
Citation: Kirichenko, L.; Lavrynenko,

R. Probabilistic Machine Learning

Methods for Fractional Brownian

Motion Time Series Forecasting.

Fractal Fract. 2023, 7, 517. https://

doi.org/10.3390/fractalfract7070517

Academic Editors: Matej Babič,
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Abstract: This paper explores the capabilities of machine learning for the probabilistic forecasting
of fractional Brownian motion (fBm). The focus is on predicting the probability of the value of an
fBm time series exceeding a certain threshold after a specific number of time steps, given only the
knowledge of its Hurst exponent. The study aims to determine if the self-similarity property is
preserved in a forecasting time series and which machine learning algorithms are the most effective.
Two types of forecasting methods are investigated: methods with a predefined distribution shape
and those without. The results show that the self-similar properties of the fBm time series can be
reliably reproduced in the continuations of the time series predicted by machine learning methods.
The study also provides an experimental comparison of various probabilistic forecasting methods
and their potential applications in the analysis and modeling of fractal time series.

Keywords: fractional Brownian motion; hurst exponent; time series; probabilistic forecast; quantile
regression; distributional modelling

1. Introduction

Fractional Brownian motion (fBm) is a stochastic process characterized by long-range
dependence, self-similarity, and non-stationarity. These properties make fBm a suitable
framework for modeling time series data with complex structures and memory effects,
such as financial market data, Internet traffic, realizations of biomedical signals, dynamic
indicators of natural phenomena, etc. [1–5]. Predicting the future behavior of stochastic frac-
tal time series can help make more informed decisions. For instance, in finance, forecasts
enable risk assessment and decision making regarding an asset purchase or sale. Predicting
Internet traffic allows for optimal scaling of network resources, and anticipation of peak
loads, ensuring sufficient bandwidth for high-quality user service. Moreover, forecasting
fractal time series of seismic activity can provide insights into potential trends and proba-
bilities of earthquakes, among other applications. These predictions contribute to a wide
range of fields and can lead to more effective decision-making processes [6–10]. Research
into fractional processes has the potential to advance emerging directions in computer
science, such as high-order fractional complex-valued bidirectional associative memory
neural networks with multiple time delays [11–13].

Despite the widespread usage of point forecasting and interval forecasting methods
in time series analysis, these approaches alone prove insufficient for stochastic time series
such as fBm. The application of probabilistic forecasting confers a range of advantages.
Probabilistic forecasting provides a more comprehensive representation of future outcomes
by estimating the entire probability distribution of the forecast variable, rather than just a
single value.

Probabilistic forecasting methods have become increasingly important in various fields,
such as finance, weather, and energy. These methods provide valuable information on the
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distribution of future outcomes, which is crucial for decision making and risk assessment.
This information can be used to assess the risks associated with different decisions and to
implement risk management strategies.

There is a multitude of research related to the forecasting of self-similar time series
but the majority of existing methods primarily focus on point and interval forecasting
methods [14–16]. However, the challenge of probabilistic forecasting for fractal time series,
particularly fBm, remains unresolved. This highlights the need for further research and
development of techniques that address probabilistic forecasting in the context of fractal
time series.

Probabilistic forecasting methods can be broadly categorized into two classes based on
the underlying distribution shape assumptions: (1) methods with a predefined distribution
shape and (2) methods without a predefined distribution shape. The key difference between
these two categories is the degree of flexibility in modeling the underlying uncertainty:

1. Methods that assume parameters of a specific probability distribution that the forecast
variable follows, such as the Gaussian, Gamma, or Weibull distribution. These meth-
ods are characterized by a finite set of parameters that are estimated from the data.
Examples of parametric methods include Natural Gradient Boosting for Probabilistic
Prediction (NGBoost) [17], XGBoostLSS and LightGBMLSS, which model all moments
of a parametric distribution: mean, location, scale, and shape (LSS) [18,19], Cat-
boost with Uncertainty (CBU), Probabilistic Gradient Boosting Machines (PGBM) [20],
and Instance-Based Uncertainty Estimation for Gradient-Boosted Regression Trees
(IBUG) [21].

2. Methods that estimate the distribution directly from the data without relying on
any predefined shape, often focusing on predicting quantiles. These methods pro-
vide increased flexibility when modeling complex distributions, making them es-
pecially valuable when the true distribution is unknown or significantly deviates
from standard parametric forms. Quantile regression is a popular nonparametric
technique [22,23]. The newest approach is Nonparametric Probabilistic Regression
with Coarse Learners (PRESTO) [24].

The objective of this research comprises two stages. The first stage focuses on exploring
the potential for long-term probabilistic forecasting of fBm realizations while maintaining
the Hurst exponent. In this stage, fBm realizations with various Hurst exponent values will
be modeled using the Hosking algorithm [25], and forecasted realizations (continuations)
will be obtained using several primary probabilistic forecasting methods. These continua-
tions will be examined for preserving the Hurst exponent value using the Whittle estimator
and normal distribution using the Anderson–Darling test [26]. The preservation of the
Hurst exponent, normal distribution, and root mean square increments of fBm realizations
and their continuations allows us to conclude that the properties of fBm realizations are
preserved when forecasting with machine learning methods.

The second stage is directed toward conducting an experimental comparison of various
methods for predicting fBm realizations. In this part of the research, both parametric and
nonparametric probabilistic forecasting methods employing machine learning will be
considered. Computational experiments will be carried out, where each method will be
applied to forecast fBm realizations with different Hurst exponent values. The accuracy and
efficiency of each method will then be compared to determine the most suitable forecasting
method for these types of data.

Our Contribution:

1. We demonstrate that the self-similar properties of the fBm time series can be reliably
reproduced in the continuations of the series predicted by machine learning methods.

