · , n. Equivalently, one can find appropriate functions φ̄ij(t) ∈
co[cij, c̄ij], ψ̄m

ij (t) ∈ co[dm
ij , d̄m

ij ], for i, j = 1, 2, · · · , n, m = 1, 2, · · · , h, such that

LCDµ
t wi(t) = −biwi(t) +

n

∑
j=1

φ̄ij(t)β j(wj(t)) +
h

∑
m=1

n

∑
j=1

ψ̄m
ij (t)γj(wj(t− τm)) + Ii + Ui(t), (16)

where t ≥ 0 and i = 1, 2, · · · , n. Define the errors as ei(t) = wi(t)− vi(t), then we can
derive the error systems below:

LCDµ
t ei(t) =− biei(t) +

n

∑
j=1

[φ̄ij(t)β j(wj(t))− φij(t)β j(vj(t))] (17)

+
h

∑
m=1

n

∑
j=1

[ψ̄m
ij (t)γj(wj(t− τm))− ψm

ij (t)γj(vj(t− τm))] + Ui(t), t ≥ 0.

Clearly, the synchronization problem between drive networks (1) and response net-
works (13) can be transformed into the asymptotic stability of error system (17). To achieve
synchronization, consider a hybrid impulsive feedback controller, then system (17) can be
rewritten as

LCDµ
t ei(t) = −(bi + ςi)ei(t) +

n
∑

j=1

[
φij(t)β j(wj(t))− φij(t)β j(vj(t))

]
+

h
∑

m=1

n
∑

j=1

[
ψ

m
ij (t)γj(wj(t− τm))− ψm

ij (t)γj(vj(t− τm))
]
, t ∈ [tk−1, tk),

ei
(
t+k
)
− ei

(
t−k
)
= αiei

(
t−k
)
, k ∈ Z+,

(18)

where ςi and αi represent feedback and impulsive gains, respectively.
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Remark 4. The synchronization of integer-order MNN has been extensively studied, and various
valuable results have been obtained in the literature [9–16]. However, due to the unique nonlocality
and finite memory of fractional-order memristive systems, effective impulsive control methods and
comparison principles for integer-order systems cannot be directly applied to fractional-order ones.
As a result, the synchronization of fractional-order multi-link MNN using hybrid impulsive control
is still an open problem with limited existing results.

3. Main Results

Before presenting the main theoretical results of this paper, we introduce two important
mathematical notations. Let En = diag{1 + α1, 1 + α2, · · · , 1 + αn}, and
e(t) = (e1(t), e2(t), · · · , en(t))T . The second equation in (18) can be equivalently expressed
as e(t+k ) = Ene(t−k ) for k ∈ Z+.

Theorem 1. Under Assumptions 1 and 2, the global synchronization between drive–response
systems (1) and (13) is achieved via the hybrid impulsive feedback control, if there exist constants
ςi > 0, 0 < ρ ≤ 1, and αi ∈ (−2, 0), satisfying the following conditions

(i)
[
−ρIn ET

n
En −In

]
≤ 0,

(ii)
h

∑
m=1

λm <
λ0√

2
,

where λm = max
1≤i≤n

(
n
∑

j=1
dm∗

ji γ̃i

)
, λ0 = min

1≤i≤n

[
2(bi + ςi)−

n
∑

j=1
c∗ij β̃ j −

n
∑

j=1
c∗ji β̃i −

h
∑

m=1

n
∑

j=1
dm∗

ij γ̃j

]
,

c∗ij = max{|čij|, |ĉij|}, and dm∗
ij = max{|ďm

ij |, |d̂m
ij |}.

