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Abstract: In this study, the multivalued fixed point theorem, Clarke subdifferential properties,
fractional calculus, and stochastic analysis are used to arrive at the system’s mild solution (1).
Furthermore, the mean square moment for the aforementioned system (1) confirms the conditions for
trajectory (T-)controllability. The last part of the paper uses two numerical applications to explain the
novel theoretical results that were reached.
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1. Introduction

Because the fractional operator has a nonlocal quality that allows for the demonstration
of long memories or nonlocal effects for the purpose of more precisely confirming physical
phenomena, fractional calculus is successful in simulating natural phenomena. Electronic
systems, input enhancers, electromagnetic explanatory science, fragmentary multi-poles,
and neuron concerns all involve fractional differential equations (FDEs), which represent
distinctive areas of theoretical physics and biological sciences (see [1–4], and see the articles
in [5–7] for further information). As a result, numerous fractional operators have created
numerous structures for differential equations of arbitrary order. To address such a diversity
of fractional operators, it has been found that accommodating generalized structures of
fractional operators that involve several other operators is the most efficient approach
(see [8–12]). Using several distinct definitions of fractional differential operators, Hilfer
created the Hilfer fractional derivative (HFD), a new extended formulation of the fractional
derivative [13]. The multivalued Hilfer fractional impulsive system of the Sobolev type
was explored in [14]. The solvability and controllability properties of Hilfer FDEs have
been studied by a large number of authors (refer to [6,15–17]). As an extension of the
conventional limit definition of the derivative, the conformable fractional derivative was
presented by Khalil et al. in [18] and complies with the conventional properties in the
following ways. In addition, it agrees with the traditional definitions of Riemann–Liouville
and Caputo on polynomials up to a constant multiple. These include (i) the linearity
property, (ii) the product rule, (iii) the quotient rule, (iv) Rolle’s theorem, and (v) the mean
value theorem.

A generalization of differential equations with diverging arguments is delay differ-
ential equations, in which an unknown quantity and its derivatives occur at different
values of the respective parameters. They appear in issues with integer and FDEs, applied
mathematics, biomechanics, architecture, economics, and various control systems (for
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additional details, see [19,20] and the references therein). Stochastic differential equations
(SDEs), on the other hand, are the best method for representing systems with random
effects and external noise [21,22]. From the standpoint of applications, Gaussian noise has
its boundaries, whereas Poisson random measures can be used to deal with circumstances
in general. For instance, Hausenblas and Marchis [23] explored the river contamination
model. For more detail on SDEs, refer to [22,24] and the references therein.

Rapid variations in the state variable are a defining characteristic of many real-life
occurrences and processes. These modifications fall into two categories. In the first category,
referred to as instantaneous impulses (IIs), changes take place gradually during a time
that might be regarded as brief in comparison to the whole duration of the activity. In
the second type, sometimes referred to as non-instantaneous impulses (NIIs), changes
start impulsively at some locations and continue for a set amount of time. One extremely
well-known example of NIIs is the entry of insulin into the bloodstream, which is an abrupt
shift, and the following absorption, which is a lengthy process, as it remains active over a
finite period. To model this condition, NII differential equations are employed. Examples
of these processes can also be found in other academic fields, such as physics, biology,
ecology, economics, and population dynamics. For recent studies on NIIs, see [25–28] and
the references therein. The focus of Durga and Muthukumar’s work [14] is on the best way
to handle Sobolev-type Hilfer fractional NII differential inclusion driven by Poisson jumps
and the Clarke subdifferential. Ahmed and Ragusa’s work [29] established Sobolev-type
conformable fractional stochastic evolution inclusions with the Clarke subdifferential and
nonlocal conditions.

The idea of controllability, which was first put forth by Kalman [30] in 1960, signifi-
cantly aided in the development of applied mathematics. See [31,32] and the references
therein for more details on various controllability principles for linear and nonlinear sys-
tems. The majority of these papers focus on the search for control that guides the system
from a certain initial state to a desired final state, but they do not even mention the tra-
jectory’s control path. Trajectory controllability, often known as “T-controllability”, is
a more robust concept of controllability that has recently been developed for nonlinear
integrodifferential systems [33–35]. T-controllability (see [36]) is the ability to navigate the
system via a given initial state rather than finding the control that directs the system along
a predetermined route to the ultimate state to the required final destination. We point out
that [37] pioneered the formulation of T-controllability issues for nonlinear integrodifferen-
tial equations in finite- and infinite-dimensional spaces. In [38], the authors looked into
whether second-order evolution systems in Banach space with diverging arguments and
impulses are T-controllable. In the context of the Caputo fractional derivative of order
α ∈ (1, 2], the T-controllability of fractional integrodifferential equations was established
in [39]. The approximation and T-controllability of fractional SDEs with non-instantaneous
impulses and Poisson jumps were also addressed in [40] using the same techniques.