2. We propose an approach for evaluating probabilistic methods in forecasting the fBm
time series. Our method involves efficiently computing multiple continuations of a
single fBm time series using the Hosking algorithm, resulting in a dataset with ground
truth quantiles of possible continuations. Using a one-period-ahead model, iterated
forward for the desired number of periods, we can predict quantiles of continuations
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of fBm time series over hundreds or thousands of time steps and compare them with
the ground truth quantiles (Figure 1).

3. We conducted an experimental comparison of various probabilistic forecasting meth-
ods using this approach, providing insights into their performance and potential
applications in the analysis and modeling of fractal time series.
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Figure 1. Summary of our approach. We compute multiple continuations of a single fBm time
series using the Hosking algorithm, resulting in a dataset with ground truth quantiles of possible
continuations. Using a one-period-ahead model, iterated forward for the desired number of periods,
we can predict quantiles of continuations for fBm time series over hundreds or thousands of time
steps. By comparing the predicted quantiles with the ground truth quantiles, we can evaluate the
performance of the chosen machine learning method.

2. Materials and Methods
2.1. Problem Setting

To evaluate the performance of a probabilistic forecasting model, it is necessary to
compare the predicted probability distribution with the actual probability distribution of
the ground truth data. One common way to do this is by calculating the quantiles of the
predicted probability distribution and comparing them with the quantiles of the actual
distribution.

Predicting only one-time step ahead is insufficient for modeling the behavior of a
time series with fractal properties in the future and evaluating the method’s performance.
It is necessary to construct sufficiently long continuations of the time series to assess
the presence of similar fractal properties in these continuations. To achieve this, we
used iterated approaches that utilize one-step-ahead prediction models, with multi-step
predictions obtained by recursively feeding predictions into future inputs. This allows us to
generate longer continuations of the time series while preserving the fractal characteristics,
which can then be compared to the ground truth continuations for method evaluation and
performance analysis.

Additionally, predicting merely one continuation of a fractal time series is not enough
to evaluate the method. It is crucial to generate a representative number of possible time
series continuations and compare the quantiles of the obtained continuations for each time
step with the quantiles of the true possible continuations.

Our research will focus on the probabilistic forecasting of trajectories for a self-similar
process. A process {X(t), t ∈ R} is said to be self-similar of Hurst exponent H, if, for any
a > 0:

Law{X(at)} = Law{a H{X(t)}, (1)
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that is the equality of n-dimensional distribution laws of X(t) [27,28].
There are several approaches to defining fractional Brownian motion [29,30], and here

we apply one of them [28] that emphasizes the properties of normality and self-similarity.
Fractional Brownian motion X(t) is a type of self-similar stochastic process, the increments
of which on the time interval τ ∆X(τ) = X(t + τ) − X(t) have a Gaussian distribution:

P(∆X < x) =
1√

2πστH

∫ x

−∞
exp

(
−z2

2σ2τ2H

)
dz, (2)

where σ is the diffusion coefficient.
Exponent H determines the degree of long-range dependence of the fBm increments.

The corresponding normalized correlation function is expressed as:

Cor(t,s) = 0.5 ∗ (|t|2H + |s|2H − |t − s|2H), (3)

where t and s are time indices [28].
In general, for probabilistic forecasting, when Y is a real-valued response variable and

X is a predictor variable, the goal is to find the conditional distribution function [31], which
can be represented as

F(y|X = x) = P(Y ≤ y|X = x). (4)

Quantiles provide complete information about the distribution. For a continuous
distribution function, the α-quantile Qα(x) is defined as Qα(x) = inf{y: F(y|X = x) ≥ α}.

If the predictor variable is a time series

X(t) = {X(1), X(2), . . . , X(N)}, (5)

the task of probabilistic forecasting involves finding an algorithm that can predict the
probability distribution of future values of the time series X(t + 1), X(t + 2), . . . , X(t + K),
based on available past values X(t).

Thus, in the case of a fractional Brownian motion fBm time series X(t) of length N,
with a Hurst exponent equal to H, the task is to investigate the properties of continuations

Xc(t) = {X(N + 1), X(N + 2), . . . , X(N + K)}, (6)

obtained using machine learning methods, such that

F(X(N + 1), X(N + 2), . . . , X(N + K) | X(N), X(N − 1), . . . , X(N −m)), (7)

where F is the conditional distribution function, K is the forecast horizon, and m is the
horizon of known values of the time series.

In each generated continuation Xc(t), the Hurst exponent H of the original time series
X(t) should be preserved, as well as the scale (standard deviations of increments S). The
quantiles of the continuations Xc(t) will be compared to the ground truth quantiles of
possible continuations, and a metric assessing their discrepancies will be determined.

2.2. Method of Creating the Evaluating Dataset

There are several exact methods to simulate fBm realizations [25]. The Hosking method
is simple, popular, and implemented in Python. The Hosking method is intended for the
simulation of a stationary Gaussian sequence, which is increments of discrete-time fBm.
An important feature of our research is that this method generates Xn+1 given Xn, . . . , X1
recursively.

We propose a method for creating a dataset of fBm time series and their ground truth
continuations using the Hosking algorithm. Our method involves the parallel generation
of M continuations Xc(t) for one original time series X(t) and the formation of a matrix of
quantiles Qα = {Q(αi, tj)} for each time step t. This dataset can then be used to evaluate
probabilistic forecasting methods the for fBm time series.
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Our method of creating a single example for the dataset for a specific Hurst exponent
consists of the following steps:

1. We use the Hosking method to generate values of the first N time steps of the predictor
variable, which is a time series X(t) given by expression (5);

2. Starting from the state of the internal variables of the Hosking algorithm after gen-
erating step N, we continue generating values for the next K time steps, obtaining a
continuation Xc(t), defined by (6);

3. We repeat step 2 M times, obtaining M different continuations from the original
common starting point:

Xcm(t) = {Xcm(1), Xcm (2), . . . , Xcm (K)}, m = 1, 2, . . . , M; (8)

4. For each time step k, k = 1, 2, . . . , K, we determine the quantiles of the values of M
continuations, obtaining the desired quantile matrix;

5. The dataset stores the target Hurst exponent, for example, X(t), the predictor variable
X(t) of length N, and matrix Qα = {Q(αi,tj)} of size 101× K, which contains, for
each time step tj = 1, 2, . . . , K, quantiles αi, i = 1, 2, . . . , 101 of the distribution of
M continuations {Xcm(t)}. The 0th and 1.0 quantiles represent the minimum and
maximum values among the M variants at each time step tj.