Proof. Consider the following function

V(t) =
n

∑
i=1

e2
i (t). (19)

When t ∈ [tk−1, tk), utilizing Lemma 3 and computing the derivative of V(t) gives

LCDµ
t V(t) ≤

n

∑
i=1

2ei(t)LCDµ
t ei(t)

=−
n

∑
i=1

2(bi + ςi)e2
i (t) + 2

n

∑
i=1

{
n

∑
j=1

ei(t)
[
φ̄ij(t)β j(wj(t))− φij(t)β j(vj(t))

]
+

h

∑
m=1

n

∑
j=1

ei(t)
[
ψ̄m

ij (t)γj(wj(t− τm))− ψm
ij (t)γj(vj(t− τm))

]}
. (20)
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By Lemma 4, one can derive from (20) that

LCDµ
t V(t) ≤−

n

∑
i=1

2(bi + ςi)e2
i (t) +

n

∑
i=1

n

∑
j=1

2|ei(t)|c∗ij β̃ j|ej(t)|

+
n

∑
i=1

h

∑
m=1

n

∑
j=1

2|ei(t)|dm∗
ij γ̃j|ej(t− τm)|

≤ −
n

∑
i=1

2(bi + ςi)e2
i (t) +

n

∑
i=1

n

∑
j=1

c∗ij β̃ je2
i (t) +

n

∑
i=1

n

∑
j=1

c∗ij β̃ je2
j (t)

+
n

∑
i=1

h

∑
m=1

n

∑
j=1

dm∗
ij γ̃je2

i (t) +
n

∑
i=1

h

∑
m=1

n

∑
j=1

dm∗
ij γ̃je2

j (t− τm)

≤−
n

∑
i=1

[
2(bi + ςi)−

n

∑
j=1

c∗ij β̃ j −
n

∑
j=1

c∗ji β̃i −
h

∑
m=1

n

∑
j=1

dm∗
ij γ̃j

]
e2

i (t)

+
n

∑
i=1

[
h

∑
m=1

n

∑
j=1

dm∗
ji γ̃i

]
e2

i (t− τm)

≤− min
1≤i≤n

[
2(bi + ςi)−

n

∑
j=1

c∗ij β̃ j −
n

∑
j=1

c∗ji β̃i −
h

∑
m=1

n

∑
j=1

dm∗
ij γ̃j

]
V(t)

+
h

∑
m=1

max
1≤i≤n

(
n

∑
j=1

dm∗
ji γ̃i

)
V(t− τm)

=− λ0V(t) +
h

∑
m=1

λmV(t− τm), (21)

where

λ0 = min
1≤i≤n

[
2(bi + ςi)−

n

∑
j=1

c∗ij β̃ j −
n

∑
j=1

c∗ji β̃i −
h

∑
m=1

n

∑
j=1

dm∗
ij γ̃j

]
,

λm = max
1≤i≤n

(
n

∑
j=1

dm∗
ji γ̃i

)
.

On the other hand, from condition (i) of Theorem 1, one can obtain[
−ρeT(t−k )e(t

−
k ) eT(t−k )ET

n
Ene(t−k ) −In

]
=

[
eT(t−k ) 0

0 In

][
−ρIn ET

n
En −In

][
e(t−k ) 0

0 In

]
≤ 0. (22)

Combining the Schur complement lemma and inequality (22), we have

−ρeT(t−k )e(t
−
k ) + eT(t−k )ET

n Ene(t−k ) ≤ 0. (23)

Based on the definition of V(t) and inequality (23), when t = tk, one can derive

V(t+k ) = eT(t+k )e(t
+
k ) = eT(t−k )ET

n Ene(t−k )

≤ ρV(t−k ), (24)

where 0 < ρ ≤ 1. Combining (21) and (24) yields
LCDµ

t V(t) ≤ −λ0V(t) +
h
∑

m=1
λmV(t− τm), t ∈ [tk−1, tk),

V(t+k ) ≤ ρV(t−k ), k ∈ Z+.
(25)
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Consider the following differential system

LCDµ
t v(t) = −λ0v(t) + λ1v(t− τ1) + λ2v(t− τ2) + · · ·+ λhv(t− τh), (26)

where v(t) is continuous on [t0 − τ, ∞) and it possesses the same initial condition with
V(t). By Lemma 7 and the known condition 0 < ρ ≤ 1, one can obtain