The significant contributions are listed below:

(i) Studying T-controllability has advantages since it may reduce some expenses asso-
ciated with guiding the system from the starting state to the end desired state and
because it may also protect it.

(ii) For cost-effectiveness and collision avoidance, it could be advantageous, for instance,
to launch a rocket into space with an exact course and destination in mind.

(iii) We have extended the problem in Ahmed’s [41] and Dimplekumar et al.’s [20] studies,
compatible with NII conformable fractional stochastic differential inclusion systems, to
conformable fractional stochastic differential inclusions with the Clarke subdifferential
type and deviated arguments.
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Due to the aforementioned fact, we take into consideration non-instantaneous impul-
sive (NII) conformable fractional stochastic differential inclusions of the Clarke subdifferen-
tial type with deviating arguments and Poisson jumps in the following form:

Dαϑ(t) ∈ Λϑ(t) +Bu(t) + ∂Υ(t, ϑ(t)) + σ(t, ϑ(t), ϑ(e(ϑ(t), t)))

+
∫
Z

λ(t, ϑ(t), δ)Ñ(dt, dδ), t ∈ ∪m
i=0(ai, bi+1] ⊂ l′ := (0, T],

a0 := 0, bm+1 := T, T > 0, (1)

ϑ(t) = hi
(
t, ϑ(b−i )

)
, t ∈ (bi, ai], i = 1, 2, 3, · · ·m,

ϑ(0) = ϑ0, ϑ0 ∈H ,

where Dα is the conformable fractional derivative of order α, with 0 < α < 1 and l := [0, T],
T > 0. ϑ(·) ∈ H is the state variable in the Hilbert space H with the inner product
〈·, ·〉 provided with the norm ‖ · ‖. Let Λ : D(Λ) ⊂ H → H be the infinitesimal
generator of an analytic semigroup of the bounded linear operator T(t), t ≥ 0 on H . The
deviating argument e(t, ·) is the mapping from H ×R+ → R+. ∂Υ signifies the Clarke
subdifferential of a locally Lipschitz function Υ(t, ·) : H → R. ai and bi represent the
fixed points that satisfy a0 < b1 < a1 < b2 < · · · < bi < ai < bi+1, i = 0, 1, · · · , m. Also,
hi : (bi, ai]×H → H and ϑ(b−j ) represent the left limit of ϑ at bi. Let (Ω,=,P) be the
complete probability space, with P being the probability measure on Ω and the normal
filtration {=t, t ≥ 0}. Let N(dt, dδ) be the Poisson counting process in the measurable
space (Z ,B(Z)) defined on (Ω,=, P). Ñ(dt, dδ) = N(dt, dδ)− h(dδ)dt is the compensated
martingale measure with a sigma-finite intensity measure h(dδ). B is the bounded linear
operator from a separable reflexive Banach space W onto H . The nonlinear functions
λ : l ×H ×Z \ {0} →H and σ : l ×H ×H →H are continuous. Let L2

=(l, W ) be the
closed subspace of W consisting of all measurable and =t-adapted, W -valued stochastic
processes satisfying E

∫ t
0 ‖u(t)‖

2
W dt < ∞. Let W be a nonempty closed bounded convex

subset of W . Define Wad = {u(.) ∈ L2
=(l, W )} as the admissible control set.

The novelty of our research work is listed as follows:

(i) The conformable fractional stochastic differential inclusions with the Clarke subdiffer-
ential system now include T-controllability.

(ii) We have extended the problem in [20,41] to NII conformable fractional stochastic
differential inclusions and have used modified techniques to make them compatible
with the T-controllability of the Clarke subdifferential system. The system (1) is more
advanced than the relative system studied in Refs. [14,33–41].

(iii) Little has been written about the T-controllability of NII conformable fractional stochas-
tic differential inclusions with the Clarke subdifferential, deviating arguments, and
Poisson jumps. To close this gap, we have investigated the T-controllability of (1).

The following is a summary of the paper. The concepts and early findings needed to
analyze the results are covered in Section 2. In Section 3, the solvability of the suggested
system is examined. The generalized Gronwall’s inequality is used in Section 4 to derive
the T-controllability inclusions for (1) in the mean square. The validity of the result is
reported in Section 5.