This algorithm for creating a single example for the database can be used to populate
the database with many examples for each of the various Hurst exponent values.

The example created using this method is illustrated in Figure 2. The figure displays a
common row for the first 1024 time steps, followed by four colored curves representing the
quantiles of the numerous possible continuations of the common beginning.

Fractal Fract. 2023, 7, 517 5 of 17 
 

 

We propose a method for creating a dataset of fBm time series and their ground truth 
continuations using the Hosking algorithm. Our method involves the parallel generation 
of M continuations Xc(t) for one original time series X(t) and the formation of a matrix of 
quantiles Qα = {Q(αi, tj)} for each time step t. This dataset can then be used to evaluate 
probabilistic forecasting methods the for fBm time series. 

Our method of creating a single example for the dataset for a specific Hurst exponent 
consists of the following steps: 
1. We use the Hosking method to generate values of the first N time steps of the pre-

dictor variable, which is a time series X(t) given by expression (5); 
2. Starting from the state of the internal variables of the Hosking algorithm after 

generating step N, we continue generating values for the next K time steps, obtaining 
a continuation Xc(t), defined by (6); 

3. We repeat step 2 M times, obtaining M different continuations from the original 
common starting point: 

Xcm(t) = {Xcm(1), Xcm (2), …, Xcm (K)},  m = 1, 2,…, M; (8)

4. For each time step k, k = 1, 2, …, K, we determine the quantiles of the values of M 
continuations, obtaining the desired quantile matrix; 

5. The dataset stores the target Hurst exponent, for example, X(t), the predictor variable 
X(t) of length N, and matrix Qα = {Q(αi,tj)} of size 101× K, which contains, for each 
time step tj = 1, 2, …, K, quantiles αi, i = 1, 2, …, 101 of the distribution of M 
continuations {Xcm(t)}. The 0th and 1.0 quantiles represent the minimum and 
maximum values among the M variants at each time step tj. 
This algorithm for creating a single example for the database can be used to populate 

the database with many examples for each of the various Hurst exponent values. 
The example created using this method is illustrated in Figure 2. The figure displays 

a common row for the first 1024 time steps, followed by four colored curves representing 
the quantiles of the numerous possible continuations of the common beginning. 

 
Figure 2. Visualization of an example of the proposed dataset. Common beginning of length 1024 
and quantiles of its continuation length 1024 (quantiles 0.99, 0.95, 0.84, 0.50). 

The code for generating a file of the dataset for a specific Hurst exponent can be found 
at the following link: https://www.kaggle.com/code/unfriendlyai/fbm-dataset-generator 

Figure 2. Visualization of an example of the proposed dataset. Common beginning of length 1024
and quantiles of its continuation length 1024 (quantiles 0.99, 0.95, 0.84, 0.50).

The code for generating a file of the dataset for a specific Hurst exponent can be
found at the following link: https://www.kaggle.com/code/unfriendlyai/fbm-dataset-
generator (accessed on 8 May 2023). Our fBm dataset is available on the Kaggle platform
at: https://www.kaggle.com/datasets/unfriendlyai/fractal-brownian-motion (accessed
on 8 May 2023).

https://www.kaggle.com/code/unfriendlyai/fbm-dataset-generator
https://www.kaggle.com/code/unfriendlyai/fbm-dataset-generator
https://www.kaggle.com/datasets/unfriendlyai/fractal-brownian-motion
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2.3. Predicting Quantiles of Time Series for Multiple Future Time Steps

To iteratively predict quantiles for multiple future time steps using a one-step-ahead
machine learning method, we propose the following approach:

1. Train the machine learning model to output the distribution of the next time series
value given the previous ones. The result can be in the form of parameters of a certain
distribution, quantiles, or any other form that we can sample values from.

2. Given a test example with a time series length of N X(t), the model predicts the
distribution F represented by (7) of the next N + 1 value X(N + 1). Sample one value
from the distribution F to obtain one possible next value of the continuation, Xc(1).

3. Concatenate X(t) with Xc(t) and iteratively predict the next time step distribution,
sampling one value for Xc(t + 1) for the next K time steps, obtaining a continuation
Xc(t), defined by Equation (6).

4. Repeat the second and third steps many times, obtaining many different continuations
from the original single test example.

5. Determine the quantiles of the values of the continuations, obtaining the desired
quantiles for each time step.

This algorithm for estimating quantiles for future time steps of a single test example
X(t) can be used to predict quantiles for many such examples (Figure 1). Then predicted
quantiles can be compared with ground truth quantiles from the dataset to evaluate the
efficiency of the probabilistic machine learning method. The same algorithm can be used to
predict the probability of the value of an fBm time series exceeding a certain threshold after
a specific number of time steps.

The advantage of using iterative one-step-ahead prediction over directly predicting
multiple time steps is that one-step prediction is accessible to a wide array of machine
learning methods, unlike predicting a sequence of future values. Furthermore, once the
model is trained, it can be used to predict an arbitrary number of future time steps.

2.4. Assessment of Accuracy and Reliability of Continuations

In our research, it is essential to compare the properties of the obtained continuations
Xc(t) with the properties of the original time series X(t).