0 ≤ V(t) ≤ v(t). (27)

Using Laplace transform for system (26) yields

sµv(s)− sµ−1v(t0)

=− λ0v(s) + λ1

∫ +∞

t0

e−stv(t− τ1)dt + λ2

∫ +∞

t0

e−stv(t− τ2)dt + · · ·

+ λh

∫ +∞

t0

e−stv(t− τh)dt

=− λ0v(s) + λ1

∫ +∞

t0−τ1

e−s(t+τ1)v(t)dt + λ2

∫ +∞

t0−τ2

e−s(t+τ2)v(t)dt + · · ·

+ λh

∫ +∞

t0−τh

e−s(t+τh)v(t)dt

=− λ0v(s) + λ1e−sτ1
[ ∫ t0

t0−τ1

e−stv(t)dt +
∫ +∞

t0

e−stv(t)dt
]
+ λ2e−sτ2

[ ∫ t0

t0−τ2

e−stv(t)dt

+
∫ +∞

t0

e−stv(t)dt
]
+ · · ·+ λhe−sτh

[ ∫ t0

t0−τh

e−stv(t)dt +
∫ +∞

t0

e−stv(t)dt
]

=− λ0v(s) + λ1e−sτ1 v(s) + λ2e−sτ2 v(s) + · · ·+ λhe−sτh v(s)

+ λ1e−sτ1

∫ t0

t0−τ1

e−stv(t)dt + λ2e−sτ2

∫ t0

t0−τ2

e−stv(t)dt + · · ·+ λhe−sτh

∫ t0

t0−τh

e−stv(t)dt. (28)

Based on Lemma 1 and Equation (28), one can obtain

det(∆(s))v(s) = sµ−1v(t0) + λ1e−sτ1

∫ t0

t0−τ1

e−stv(t)dt + · · ·+ λhe−sτh

∫ t0

t0−τh

e−stv(t)dt, (29)

where characteristic polynomial det(∆(s)) = sµ + λ0 − (λ1e−sτ1 + λ2e−sτ2 + · · ·+ λhe−sτh).
In the following, we shall demonstrate that det(∆(s)) = 0 does not have pure imaginary
solutions. Assume s = σi = |σ|(cos π

2 + i sin(±π
2 )), where σ ∈ R. When σ > 0, we

select i sin(π
2 ); otherwise, we select i sin(−π

2 ). By the Euler formula eiθ = cos θ + i sin θ,
substituting s into det(∆(s)) = 0, one has

(σi)µ + λ0 =
h

∑
m=1

λme−τmσi. (30)

Then one can obtain

|(σi)µ + λ0|2 = |
h

∑
m=1

λme−τmσi|2, (31)

which yields

|σ|2µ + 2λ0 cos
µπ

2
|σ|µ + λ2

0 =
( h

∑
m=1

λm cos στm
)2

+
( h

∑
m=1

λm sin στm
)2

≤ 2(
h

∑
m=1

λm)
2. (32)
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Construct a second order polynomial ζ(x) = x2 + 2λ0 cos µπ
2 x + λ2

0 −( h
∑

m=1
λm cos στm

)2 −
( h

∑
m=1

λm sin στm
)2. One can obtain ζ(0) = λ2

0 −
( h

∑
m=1

λm cos στm
)2 −( h

∑
m=1

λm sin στm
)2

> 0 , since
h
∑

m=1
λm < λ0√

2
, 0 < µ < 1, λm > 0(m = 1, 2, · · · , h). Con-

sidering ζ(x) is a polynomial with order 2, we can future obtain ζ(|σ|µ) > 0, which
means Equation (32) has no solution, i.e., there are no pure imaginary solutions that

satisfy det(∆(s)) = 0. Furthermore, when
h
∑

m=1
λm < λ0√

2
, one can obtain |arg(−λ0 +

∑h
m=1 λm)| > π

2 . By Lemma 1, the zero solution of Equation (26) is asymptotically stable and
limt→+∞ v(t) = 0. Utilizing inequality (27), one can derive that limt→+∞ V(t) = 0, and we
finish the proof.