2. Preliminaries

In this section, basic definitions and lemmas are provided to establish our main results.
Throughout the article, L2(=, H ) = L2(Ω,=t,P, H ) (t > 0) denotes the Hilbert space of
all square integrable, strongly=t-measurable H -valued random variables with E‖ϑ‖2 < ∞.
Let L2

=(l, H ) be the Hilbert space of all =t-adapted measurable functions defined on l with

the values in H and its norm, ‖ϑ‖L2
=(l,H ) =

[∫ T
0 E‖ϑ(t)‖2dt

]1/2
< ∞. Let C

(
l,L2(=, H )

)
be the Banach space of all continuous functions from l into L2(=, H ) equipped with the
supremum norm, sup

t∈l
E‖ϑ(t)‖2 < ∞. Define
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X := PC
(

l′,L2(=,H)
)

such that ϑ|Ji
∈ C

(
li,L2(=, H )

)
, li := (bi, bi+1], i = 0, 1, 2, · · · , m.

and ϑ(b+i ) and ϑ(b−i ) exist and are finite for each i = 1, 2, · · · , m.

Now, X is a Banach space furnished with the norm ‖.‖PC given by

‖ϑ‖PC =
[

sup
t∈l′

E‖ϑ(t)‖2

]1/2

.

Let the Banach space be X . P(X ) denotes the set of all non-empty subsets of X
Pcl,bd(X ) = {A ∈ P(X ) : A is closed and bounded}, Pcp(X ) = {A ∈ P(X ) :

A is compact}, Pcv(X ) = {A ∈ P(X ) : A is convex}, and Pcd(X ) = {A ∈ P(X ) :
A is compact and acyclic}.

The main notion of fractional calculus can be summed up in two different ways. The first
method is Riemann–Liouville, which relies on iterating the integral operator n times before
replacing it with a single integral through the renowned Cauchy formula, where n! is trans-
formed into the Gamma function, and the fractional integral of noninteger order is defined.
Riemann and Caputo fractional derivatives are then defined using integrals. The second
method is known as the Grünwald–Letnikov method, and it is based on iterating the deriva-
tive n times before fractionalizing using the Gamma function in the coefficients of the bi-
nomial distribution. The calculated fractional derivatives in this calculus were challenging
and lacked certain fundamental characteristics that typical derivatives have, such as the
product rule and the chain rule. A new well-behaved simple fractional derivative called
“the conformable fractional derivative” is defined depending just on the basic limit definition
of the derivative.

Although Mittag-Leffler functions, which are generalized exponential functions in the
well-known fractional calculus, include some functions that do not have certain derivative
characteristics, such as those without a Taylor power series representation or those whose
Laplace transform cannot be calculated, the theory of this conformable fractional calculus
will make it possible to perform these calculations.

Definition 1 ([18]). Let 0 < ν ≤ 1. The conformable fractional derivative of order ν of a function
p(.) for t > 0 is defined as follows:

dνp(t)
dtν

= lim
v→0

p(t + vt1−ν)− p(t)
v

.

For the specific condition t = 0, the following definition is derived:

dνp(0)
dtν

= lim
t→0+

dνp(t)
dtν

.

The fractional integral Iν(.) associated with the conformable fractional derivative of
order ν of a function s(.) is defined by

Iν(p)(t) =
∫ t

0
sν−1p(s)ds.

Fractional-order circuit elements have been utilized to simulate various circuit types,
circuits, and systems for a number of years. There are numerous types of fractional
derivatives. The above-mentioned new, uncomplicated fractional derivative technique has
just been introduced under the name conformable fractional derivative. It is simpler to use
than other fractional derivatives and has been used to model supercapacitors. Modeling
and analysis are essential in order to make full use of the novel circuit elements and
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analyze the circuits that contain them. Circuit theory and physics are both familiar with the
two-capacitor problem; for more information, see ([42–45]).

The development of non-smooth analysis has allowed optimization theory to be
expanded to include functions that may not always be differentiable. This extends the
generalization of the differentiability theory related to convex functions. The methods
developed by Francis Clarke [46] that apply to locally Lipschitz functions on Banach spaces
have proven to be the most effective and popular. Despite the fact that this theory was cre-
ated for and has been utilized in many areas of optimization theory, Simon Fitzpatrick [47]
showed that it was also quite helpful in analyzing distance functions that were crucial
in approximation theory. The localized Lipschitz functions that are the focus of Clarke’s
non-smooth analysis do exhibit differentiability qualities, and knowledge of the set of
differentiable points is frequently critical. Investigating Clarke’s theory and applying it to
figure out whether locally Lipschitz functions are T-controllable is the main goal of this
manuscript.