There are several properties we need to consider for comparison: the Hurst exponent
H, the normality of the distribution, and the magnitude of increments. If the values of H,
the standard deviation of the increments, and the normality of the distribution coincide,
we can conclude that the obtained continuations are realizations of the fractional Brownian
motion with the same H as the original ones.

The aforementioned properties are examined and verified through the following
procedures:

1. Calculating the Hurst exponent (H) using the Whittle estimator demonstrated the best
accuracy for time series with lengths of 512 and above, which we plan to evaluate,
as shown in a comparative study [32]. This allows us to assess whether the fractal
properties of the original time series X(t) are preserved in the generated continua-
tions Xc(t).

2. Determining if the increments are normally distributed using the Anderson–Darling
test. This test is a statistical method used to check whether a given sample of data
follows a specific distribution (in our case, normal distribution). If the increments are
normally distributed, it indicates that the generated continuations Xc(t) maintain the
same distribution law as the original time series X(t).

3. Comparing the standard deviations of increments (S) between the original time series
X(t) and the generated continuations Xc(t). By ensuring that the standard deviations of
increments are preserved, we can confirm that the scale of the generated continuations
Xc(t) is consistent with the original time series X(t).

In addition to the requirement that the generated continuations Xc(t) must have the
same fractal and statistical properties as the original series X(t), we need to assess the
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quality of the forecasting. Ideally, for each example, X(t) with its corresponding value of
H, the matrix of quantiles of the continuations Qc(αi) should match the true matrix Q(αi)
presented in the dataset. As a measure of deviation Qdev, we will use the absolute difference
between the true and predicted quantile values at the given time step tj, normalized by the
difference between the true value of the quantile Q(αi) and the adjacent Q(αi+1) for each
quantile from 0.01 to 0.99 and each time step, averaging it (Figure 3):

Qdev =
1

99K ∑K
j=1 ∑99

i=1
|Qc(αi, tj)−Q(αi, tj)|
Q(αi+1, tj)−Q(αi, tj)

, (9)

where QC(αi,tj) is predicted αi-quantile values at the time step tj; Q(αi,tj) is true αi-quantile
values at the time step tj; K is the length of the continuation.
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Figure 3. The figure illustrates the varying distances between adjacent quantiles for different time
steps and distances from the median. To interpret the deviation Qdev in the “inter-quantile” measure,
normalization is performed by dividing absolute deviation by the difference between adjacent
quantiles.

This interpretable metric provides an intuitive understanding of the model’s perfor-
mance by expressing the error in the context of the distance between adjacent quantiles.
A lower value for this metric indicates that the predicted quantiles are closer to the true
quantiles, making the model’s forecasts more accurate.

The metric Qdev characterizes the deviation of the time series continuation Xc(t) for a
single example X(t) in the dataset for a specific value of H. Since the values of Qdev depend
on random time realizations, it is necessary to average over all calculated examples with
the same Hurst exponent to improve accuracy and reliability:

QDmean =
1

Nexample ∑Nexample
i=1 Qdev(i) (10)

where Qdev is the metric for a single example in the dataset, and Nexample is the number
of examples in the dataset.

By performing the above-described checks, we can validate the quality of the generated
continuations and ensure that our method effectively captures the essential fractal and
statistical properties of the original time series X(t).

2.5. Machine Learning Methods for Probabilistic Forecasting

According to reviews [31,33,34], there are two broad classes of probabilistic methods:
those predicting the parameters of a predefined distribution shape, and those addressing
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the problem when the distribution shape is not specified. Although the first class of
methods is perfectly suitable for predicting fractional Brownian motion, this research aims
to explore methods that are not limited by a predefined probability distribution shape and
are applicable to studying complex fractal time series.

For this study, we used implementations of the methods listed in Table 1.

Table 1. Probabilistic machine learning methods and corresponding implementations.

Method Output Implementation

Natural gradient boosting
NGBoost [17]

Estimates of the mean and
standard deviation of the

normal distribution
Python package ngboost

Catboost with Uncertainty
(CBU)

Estimates of the mean and
standard deviation of the

normal distribution
Python package catboost

Mean, location, scale, and
shape (LSS) XGBoostLSS and

LightGBMLSS [18,19]

Estimates of the mean and
standard deviation of the

normal distribution

Alexander März’s
(StatMixedML) repository

on github

Nonparametric Probabilistic
Regression (PRESTO) [24]

Distribution without
predefined shape

Our implementation of the
author’s idea using CatBoost,
LightGBM, and Scikit-learn’s

Logistic Regression
Training a separate model for

each quantile Quantiles predictions Python packages
catboost, lightgbm

Quantile regression
(QuantReg) [23] Quantiles predictions Python package statsmodels

Random Forest Quantile
Regression [22] Quantiles predictions Python package

sklearn_quantile

By comparing these methods, we aim to find the most suitable technique for modeling
and forecasting fractal time series data while preserving the essential fractal properties. This
will help us to better understand the advantages and limitations of different probabilistic
prediction methods in the context of complex, long-range dependent, and self-similar time
series data, ultimately leading to more accurate and reliable forecasts for various practical
applications.

The code and results of our experiments can be accessed at https://www.kaggle.com/
datasets/unfriendlyai/fractal-brownian-motion/code (accessed on 8 May 2023).

3. Results
3.1. Dataset
3.1.1. Training Dataset

In a supervised learning setting, a machine learning model requires a predictor and a
ground truth target. Probabilistic forecasting methods use the same training datasets as
point-predicting methods. For time series, the training process for each algorithm involves
learning to find the distribution of the (n + 1)-th element in the series based on the known
n previous values, according to Formula (7).