Remark 5. Several synchronization results have been reported for fractional-order single-link
neural networks with memristor characteristics, as discussed in [31–33]. However, unlike these
studies that employ continuous state feedback control techniques, this paper aims to synchronize the
fractional-order multi-link MNN using a hybrid impulsive control approach, rather than relying
solely on state feedback control schemes.

Remark 6. Compared with the continuous feedback control scheme, the hybrid impulsive control,
as a type of discontinuous control scheme, has the advantages of simple implementation and increased
safety during signal transmission. Mentions should be made that when we replace hybrid impulsive
control with pure impulsive control, it can be seen that the parameter λ0 in condition (ii) of Theorem
1 always becomes negative. It should be pointed out that the other parameters λm(m = 1, 2, · · · , h)
are positive, which makes condition (ii) untenable. Hence, the hybrid impulsive control method in
this article is important and can not be replaced by pure impulsive control.

Theorem 2. Under Assumptions 1–2, the global synchronization between drive–response systems
(1) and (13) is achieved via the hybrid impulsive feedback control, if there exist constants ςi >
0, ρ > 1, ξ > 1, Fm > 1, and αi ∈ (−∞,−2) ∪ (0,+∞), satisfying the following conditions

(i)
[
−ρIn ET

n
En −In

]
≤ 0,

(ii) ρEµ[−η(tk − tk−1)
µ] < ξ−1,

where η = λ0−
h
∑

m=1
λmFm > 0, λ0 = min

1≤i≤n

[
2(bi + ςi)−

n
∑

j=1
c∗ij β̃ j −

n
∑

j=1
c∗ji β̃i −

h
∑

m=1

n
∑

j=1
dm∗

ij γ̃j

]
,

λm = max
1≤i≤n

(
n
∑

j=1
dm∗

ji γ̃i

)
, c∗ij = max{|čij|, |ĉij|}, and dm∗

ij = max{|ďm
ij |, |d̂m

ij |}.

Proof. Construct the following function

V(t) =
n

∑
i=1

e2
i (t). (33)

When t ∈ [tk−1, tk), utilizing the same proof steps of (20) and (21), we have

LCDµ
t V(t) ≤ −λ0V(t) +

h

∑
m=1

λmV(t− τm), (34)

whenever ei(t) meets the following inequalities

V(t− τm) ≤ FmV(t), (35)
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for Fm > 1(m = 1, 2, · · · , h), one can derive from (34) and (35) that

LCDµ
t V(t) ≤ −ηV(t), (36)

where η = λ0 −
h
∑

m=1
λmFm. Utilizing Lemma 5, one can obtain

V(t) ≤ V(tk−1)Eµ

[
−η(t− tk−1)

µ], t ∈ [tk−1, tk). (37)

From condition (i) of Theorem 2, one can obtain[
−ρeT(t−k )e(t

−
k ) eT(t−k )ET

n
Ene(t−k ) −In

]
=

[
eT(t−k ) 0

0 In

][
−ρIn ET

n
En −In

][
e(t−k ) 0

0 In

]
≤ 0. (38)

Combining the Schur complement lemma and (38), we have

−ρeT(t−k )e(t
−
k ) + eT(t−k )ET

n Ene(t−k ) ≤ 0. (39)

Hence, when t = tk, one can obtain

V(t+k ) = eT(t+k )e(t
+
k ) = eT(t−k )ET

n Ene(t−k )

≤ ρV(t−k ), (40)

where ρ > 1.
For t ∈ [t0, t1), one can derive from inequality (37) that

V(t) ≤ V(t0)Eµ[−η(t− t0)
µ]. (41)

Combining (40) and (41) gives

V(t1) ≤ ρV(t−1 ) ≤ ρV(t0)Eµ[−η(t1 − t0)
µ]. (42)

Similarly, for t ∈ [t1, t2), one has

V(t) ≤ V(t1)Eµ

[
−η(t− t1)