Definition 2 ([46]). Let X ∗ be the dual of the Banach space X . Clarke’s generalized directional
derivative of a locally Lipschitz function Υ : X → R at ϑ in the direction ν, denoted by Υ0(ϑ; ν),
is represented by

Υ0(ϑ; ν) = lim
v→ϑ

sup
λ→0+

Υ(v + λν)− Υ(v)

λ
.

The generalized Clarke subdifferential of Υ at ϑ, denoted by ∂Υ, is a subset of X ∗ given by

∂Υ(ϑ) = {ϑ∗ ∈ X ∗ : Υ0(ϑ; ν) ≥ 〈ϑ∗, ν〉, ∀ν ∈ X }.

Lemma 1 ([40] Generalized Gronwall’s inequality). If β > 0, ã(t) is a non-negative function
locally integrable on 0 ≤ t ≤ T, and q(t) is a non-negative, non-decreasing continuous function on
0 ≤ t ≤ T, q(t) ≤ c, and suppose ũ(t) ≤ ã(t) + q(t)

∫ t
0 (t− s)β−1ũ(s)ds on this interval, then

˜u(t) ≤ ã(t) +
∫ t

0

∞

∑
n=1

(q(t)Γ(β))n

Γ(nβ)
(t− s)β−1 ã(s)ds, 0 ≤ t ≤ T.

In particular, when ã(t) = 0, then ũ(t) = 0 ∀ 0 ≤ t < T.

Lemma 2 ([48]). Let the two Banach spaces be X and Y . If F : X → Pcp(Y ) is a closed compact
multivalued function, then F is u.s.c.

Now, we provide some essential definitions for T-controllability.
Let T be the collection of all functions π(.) defined on [0, T] with π(0) = ϑ0 and

π(T) = ϑT, where ϑT is the reachable state at time T. Moreover, the conformable fractional
derivative Dαϑ(t) exists and is continuous a.e. on l′. The set of all achievable trajectories,
the (control) model (1), is represented by T.

Definition 3. System (1) is said to be T-controllable on l if ∀ ϑ ∈ T, ∃ a control u ∈ L2
=(l,U )

where the mild solution ϑ(.) of (1) satisfies ϑ(t) = π(t) a.e.

Theorem 1 ([49]). Let U be an open subset of a Banach space X . Let Ψ1 : U→ X [U, denoting
the closure of U in X ], be single-valued and Ψ2 : U→ Pcp,cv(X ) be a multivalued operator with
Ψ1(U) + Ψ2(U) bounded. If

(i) Ψ1 is a contraction with a contraction constant k and
(ii) Ψ2 is u.s.c and compact,

then either

1. The operator inclusion ψϑ ∈ Ψ1ϑ + Ψ2ϑ has a solution for ψ = 1 or
2. An element a ∈ ∂U such that ψa ∈ Ψ1a+ Ψ2a for some ψ > 1, where ∂U is the boundary of

U in X .
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3. Existence Results

With the use of Theorem 1, the solvability results of the system (1) is established.

Definition 4. An =t-adapted stochastic process ϑ(t) ∈ X : t ∈ l′ is said to be a mild solution of
(1) when the following conditions hold:

(i) ∃ an =t-adapted measurable function ω ∈ L2(=, H ) such that ω(t) ∈ ∂Υ(t, ϑ(t)) for a.e.
t ∈ l′;

(ii) ϑ(t) ∈H has a cadlag path on t ∈ l′ a.s., and the following stochastic integral is satisfied:

ϑ(t) =



T
(

tα

α

)
ϑ0 +

∫ t

0
sα−1T

(
tα − sα

α

)
[Bu(s) + ω(s, ϑ(s)) + σ(s, ϑ(s), ϑ(e(ϑ(s), s)))]ds

+
∫ t

0

∫
Z

sα−1T
(

tα − sα

α

)
λ(s, ϑ(s), δ(s))Ñ(ds, dδ), t ∈ (0, b1],

hi
(
t, ϑ(b−i )

)
, i = 1, 2, · · ·m,

T
(

tα−sα

α

)
hi
(
s, ϑ(b−i )

)
+
∫ t

ai

sα−1T
(

tα − sα

α

)[
Bu(s) + ω(s, ϑ(s)) + σ

(
s, ϑ(s),

ϑ(e(ϑ(s), s))
)]

ds +
∫ t

ai

∫
Z
sα−1T

(
tα − sα

α

)
λ(s, ϑ(s), δ(s))Ñ(ds, dδ), t ∈ [ai, bi+1].