To train models, there is no need to store the dataset, as it is possible to generate
millions of fBm examples with specified Hurst exponent within a few minutes. We used
the Hosking method for Hurst exponent values starting from 0.9 and the Davies–Harte
method [25] for the Hurst exponent values below 0.9.

3.1.2. Evaluating Dataset

The dataset was created with the following parameters:

• Number of files—99, each for the value of H from 0.01 to 0.99 with a step of 0.01;
• Number of records in each file—50;
• The length of the original time series N—1024;

https://www.kaggle.com/datasets/unfriendlyai/fractal-brownian-motion/code
https://www.kaggle.com/datasets/unfriendlyai/fractal-brownian-motion/code
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• The length of the continuations of the original series, for which quantiles are provided
K—1024;

• The number of continuations of the time series to calculate quantiles M—10,001;
• The number of quantiles for each time step is 101 (the 0th and 1.0th quantiles are equal

to the maximum and minimum values among M examples);
• Time series increments are normalized (divided by STD of increments); the standard

deviations of increments for all examples are one;
• Original time series are presented as cumulative sums of increments. Quantiles are

calculated on their cumulative continuations.

Each file, which consists of 50 examples of a certain Hurst exponent mentioned in the
filename, takes nearly 2 h to create.

For experiments, we use dataset examples for a range of Hurst exponent values to
represent anti-persistent, persistent, and near-independent fBm examples: 0.30, 0.35, 0.45,
0.53, 0.60, 0.65, 0.72, 0.85, 0.90, and 0.93.

3.2. Experiment Setting

The experiment was conducted in two stages:

1. Feeding the entire time series of length 1024 from the dataset to the machine learn-
ing model and extending it by 1024 steps, allowing for the evaluation of the Hurst
exponent of the continuations and the model’s ability to reliably extend the series
for a large number of time steps. Since the dataset was prepared using Hosking’s
algorithm, and the series is included entirely starting from the zero value and the first
increment obtained by the algorithm, the models receive complete data in this case.
The series depends only on itself and does not depend on past increments unknown
to the model.

2. Feeding only the last 512 values out of the 1024 available in the dataset to the machine
learning model. In this case, the true values depend on some unknown past that the
model is not aware of. We extend the series by only 64 steps, which significantly
reduces the computation time and allows for obtaining performance estimates of the
models when they are not constrained by strict time frames.

Since time series have fractal properties, providing all 1024 (or 512) values as input
to the models may not be efficient in terms of memory and computational performance
constraints. Given the importance of the nearest dependency, it is reasonable to input a
certain number of the most recent values (e.g., 8–16) in their entirety, while selecting every
8th (or every 16th, 32nd, or 64th, depending on the model’s memory requirements) value
from the remaining length of the series.

3.3. Investigating the Properties of Continuations
3.3.1. Calculating the Hurst Exponent of Continuations

All continuations of the time series were evaluated using the Whittle method to
determine the Hurst exponent and averaged. The results are presented in Table 2. For
continuations of length 1024, the estimated Hurst exponent values were almost identical
to the true values of the Hurst exponent for the original time series. The only exception
is LightGBMLSS with the Gaussian_AutoGrad distribution when extending the series
with the highest Hurst exponent H = 0.93 (in this case, all other indicators were also
unsatisfactory).

As can be seen from the table, the lowest accuracy between the Hurst exponent of
the original series and the predicted continuation was observed at high H values (0.90
and 0.93). At high Hurst exponent values (H > 0.85), the Hurst exponent values of the
continuations deviate more significantly from the original time series values. This suggests
that the methods may have more difficulty in capturing the long-range dependence of time
series with higher Hurst exponent values.
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Table 2. Comparison of Hurst Exponent Accuracy at different H Values of original time series. * The
red mark signifies an outlier, a data point that deviates significantly from other observations, and the
marking was done intentionally for emphasis.

Method H = 0.3 H = 0.35 H = 0.45 H = 0.53 H = 0.6 H = 0.65 H = 0.72 H = 0.85 H = 0.9 H = 0.93

CBU 500 iter. 0.299 0.349 0.451 0.529 0.6 0.649 0.718 0.848 0.895 0.935
CBU 1000 iter. 0.299 0.351 0.449 0.529 0.599 0.649 0.719 0.848 0.897 0.935
LightGBMLSS

Gaussian 0.298 0.349 0.453 0.528 0.598 0.648 0.711 0.843 0.895 0.926

LightGBMLSS Gaus-
sian_AutoGrad 0.297 0.349 0.451 0.531 0.602 0.654 0.713 0.849 0.895 0.83 *

XGBoostLSS
Gaussian 0.301 0.356 0.447 0.534 0.597 0.651 0.719 0.844 0.9 0.922

PRESTO with
CatBoost 0.298 0.349 0.449 0.529 0.598 0.648 0.718 0.846 0.894 0.925

PRESTO with
LightGBM 0.302 0.352 0.452 0.527 0.595 0.644 0.713 0.841 0.889 0.922

PRESTO with
Logistic Regression 0.299 0.35 0.448 0.529 0.599 0.649 0.719 0.848 0.897 0.928

CatBoost for each
quantile 0.306 0.357 0.454 0.525 0.593 0.643 0.713 0.84 0.886 0.914

LightGBM for each
quantile 0.306 0.357 0.454 0.525 0.593 0.644 0.713 0.839 0.886 0.916

3.3.2. Determining If the Increments Are Normally Distributed

The continuations obtained by all methods successfully passed the Anderson–Darling
test [26] across the entire range of Hurst exponent values, except for CBU and LightGBMLSS
with the Gaussian_AutoGrad distribution on high H values greater than 0.85.

3.3.3. Checking the Standard Deviation of the Increments

Another important aspect of evaluating the performance of the considered methods is
to determine if the increments in the generated time series continuations Xc have a standard
deviation equal to that of the original time series X, which in our case is equal to 1. This is
crucial because it helps ensure that the methods maintain the same level of variability in
the generated time series as in the original data.