µ]
≤ ρV(t0)Eµ[−η(t1 − t0)

µ]Eµ[−η(t− t1)
µ], (43)

and

V(t2) ≤ ρV(t−2 ) ≤ V(t0)
{

ρEµ

[
−η(t1 − t0)

µ]}{ρEµ[−η(t2 − t1)
µ]
}

. (44)

Repeating the above process, for t ∈ [tk−1, tk), one can obtain

V(t) ≤V(t0)
{

ρEµ[−η(t1 − t0)
µ]
}{

ρEµ[−η(t2 − t1)
µ]
}{

ρEµ[−η(t3 − t2)
µ]
}

× · · · ×
{

ρEµ[−η(tk−1 − tk−2)
µ]
}{

Eµ[−η(t− tk−1)
µ]
}

≤V(t0)
1

ξk−1

{
Eµ[−η(t− tk−1)

µ]
}

. (45)

Since ξ > 1 and η > 0, one can derive V(t) → 0 as k → +∞, which means that
the synchronization of drive–response networks (1) and (13) can be achieved under our
impulsive feedback control strategies.

Remark 7. The parameter ξ in condition (ii) of Theorem 2 plays a crucial role in reducing the
conservativeness and regulating the synchronization speed of the system. Generally, increasing the
value of this parameter can enhance the rate of synchronization.
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Remark 8. The structural and initial conditions of Formulas (25) and (26) comply with expressions
(7) and (8) of the generalized comparison principle. Hence, we can apply the generalized comparison
principle to complete the key proof steps of Theorem 1. The Mittag–Lefler function is an important
part of Lemma 5. In the proof of Theorem 2, we have to apply Lemma 5 to derive expression (37).
Moreover, with the help of the Mittag–Lefler function, one can derive inequalities (41)–(45), which
play important roles in the proof of Theorem 2.

Based on the proof idea presented in Theorem 2, the following corollary can be
easily derived.

Corollary 1. Assuming Assumptions 1 and 2 hold, the global synchronization between the drive–
response systems (1) and (13) is achieved using the hybrid impulsive feedback control if there exist
constants ςi > 0, 0 < ρ ≤ 1, ξ > 1, Fm > 1, and αi ∈ (−2, 0), satisfying the following conditions:

(i)
[
−ρIn ET

n
En −In

]
≤ 0,

(ii)ρEµ[−η(tk − tk−1)
µ] < ξ−1,

where η = λ0−
h
∑

m=1
λmFm < 0, λ0 = min

1≤i≤n

[
2(bi + ςi)−

n
∑

j=1
c∗ij β̃ j −

n
∑

j=1
c∗ji β̃i −

h
∑

m=1

n
∑

j=1
dm∗

ij γ̃j

]
,

λm = max
1≤i≤n

(
n
∑

j=1
dm∗

ji γ̃i

)
, c∗ij = max{|čij|, |ĉij|}, and dm∗

ij = max{|ďm
ij |, |d̂m

ij |}.

Remark 9. The function Eµ[−η(t− t0)
µ] is known to be monotonically nonincreasing, and satis-

fies 0 ≤ Eµ[−η(t− t0)
µ] ≤ 1 for t ≥ t0 and η > 0. Similarly, Eµ[−η(t− t0)

µ] is monotonically
nondecreasing, and Eµ[−η(t− t0)

µ] ≥ 1 for t ≥ t0 and η ≤ 0. Exploiting this characteristic, one
can select appropriate values for the parameters ρ and ξ to ensure the validity of condition (ii).

Remark 10. The impulsive gain in this article is not limited to the interval (−2, 0), which is
expressed as a common restrictions of impulsive control gain in the previous literature. The expansion
of the impulsive gain range makes the much wider applicability of our control method. A large
impulsive gain can match a large impulsive interval to meet the control requirements, which increases
communication security. Based on the system environment, impulsive intervals tk − tk−1 can be
obtained according to the following regulations.