(2)

In order to prove our results, the following hypotheses are necessary:

(A1) The linear operator A : H → H generates a C0-semigroup T (.). Thus, ∃M > 0 that
is constant such that ‖T (t)‖ ≤M.

(A2) Let Υ : l ×H → R satisfy the following conditions:

(i) Υ(., ϑ) is measurable for all ϑ ∈H .
(ii) Υ(t, .) is locally Lipschitz continuous for a.e. t ∈ l.
(iii) There exist a function r1 ∈ L2(l, R+) and a constant ςω ≥ 0 such that

E‖∂Υ(t, ϑ(t))‖2 = sup{‖ω(t)‖2 : ω(t, ϑ(t)) ∈ ∂Υ(t, ϑ(t))} ≤ r1(t) + ςωE‖ϑ‖2, ∀ ϑ ∈H and a.e.t ∈ l.

(A3) The Lipschitz continuity of σ : l ×H ×H →H : For x1, x2, y1, y2 ∈H and Mσ > 0.

E‖σ(t, x1, y1)− σ(t, x2, y2)‖2 ≤ Mσ

[
E‖x1 − x2‖2 + ‖y1 − y2‖2

]
,

E‖σ(·, 0, ϑ(0))‖2 ≤ σ̃0.

(A4) Let e : H ×R+ → R+ be Lipschitz continuous. For all x1, x2 ∈H and Me > 0 3,

E|e(ϑ1, t)− e(ϑ2, t)|2R+ ≤MeE‖ϑ1 − ϑ2‖2

and e(., 0) = 0.
(A5) λ : l ×H × Z \ {0} → H is the Lipschitz constant Mλ a.e. t ∈ l. There exist a

function r2 ∈ L2(l, R+) and a positive constant ςλ such that∫
Z
E‖λ(t, ϑ, δ)h(dδ)‖2 ≤ r2(t) + ςλE‖ϑ‖2.

(A6) (i) hi : [bi, ai]×H →H such that hi(·, ϑ) is continuous ∀ ϑ ∈H and i = 1, 2, · · · , m.
(ii) hi : [bi, ai]×H → H , i = 1, 2, · · ·m, is uniformly continuous on bounded sets,
and for t ∈ [bi, ai], hi(t, ·) is a mapping from any bounded subsets of H into relatively
compact subsets of H . Also, ∃ positive constants fi with

E‖hi(t, ϑ1)− hi(t, ϑ2)‖2 ≤ fiE‖ϑ1 − ϑ2‖2, t ∈ [bi, ai], ϑ1, ϑ2 ∈H .

Let the multivalued operator S : L2
=(l, H )→ P

(
L2
=(l, H )

)
be defined by

S(ϑ) =
{

ω ∈ L2
=(l, H ) : ω(t, ϑ(t)) ∈ ∂Υ(t, ϑ(t)), a.e.t ∈ l

}
, ∀ ϑ ∈ L2

=(l, H ).
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Lemma 3. Suppose that (A1) and (A2) hold. Then, S satisfies the following: if ϑn → ϑ in
L2
=(l, H ), zn → z weakly in L2

=(l, H ), and zn ∈ S(ϑn), then z ∈ S(ϑ).

Lemma 4. If (A1) and (A2) are satisfied for ϑ ∈ L2
=(l, H ), S(ϑ) is non-empty and convex and

has weakly compact values.

Theorem 2. For ∀ ϑ0 ∈H , the system (1) has a mild solution, assuming that (A1)–(A6) hold, if

C = max
i=1,2,··· ,m

{
2M2b2α

1
2α− 1

[2Mσl(Me + 1) +Mλ], fi, 3M2fi +
2M2b2α

1
2α− 1

[2Mσl(Me + 1) +Mλ]

}
< 1. (3)

Proof. Define the multivalued operator Φ : X → 2X as Φ(ϑ) = {y ∈ X : y(t) = η(t)} 3:

η(t) =



T
(

tα

α

)
ϑ0 +

∫ t

0
sα−1T

(
tα − sα

α

)
[Bu(s) + ω(s, ϑ(s)) + σ(s, ϑ(s), ϑ(e(ϑ(s), s)))]ds

+
∫ t

0

∫
Z

sα−1T
(

tα − sα

α

)
λ(s, ϑ(s), δ(s))Ñ(ds, dδ), t ∈ (0, b1],

hi
(
t, ϑ(b−i )