All methods successfully extend the original time series, in which the standard devia-
tion (SD) of the increments is equal to one, with continuations having SD of increments
very close to one for Hurst exponent values below 0.85. For Hurst exponent values starting
from 0.85, all methods show a decrease in the SD of increments, which is most noticeable at
H = 0.93. In this case, CBU and LightGBMLSS with the Gaussian_AutoGrad distribution
unsatisfactorily lower the SD to 0.2–0.4, while the other methods have SD of increments
above 0.75 (Table 3).

This demonstrates that the two aforementioned methods (CBU and LightGBMLSS
with the Gaussian_AutoGrad distribution) are the least adapted for extending fractal time
series with long-range dependencies, while the other methods have relative issues only at
the extreme Hurst exponent value of 0.93.

3.4. Investigating Forecasting Accuracy When Extending a Time Series of Length 1024 by 1024
Time Steps

In this experiment, when using the full evaluation dataset, not all methods were able
to show results, as NGBoost, PGBM (even when using GPU), IBUG, Quantile Regression
QuantReg (statsmodels package), and the quantile-forest package for Quantile Regression
Forests turned out to be too slow to train sufficiently for comparable results.

We determine the deviation of forecasted quantiles Qdev using the “inter-quantile”
measure (9). Lower values indicate better performance. Some methods provide high
results only for H = 0.53 (i.e., very close to 0.5). These methods are LightGBMLSS Gaus-
sian_AutoGrad and CBU (Table 4). However, when long-range dependencies are present in
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the time series, their results are significantly worse compared to other methods. Therefore,
it is concluded that such methods are not suitable for the analysis of fractal time series.

Table 3. The standard deviation of increments of continuations (expected to be close to 1). * The red
mark signifies an outlier, a data point that deviates significantly from other observations, and the
marking was done intentionally for emphasis.

Method H = 0.3 H = 0.35 H = 0.45 H = 0.53 H = 0.6 H = 0.65 H = 0.72 H = 0.85 H = 0.9 H = 0.93

CBU 500 iter. 0.956 0.974 0.996 0.998 0.986 0.965 0.921 * 0.75 * 0.573 * 0.418 *
CBU 1000 iter. 0.955 0.973 0.995 0.997 0.985 0.965 0.919 * 0.753 * 0.578 * 0.414 *
LightGBMLSS

Gaussian 0.996 0.997 1.003 0.998 1.002 0.996 0.997 0.975 0.892 0.778

LightGBMLSS Gaus-
sian_AutoGrad 0.995 0.996 0.996 1.001 1.002 0.996 0.998 0.981 0.902 0.274 *

XGBoostLSS
Gaussian 0.996 0.998 0.998 0.998 0.998 0.997 0.995 0.976 0.899 0.776

PRESTO with
CatBoost 1 1.001 1.001 1.001 1.002 1 0.999 0.986 0.897 0.786

PRESTO with
LightGBM 1.001 1.002 1.002 1.002 1.002 1.001 0.999 0.978 0.903 0.795

PRESTO with
Logistic Regression 1.001 1.001 1.002 1.002 1.002 1.001 1 0.977 0.906 0.789

CatBoost for each
quantile 1.004 1.004 1.004 1.004 1.005 1.003 1.002 0.983 0.905 0.809

LightGBM for each
quantile 1.004 1.004 1.004 1.004 1.004 1.003 1.002 0.983 0.907 0.814

Table 4. The deviation of forecasted quantiles Qdev when extending a time series of length 1024 by
1024 time steps. * The red mark signifies an outlier, a data point that deviates significantly from other
observations, and the marking was done intentionally for emphasis. The boldface used to highlight
the models with the best performance in the table.

Method H = 0.3 H = 0.35 H = 0.45 H = 0.53 H = 0.6 H = 0.65 H = 0.72 H = 0.85 H = 0.9 H = 0.93

CBU 500 iter. 1.854 1.331 0.741 0.544 1.339 1.614 2.805 6.659 * 10.597 * 14.594 *
CBU 1000 iter. 1.803 1.271 0.71 0.963 1.127 1.604 3.02 6.289 * 10.706 * 14.917 *
LightGBMLSS

Gaussian 1.405 1.175 0.914 1.256 1.077 2.134 3.142 2.74 4.477 6.573

LightGBMLSS Gaus-
sian_AutoGrad 1.44 1.24 1.113 0.594 1.223 2.514 1.971 3.741 4.594 36.382

XGBoostLSS
Gaussian 1.493 1.174 0.955 0.861 1.236 1.676 1.975 11.028 * 4.49 6.806

PRESTO with
CatBoost 1.606 1.557 1.307 1.668 2.035 1.669 2.355 3.976 4.609 6.925

PRESTO with
LightGBM 1.62 1.408 0.975 1.058 1.512 1.579 1.99 3.703 5.651 8.709

PRESTO with
Logistic Regression 1.319 1.024 0.647 0.729 1.85 1.174 1.41 1.856 3.361 5.863

CatBoost for each
quantile 2.338 1.978 1.26 1.334 1.602 2.747 2.964 7.037 * 5.984 9.793

LightGBM for each
quantile 2.101 1.846 1.059 0.923 1.536 3.014 3.767 4.742 5.961 9.713

An important result of the study is that Nonparametric Probabilistic Regression with
Coarse Learners (PRESTO) [24] demonstrated comparable performance with the most
successful LSS method (XGBoostLSS and LightGBMLSS with Gaussian distribution). The
author of PRESTO primarily considered the application of decision trees as a classifier in
his method. As the core idea does not limit us in the choice of classifier, we proposed the
use of logistic regression from the sklearn package. Interestingly, this simplest approach
turned out to be the most accurate in this experiment.