(i) When the impulsive gain satisfies αi ∈ (−2, 0) and
h
∑

m=1
λm < λ0√

2
, the impulsive intervals

are not strictly limited.
(ii) When the impulsive gain satisfies αi ∈ (−2, 0), the impulsive intervals can be determined

by the inequality ρEµ[−η(tk − tk−1)
µ] < ξ−1, where ξ > 1, 0 < ρ ≤ 1, and η =

λ0 −
h
∑

m=1
λmFm < 0.

(iii) When the impulsive gain satisfies αi ∈ (−∞,−2) ∪ (0,+∞), the impulsive intervals can be
determined by the inequality ρEµ[−η(tk − tk−1)

µ] < ξ−1, where ξ > 1, ρ > 1, and η =

λ0 −
h
∑

m=1
λmFm > 0.

Remark 11. The synchronization problem between the drive–response systems is equivalent to the
stability problem of the error system. Furthermore, this stability problem is closely related to the
fixed point stability of the driving system. It should be emphasized that the Lyapunov functions
and proofs for the two types of stability analysis are completely consistent. If the fixed point of the
driving system is asymptotically stable, it can be proven that the error system is asymptotic stable in
a similar way, thereby the driving system and the response system can achieve synchronization.
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4. Numerical Simulations

This section presents two simulation examples to demonstrate the applicability of the
theoretical results obtained in the previous sections.

Example 1. Take a two-dimensional fractional-order memristive system including the parameters
below as the drive network.

c11(v1) =

{
0.6, |v1(t)| < 1,
−0.8, |v1(t)| > 1,

c12(v1) =

{
0.2, |v1(t)| < 1,
−0.3, |v1(t)| > 1,

c21(v2) =

{
0.5, |v2(t)| < 1,
−0.7, |v2(t)| > 1,

c22(v2) =

{
0.1, |v2(t)| < 1,
−0.3, |v2(t)| > 1,

d1
11(v1) =

{
0.4, |v1(t)| < 1,
−0.4, |v1(t)| > 1,

d1
12(v1) =

{
0.6, |v1(t)| < 1,
−0.6, |v1(t)| > 1,

d1
21(v2) =

{
0.7, |v2(t)| < 1,
−0.7, |v2(t)| > 1,

d1
22(v2) =

{
0.3, |v2(t)| < 1,
−0.3, |v2(t)| > 1,

d2
11(v1) =

{
0.5, |v1(t)| < 1,
−0.5, |v1(t)| > 1,

d2
12(v1) =

{
0.8, |v1(t)| < 1,
−0.8, |v1(t)| > 1,

d2
21(v2) =

{
0.7, |v2(t)| < 1,
−0.7, |v2(t)| > 1,

d2
22(v2) =

{
0.9, |v2(t)| < 1,
−0.9, |v2(t)| > 1,

b1 = 4, b2 = 5, µ = 0.8, τ1 = 0.2, τ2 = 0.3, I1 = 1, and I2 = 2. The non-delay and delayed
feedback functions are selected as β1(v) = β2(v) = γ1(v) = γ2(v) = tanh v. When β̃i = γ̃i =
Mi = M̄i = 1(i = 1, 2), it is not difficult to validate that the function tanh v is bounded and
conforms to the Lipschitz condition, which means Assumption 1 and Assumption 2 hold. The param-
eters of the response network are consistent with those of the drive network. Let ςi = 0.5, αi = −0.2,

ρ = 0.78, and tk − tk−1 = 0.1, then simple calculation gives that
√

2
h
∑

m=1
max1≤i≤n

(
n
∑

j=1
dm∗

ji γ̃i

)

= 3.9598 < 4.1 = min1≤i≤n

[
2(bi + ςi)−

n
∑

j=1
c∗ij β̃ j −

n
∑

j=1
c∗ji β̃i −

h
∑

m=1

n
∑

j=1
dm∗

ij γ̃j

]
, and[

−0.78In ET
n

En −In

]
≤ 0. Hence, one can easily find that all circumstances in Theorem 1 are fulfilled.