)
, i = 1, 2, · · ·m,

T
(

tα−sα

α

)
hi
(
s, ϑ(b−i )

)
+
∫ t

ai

sα−1T
(

tα − sα

α

)[
Bu(s) + ω(s, ϑ(s)) + σ

(
s, ϑ(s),

ϑ(e(ϑ(s), s))
)]

ds +
∫ t

ai

∫
Z
sα−1T

(
tα − sα

α

)
λ(s, ϑ(s), δ(s))Ñ(ds, dδ), t ∈ [ai, bi+1].

We may decompose the operator Φ(ϑ) into two components, where Φ1(ϑ) = {y ∈ X :
y(t) = η1(t)} 3:

η1(t) =



T
(
tα

α

)
ϑ0 +

∫ t

0
sα−1T

(
tα − sα

α

)
σ(s, ϑ(s), ϑ(e(ϑ(s), s)))ds

+
∫ t

0

∫
Z
sα−1T

(
tα − sα

α

)
λ(s, ϑ(s), δ(s))Ñ(ds, dδ), t ∈ (0, b1],

hi
(
t, ϑ(b−i )

)
, i = 1, 2, · · ·m,

T
(
tα−sα

α

)
hi
(
s, ϑ(b−i )

)
+
∫ t

ai

sα−1T
(
tα − sα

α

)
σ
(
s, ϑ(s), ϑ(e(ϑ(s), s))

)
ds

+
∫ t

ai

∫
Z
sα−1T

(
tα − sα

α

)
λ(s, ϑ(s), δ(s))Ñ(ds, dδ), t ∈ [ai, bi+1].

and Φ2(ϑ) = {y ∈ X : y(t) = η2(t)} such that

η2(t) =



∫ t

0
sα−1T

(
tα − sα

α

)
[Bu(s) + ω(s, ϑ(s))], t ∈ (0, b1],

0, t ∈ (bi, ai] i = 1, 2, · · ·m,∫ t

ai

sα−1T
(

tα − sα

α

)[
Bu(s) + ω(s, ϑ(s))

]
ds, t ∈ [ai, bi+1].

Step 1. Claim: Φ1 is a contraction mapping.
Define Bl = {ϑ ∈ X : E‖ϑ‖2 ≤ l} for l > 0. Now, for t ∈ (0, b1], ϑ1, ϑ2 ∈ Bl, using

(A3)–(A6), we have
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E‖(Φ1ϑ1)(t)− (Φ1ϑ2)(t)‖2
PC

= sup
t∈l′

E‖(Φ1ϑ1)(t)− (Φ1ϑ2)(t)‖2

≤ sup
t∈l′

[
E
∥∥∥∥ ∫ t

0
sα−1T

(
tα − sα

α

)
[σ(s, ϑ1(s), ϑ1(e(ϑ1(s), s)))− σ(s, ϑ2(s), ϑ2(e(ϑ2(s), s)))]ds

+
∫ t

0

∫
Z

sα−1T
(

tα − sα

α

)
[λ(s, ϑ1(s), δ(s))− λ(s, ϑ2(s), δ(s))]Ñ(ds, dδ)

∥∥∥∥2]

≤ 2 sup
t∈l′

[
E
∥∥∥∥ ∫ t

0
sα−1T

(
tα − sα

α

)[
σ(s, ϑ1(s), ϑ1(e(ϑ1(s), s)))− σ(s, ϑ1(s), ϑ1(e(ϑ2(s), s)))

− σ(s, ϑ2(s), ϑ2(e(ϑ2(s), s))) + σ(s, ϑ1(s), ϑ1(e(ϑ2(s), s)))
]

ds
∥∥∥∥2

+ E
∥∥∥∥ ∫ t

0

∫
Z

sα−1T
(

tα − sα

α

)
[λ(s, ϑ1(s), δ(s))− λ(s, ϑ2(s), δ(s))]Ñ(ds, dδ)

∥∥∥∥2]
≤ 2 sup

t∈l′

[
2b1M2Mσ

( ∫ t

0
s2α−2E‖ϑ1(e(ϑ1(s), s))− ϑ1(e(ϑ2(s), s))‖2ds +

∫ t

0
s2α−2E‖ϑ1 − ϑ2‖2

× ‖e(ϑ2(s), s)‖2ds
)
+ b1M2Mλ

∫ t

0
s2α−2E‖ϑ1(s)− ϑ2(s)‖2ds

]
≤

2M2b2α
1

2α− 1
[2Mσl(Me + 1) +Mλ] sup

s∈(0,b1)

E‖ϑ1(s)− ϑ2(s)‖2.