All methods were generally more accurate for Hurst exponent values below 0.85
(Figure 4).
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Figure 4. Quantile prediction was produced using PRESTO with the Logistic Regression method
for Hurst exponent values 0.65 (a) and 0.90 (b). At high Hurst exponent values (b) the predicted
quantiles of the continuations deviate more significantly from the ground truth quantiles.

3.5. Investigating Forecasting Accuracy When Extending a Time Series of Length 512 by 64
Time Steps

In this study, when providing only the last 512 values out of the 1024 available in
the dataset, NGBoost showed very high results only for H = 0.53 (i.e., very close to 0.5),
significantly lagging behind the leaders in other Hurst exponent values. A possible reason
is the lack of features due to time constraints for this relatively slow method. Thus, this
method may have potential, but its slowness is a significant obstacle to its use compared to
other methods.

As in the previous study, CBU showed unsatisfactory results in capturing the long-
range dependence of time series with higher Hurst exponent values. In addition, in the
entire range except for H = 0.53, it significantly lagged behind the LSS method, modeled
Gaussian distribution only, and is not attractive for the study of fractal time series.

Among the parametric methods, our choice is for the LSS method (XGBoostLSS is
better when H > 0.6, and LightGBMLSS with Gaussian distribution is better when H < 0.6).
The most significant interest is in the results of nonparametric methods.

The results are listed in Table 5.

3.6. Comparing Forecasting Accuracy Given Time Series of Length 1024 and 512

In this study, we compared the performance of the most successful model, PRESTO
with Logistic Regression, when extending time series of different lengths. In all cases,
the last 16 values of the time series were used as input, while the rest of the input varied
between the experiments. The first experiment used one out of every 32 values of the
original time series with a length of 1024, while the second experiment used one out of
every 32 values of the first 512 values of the time series. The third experiment fed one out
of every 16 values of the first 512 values to align the number of features. The results are
listed in Table 6.
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Table 5. The deviation of forecasted quantiles Qdev when extending a time series of length 512 by
64 time steps. The boldface used to highlight the models with the best performance in the table.

Method H = 0.3 H = 0.35 H = 0.45 H = 0.53 H = 0.6 H = 0.65 H = 0.72 H = 0.85 H = 0.9 H = 0.93

NGBoost 2.576 1.756 1.02 0.8 1.386 1.782 2.168 4.163 4.19 7.863
CBU 2.178 1.966 1.984 1.642 2.146 2.177 2.036 6.938 10.688 13.962

XGBoostLSS
Gaussian 1.123 0.838 0.781 0.831 1.207 1.176 1.025 2.115 2.751 6.001

LightGBMLSS
Gaussian 1.111 1.066 0.589 0.599 1.388 1.042 1.068 4.607 3.203 32.828

PRESTO with
CatBoost 1.499 1.174 1.565 1.49 1.794 1.219 1.576 1.977 3.556 6.048

PRESTO with
LightGBM 0.995 0.804 0.727 0.767 0.774 1.034 1.077 1.895 3.022 5.783

PRESTO with
Logistic Regression 0.94 0.747 0.505 0.502 0.669 0.905 1.077 1.626 2.747 5.839

LightGBM for each
quantile 1.165 1.022 0.618 0.798 1.045 1.013 1.262 1.931 2.971 5.592

CatBoost for each
quantile 1.318 1.178 0.764 0.795 1.02 1.296 1.831 2.789 4.256 8.73

QR statsmodels 1.096 0.74 0.689 0.611 0.769 0.878 1.135 1.467 2.961 5.53
Random Forest QR 1.629 1.502 1.55 1.639 1.307 1.579 1.666 5.672 4.13 6.45

Table 6. Comparison of forecasting quantiles using different lengths of the predictor.

Features H = 0.3 H = 0.35 H = 0.45 H = 0.53 H = 0.6 H = 0.65 H = 0.72 H = 0.85 H = 0.9 H = 0.93

1/32 of 1024 0.659 0.648 0.505 0.656 0.66 0.56 0.544 0.86 2.394 5.204
1/16 of 512 0.986 0.702 0.527 0.537 0.678 0.858 1.031 1.601 2.915 5.521
1/32 of 512 1.036 0.722 0.551 0.466 0.633 0.949 1.021 1.79 3.019 5.348

The results of this study show that the length of the input time series plays an impor-
tant role when there are long-term dependencies (Hurst exponent significantly different
from 0.5). When only half of the time series was fed to the model, it significantly underper-
formed in generating continuations, even when values were sampled more densely (every
16th value compared to every 32nd value). However, when the Hurst exponent was close
to 0.5 (indicating an almost independent time series), the situation was reversed. Extra
features from a longer time series were irrelevant and only worsened the prediction.

4. Discussion

By employing iterated approaches with one-period-ahead models, we can effectively
generate numerous time series continuations that preserve the fractal properties of the orig-
inal time series. This enables us to evaluate the performance of our model in capturing the
complex, long-range dependencies, and self-similarity exhibited by fractal time series data.
At the same time, it is essential to assess the quality of the continuations—whether they
have the same measurable fractal or statistical characteristics—to guarantee the model’s
reliability. In turn, this allows for a more comprehensive assessment of the model’s ability
to provide accurate and reliable forecasts for time series with fractal properties, which
is essential for various practical applications in fields such as finance, meteorology, and
environmental studies.

The results suggest that machine learning methods can learn the distribution of the
next increment of the time series, taking into account not only long-range dependence
but also preserving the numerical values of the measurable indicator of this long-range
dependence, namely, the Hurst exponent (Table 2). This provides a perspective that machine
learning methods can be used not only for predicting quantiles of the distribution but also
for generating plausible time series while preserving fractal and statistical properties.