The starting values of the master–slave networks are randomly selected within the interval [0 1].
Under the hybrid impulsive feedback control schemes, the state trajectories of master–slave sys-
tems (1) and (13) are given in Figure 1a,b and the corresponding synchronization errors can be seen
in Figure 1c,d. The experimental results show that master–slave systems (1) and (13) can achieve
drive–response synchronization.
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Figure 1. The state trajectories and error signals in master–slave systems (1) and (13) under hybrid
impulsive feedback control in Example 1. (a) v1(t)&w1(t); (b) v2(t)&w2(t); (c) e1(t); (d) e2(t).

Example 2. Take a three-dimensional fractional-order memristive system including the parameters
below as the drive network.

c11(v1) =

{
2.0, |v1(t)| < 1,
−2.0, |v1(t)| > 1,

c12(v1) =

{
−1.2, |v1(t)| < 1,
1.2, |v1(t)| > 1,

c13(v1) =

{
1.0, |v1(t)| < 1,
−1.0, |v1(t)| > 1,

c21(v2) =

{
1.8, |v2(t)| < 1,
−1.8, |v2(t)| > 1,

c22(v2) =

{
1.6, |v2(t)| < 1,
−1.6, |v2(t)| > 1,

c23(v2) =

{
1.1, |v2(t)| < 1,
−1.1, |v2(t)| > 1,

c31(v3) =

{
1.5, |v3(t)| < 1,
−1.5, |v3(t)| > 1,

c32(v3) =

{
2.5, |v3(t)| < 1,
−2.5, |v3(t)| > 1,

c33(v3) =

{
2.0, |v3(t)| < 1,
−2.0, |v3(t)| > 1,

d1
11(v1) =

{
1.5, |v1(t)| < 1,
−1.5, |v1(t)| > 1,

d1
12(v1) =

{
1.0, |v1(t)| < 1,
−1.0, |v1(t)| > 1,

d1
13(v1) =

{
0.5, |v1(t)| < 1,
−0.5, |v1(t)| > 1,

d1
21(v2) =

{
1.5, |v2(t)| < 1,
−1.5, |v2(t)| > 1,

d1
22(v2) =

{
2.0, |v2(t)| < 1,
−2.0, |v2(t)| > 1,

d1
23(v2) =

{
1.5, |v2(t)| < 1,
−1.5, |v2(t)| > 1,
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d1
31(v3) =