For t ∈ (bi, ai], we have

E‖(Φ1ϑ1)(t)− (Φ1ϑ2)(t)‖2
PC = sup

t∈l′
E‖(Φ1ϑ1)(t)− (Φ1ϑ2)(t)‖2

≤ sup
t∈l′

E
∥∥hi
(
t, ϑ1(b

−
i )
)
− hi

(
t, ϑ2(b

−
i )
)∥∥2

≤ fi sup
t∈(bi ,ai ]

E‖ϑ1(t)− ϑ2(t)‖2, i = 1, 2, · · · , m.

For t ∈ [ai, bi+1], i = 1, 2, · · · , m,

E‖(Φ1ϑ1)(t)− (Φ1ϑ2)(t)‖2
PC

= sup
t∈l′

E‖(Φ1ϑ1)(t)− (Φ1ϑ2)(t)‖2

≤ sup
t∈l′

E
∥∥∥∥T ( tα − sα

α

)[
hi
(
s, ϑ1(b

−
i )
)
− hi

(
s, ϑ2(b

−
i )
)]

+
∫ t

ai

sα−1T
(

tα − sα

α

)
× [σ(s, ϑ1(s), ϑ1(e(ϑ1(s), s)))− σ(s, ϑ2(s), ϑ2(e(ϑ2(s), s)))]ds

+
∫ t

ai

∫
Z

sα−1T
(

tα − sα

α

)
[λ(s, ϑ1(s), δ(s))− λ(s, ϑ2(s), δ(s))]Ñ(ds, dδ)

∥∥∥∥2

≤ 3M2fi + 3
T2αM2

2α− 1
[2Mσl(2Me + 1)Mλ] sup

s∈(ai ,bi+1]

E‖ϑ1(s)− ϑ2(s)‖2.

Therefore, for t ∈ l,

E‖(Φ1ϑ1)(t)− (Φ1ϑ2)(t)‖2
PC ≤ C1 sup

t∈l′
E‖ϑ1(t)− ϑ2(t)‖2.
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where C1 = max
i∈{1,2,··· ,m}

[
3M2fi +

3T2αM2

2α− 1
(2Mσl(2Me + 1) +Mλ)

]
.

=⇒ Φ1 is a contraction.
Step 2. Claim: Φ2 is convex for ϑ ∈ X .

If y1, y2 ∈ F2(ϑ), then there exist ω1, ω2 ∈ S(ϑ) such that 3 t ∈ (0, b1], and we have

y1(t) =
∫ t

0
sα−1T

(
tα − sα

α

)
[Bu(s) + ω1(s, ϑ(s))]ds

y2(t) =
∫ t

0
sα−1T

(
tα − sα

α

)
[Bu(s) + ω2(s, ϑ(s))]ds.

We may consider 0 ≤ κ ≤ 1; then, for t ∈ (0, b1], we have

(κy1 + (1− κ)y2)(t) =
∫ t

0
sα−1T

(
tα − sα

α

)
[Bu(s) + (κω1 + (1− κ)ω2)(s, ϑ(s))]ds.

Using Lemma 2, we can obtain the convexity of S(ϑ) and (κω1 + (1− κ)ω2) ∈ S(t)
for t ∈ S(t). Hence, (κy1 + (1− κ)y2) ∈ S(t) for t ∈ (0, b1]. The result also holds for
t ∈ (ai, bi+1]. Thus, Φ2(t) is convex. By Lemma 2, obviously, Φ2(t) is non-empty and has
weakly compact values for all ϑ ∈ X .
Step 3. Claim: Φ2(ϑ)(ϑ) maps Bl → Bl in X .

For ϑ ∈ Bl and t ∈ (0, b1], by using Holder’s inequality,

E‖Φ2(ϑ)‖2
PC = E

∥∥∥∥∫ t

0
sα−1T

(
tα − sα

α

)
[Bu(s) + ω(s, ϑ(s))]ds

∥∥∥∥2

PC

≤ M2b1

[
b2α−1

1
2α− 1

‖B‖2‖u‖2
L2
=(l,W )

+
∫ t

0
s2α−2[r2(s) + ςωl]ds

]

≤ M2b1

[
b2α−1

1
2α− 1

‖B‖2‖u‖2
L2
=(l,W )

+
b2α−1/2

1
2α− 1/2

‖r1‖L2
=(l,R

+) +
b2α−1

1
2α− 1

ςωl

]

≤
M2b2α

1
2α− 1

[
‖B‖2‖u‖2

L2
=(l,W )

+ ςωl
]
+

M2b2α+1/2
1

2α− 1/2
‖r1‖L2

=(l,R
+)

≤ C̃1.