Leveraging the fractal properties of time series data in this way allows for a reduction
in computational demands and an increase in the training set size by reducing the number
of features. The last 16 values of the time series were fed to the investigated model in their
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entirety, and to account for long-term dependencies, only every 8th (16th, 32nd) value of
the remaining series was sufficient to obtain accurate predictions (Table 6).

Fractional Brownian motion time series exhibit standard (Gaussian) distribution of
increments, making them ideally suited for forecasting using methods that assume a condi-
tional distribution for the target variable, such as a normal distribution where both mean
(µ) and standard deviation (σ) depend on the explanatory variables (X). It was anticipated
that these methods would outperform nonparametric methods in forecasting tasks. The
performance of parametric methods was investigated in comparison to nonparametric
methods, providing valuable insights into the potential limitations of nonparametric ap-
proaches. Furthermore, it will enable practitioners to assess the risks associated with
utilizing nonparametric methods for analyzing time series data exhibiting fractal properties
when forecasting the distribution shape is challenging or not feasible.

It was found that not all parametric probabilistic methods perform well across the
entire range of Hurst exponent values. The nonparametric PRESTO method proved to
be comparable in effectiveness to parametric methods, while also being applicable for
predicting time series with fractal characteristics whose probability distribution shape
cannot be predetermined.

The main inspiring question of the study was to what extent parametric methods
outperform nonparametric ones. Unexpectedly, the latest nonparametric method PRESTO
showed itself quite acceptable, having the potential to study time series with any complex
probability distribution of the next increment, and especially the ability to conduct detailed
research and modeling of heavy-tailed distributions. Not to mention that it surpassed most
parametric methods in terms of speed and accuracy.

This result highlights the potential of nonparametric methods such as PRESTO in the
analysis and modeling of fractal time series, especially when the underlying probability
distribution is unknown or complex. The flexibility and adaptability of nonparametric
methods make them suitable for a wider range of applications and could lead to more
accurate predictions and insights in various fields where fractal time series are relevant.

While parametric methods such as LSS (XGBoostLSS and LightGBMLSS with Gaussian
distribution) showed promising results, the nonparametric PRESTO demonstrated that it
could compete with these methods and even outperform them in certain situations. This
finding could encourage further development and research into nonparametric methods,
leading to more advanced and versatile tools for analyzing and modeling fractal time series.

The best performance was demonstrated by the PRESTO method with Logistic Re-
gression as a classifier. The Quantile Regression method, QuantReg from the statsmodels
package, also showed strong performance. This may be due to the fact that the time series
was synthesized, meaning that it did not contain any outliers. Increments are normally
distributed, and the task turned out to be perfectly suited for linear methods. In the case of
real-world time series, other methods capable of capturing non-linear dependencies may
demonstrate better performance.

In our analysis, we observed a specific trend. When the Hurst exponent is close to 0.5,
the majority of models predict well. However, when the exponent is 0.85 or higher, the
performance of all models deteriorates, some simply fail. This tendency is an indicative
marker of the models’ quality, separating those that are effective from those that are not.
The higher the Hurst exponent, the more challenging the prediction becomes. This is
primarily because certain models struggle to capture long-term dependencies. While this is
a challenge for all models, some particularly struggle. Thus, further research is needed to
develop models that are capable of capturing long-term dependencies, especially in time
series with high Hurst exponent values.

Parametric LSS methods (XGBoostLSS and LightGBMLSS with Gaussian distribution),
demonstrated good performance in capturing long-range dependence in time series and
extending them while maintaining Hurst exponent values. These methods were generally
more accurate for Hurst exponent values below 0.85 (H < 0.85).
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The nonparametric method PRESTO showed promising results, competing with the
best parametric methods in terms of accuracy and speed. Its flexibility in modeling complex
and unknown probability distributions makes it a suitable choice for a wide range of
applications and indicates potential for further development.

Some methods, such as CBU, LightGBMLSS with Gaussian_AutoGrad, NGBoost,
and PGBM, showed limitations in capturing long-range dependence in fractal time series,
especially for high Hurst exponent values (>0.85). These methods may not be suitable for
analyzing fractal time series or may require further refinement.

The best performance was demonstrated by the simplest methods, namely, PRESTO
with Logistic Regression and Quantile Regression QuantReg from the statsmodels package.

5. Conclusions

This study aimed to evaluate the performance of various parametric and nonparamet-
ric probabilistic forecasting machine learning methods in extending the fBm time series
with different Hurst exponent values. Self-similar properties of fBm time series have been
reliably reproduced in the continuations of the time series predicted by machine learning
methods. The values of the Hurst exponent have been preserved in the generated con-
tinuations. The increments of the continuations have had a normal distribution and their
standard deviation has coincided with that of the original ones.

Overall, this study demonstrates that probabilistic forecasting machine learning meth-
ods allow the prediction of the dynamics of fractal time series while preserving their
self-similarity and statistical characteristics. Furthermore, we propose a distinctive and
effective approach to assess the performance of various probabilistic forecasting methods
in predicting the fBm time series. This methodology involving the use of the Hosking
algorithm for generating ground truth quantiles of possible continuations is novel.

The best performance was demonstrated by the method that converts the probabilistic
regression problem into one of multi-classification—PRESTO, with Logistic Regression
proving to be the most successful classifier. Additionally, the Quantile Regression method,
QuantReg from the statsmodels package, also showed strong performance.

Further research and development in nonparametric methods could lead to more
advanced and versatile tools for modeling and predicting fractal time series in various fields.
The proposed approach enables the consideration of long-term dependencies and scaling
properties of the data, leading to more accurate forecasts and a deeper understanding of
the dynamics and structure of the investigated processes. The presented machine learning
methods can be applied to various domains, including financial market forecasting, disease
dynamics, seismic activity, telecommunication traffic load, and others.
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