{
1.0, |v3(t)| < 1,
−1.0, |v3(t)| > 1,

d1
32(v3) =

{
2.0, |v3(t)| < 1,
−2.0, |v3(t)| > 1,

d1
33(v3) =

{
0.5, |v3(t)| < 1,
−0.5, |v3(t)| > 1,

d2
11(v1) =

{
0.5, |v1(t)| < 1,
−0.5, |v1(t)| > 1,

d2
12(v1) =

{
0.8, |v1(t)| < 1,
−0.8, |v1(t)| > 1,

d2
13(v1) =

{
0.6, |v1(t)| < 1,
−0.6, |v1(t)| > 1,

d2
21(v2) =

{
1.0, |v2(t)| < 1,
−1.0, |v2(t)| > 1,

d2
22(v2) =

{
1.6, |v2(t)| < 1,
−1.6, |v2(t)| > 1,

d2
23(v2) =

{
0.6, |v2(t)| < 1,
−0.6, |v2(t)| > 1,

d2
31(v3) =

{
0.8, |v3(t)| < 1,
−0.8, |v3(t)| > 1,

d2
32(v3) =

{
1.2, |v3(t)| < 1,
−1.2, |v3(t)| > 1,

d2
33(v3) =

{
0.4, |v3(t)| < 1,
−0.4, |v3(t)| > 1,

d3
11(v1) =

{
0.8, |v1(t)| < 1,
−0.8, |v1(t)| > 1,

d3
12(v1) =

{
1.0, |v1(t)| < 1,
−1.0, |v1(t)| > 1,

d3
13(v1) =

{
0.4, |v1(t)| < 1,
−0.4, |v1(t)| > 1,

d3
21(v2) =

{
1.5, |v2(t)| < 1,
−1.5, |v2(t)| > 1,

d3
22(v2) =

{
1.2, |v2(t)| < 1,
−1.2, |v2(t)| > 1,

d3
23(v2) =

{
0.5, |v2(t)| < 1,
−0.5, |v2(t)| > 1,

d3
31(v3) =

{
1.1, |v3(t)| < 1,
−1.1, |v3(t)| > 1,

d3
32(v3) =

{
1.0, |v3(t)| < 1,
−1.0, |v3(t)| > 1,

d3
33(v3) =

{
0.7, |v3(t)| < 1,
−0.7, |v3(t)| > 1,

b1 = 4, b2 = 5, b3 = 6, µ = 0.8, τ1 = 0.05, τ2 = 0.10, τ3 = 0.12. The non-
delay feedback function is the same as Example 1 and the delayed feedback function is selected
as γ1(v) = γ2(v) = γ3(v) = 1

2 (|1 + v| − |1− v|). We can conclude that |γ1(v)| = |γ2(v)| =
|γ3(v)| ≤ 1 and γ̇1(v) = γ̇2(v) = γ̇3(v) = 1

2 [sign(1 + v) − sign(1 − v)]. Let γ̃i =
M̄i = 1, then one can easily find that the function γi(v) conforms to Assumptions 1 and 2.
The parameters of the response network are consistent with those of the drive network. Let
ςi = 15, αi = −2.1, ρ = 1.3, ξ = 1.1, and tk − tk−1 = 0.4, then simple calculation gives

min1≤i≤n

[
2(bi + ςi)−

n
∑

j=1
c∗ij β̃ j −

n
∑

j=1
c∗ji β̃i −

h
∑

m=1

n
∑

j=1
dm∗

ij γ̃j

]
= 18.8, max1≤i≤n(

n
∑

j=1
d1∗

ji γ̃i

)
= 5, max1≤i≤n

(
n
∑

j=1
d2∗

ji γ̃i

)
= 3.6, max1≤i≤n

(
n
∑

j=1
d3∗

ji γ̃i

)
= 3.4, η = λ0 −

h
∑

m=1
λmFm = 0.8, ρEµ[−η(tk − tk−1)

µ] = 0.8763 < 0.9091 = ξ−1, and
[
−1.3In ET

n
En −In

]
≤ 0.

Thus, it can be observed that all the conditions in Theorem 2 are satisfied. The initial values of
the master–slave networks are randomly chosen from the interval [−2 2]. The time evolution of
the state trajectories of the master–slave systems (1) and (13) are depicted in Figure 2a,b, while
Figure 2c,d shows the corresponding synchronization errors. The experimental results demonstrate
that the proposed control schemes can achieve drive–response synchronization of the master–slave
systems (1) and (13) when the parameters satisfy the requirements of Theorem 2.
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Figure 2. The state trajectories and error signals in master–slave systems (1) and (13) under hybrid
impulsive feedback control in Example 2. (a) v1(t)&w1(t); (b) v2(t)&w2(t); (c) v3(t)&w3(t); (d) e1(t);
(e) e2(t); (f) e3(t).

5. Conclusions

This study investigates the drive–response synchronization of a class of fractional-
order multi-link memristive neural networks (FMMNN), where multiple time delays and
impulsive effects are considered in the response system. A more generalized fractional-
order comparison principle that includes delays and impulses is proposed to overcome
the stability issues induced by delays. By employing hybrid impulsive feedback control
techniques, novel synchronization criteria are obtained to ensure the synchronization
of master–slave neural networks. The derived criteria depend on impulsive intervals,
fractional order, impulsive and feedback gains. Notably, the scope of impulses considered
in this study is wider than that of previous works, enhancing the practicality of our hybrid
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impulsive control method. Finally, numerical examples are presented to validate our
theoretical findings.
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