For t ∈ [ai, bi+1], i = 1, 2, · · · , m,

E‖Φ2(ϑ)‖2
PC = E

∥∥∥∥∫ t

ai

sα−1T
(

tα − sα

α

)
[Bu(s) + ω(s, ϑ(s))]ds

∥∥∥∥2

PC

≤ M2T2α

2α− 1

[
‖B‖2‖u‖2

L2
=(l,W )

+ ςωl
]
+

M2T2α+1/2

2α− 1/2
‖r1‖L2

=(l,R
+)

≤ C̃2.

Hence, E‖Φ2(ϑ)‖PC ≤ C̃3, where C̃3 = max{C̃1, C̃2}.
Step 4. Claim: {Φ2(ϑ) : ϑ ∈ Bl} is equicontinuous.

For every ϑ ∈ Bl and t ∈ (0, b1], when t1 = 0, 0 < t2 < ε0, and ε0 is sufficiently small,
it follows that
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E‖(Φ2ϑ)(t2)− (Φ2ϑ)(t1)‖2
PC

≤ E
∥∥∥∥∫ t2

0
sα−1T

(
tα − sα

α

)
[Bu(s) + ω(s, ϑ(s))]ds

∥∥∥∥2

≤ 2M2 t2α
2

2α− 1

[
‖B‖2‖u‖2

L2
=(l,W )

+ ςωl
]
+ 2M2 t2α+1/2

2
2α− 1/2

‖r1‖L2
=(l,R

+)

≤ 2M2 ε2α
0

2α− 1

[
‖B‖2‖u‖2

L2
=(l,W )

+ ςωl
]
+ 2M2 ε2α+1/2

0
2α− 1/2

‖r1‖L2
=(l,R

+)

→ 0 as ε0 → 0 for ϑ ∈ Bl.

In a similar manner, E‖(Φ2ϑ)(t2)− (Φ2ϑ)(t1)‖2
PC → 0 as ε0 → 0 for t ∈ [ai, bi+1],

i = 1, 2, · · · , m. Likewise, for t ∈ Bl, let 0 < t1 < t2 < b1; there exists ω ∈ S(ϑ) and for all
ϑ ∈ (0, b1].

E‖(Φ2ϑ)(t2)− (Φ2ϑ)(t1)‖2
PC

= E
∥∥∥∥ ∫ t2

0
sα−1T

(
tα
2 − sα

α

)
[Bu(s) + ω(s, ϑ(s))]ds

−
∫ t1

0
sα−1T

(
tα
1 − sα

α

)
[Bu(s) + ω(s, ϑ(s))]ds

∥∥∥∥2

≤ E
∥∥∥∥ ∫ t1−ε

0
sα−1

[
T
(

tα
2 − sα

α

)
− T

(
tα
1 − sα

α

)]
[Bu(s) + ω(s, ϑ(s))]ds

+
∫ t1

t1−ε
sα−1

[
T
(

tα
2 − sα

α

)
− T

(
tα
1 − sα

α

)]
[Bu(s) + ω(s, ϑ(s))]ds

+
∫ t1

t2

sα−1
[
T
(

tα
2 − sα

α

)
− T

(
tα
1 − sα

α

)]
[Bu(s) + ω(s, ϑ(s))]ds

∥∥∥∥2

≤ 6
[(

(t1 − ε)2α

2α− 1

[
‖B‖2‖u‖2

L2
=(l,W )

+ ςωl
]

+
(t1 − ε)2α+1/2

2α− 1
‖r1‖L2

=(l,R
+)

)
sup

s∈(0,b1]

E
∥∥∥∥T ( tα

2 − sα

α

)

− T
(

tα
1 − sα

α

)∥∥∥∥2

+
ε2α

2α− 1

[
‖B‖2‖u‖2

L2
=(l,W )

+ ςωl
]
+

ε2α+1/2

2α− 1
‖r1‖L2

=(l,R
+)

)
× sup

s∈(0,b1]

E
∥∥∥∥T ( tα

2 − sα

α

)
− T

(
tα
1 − sα

α

)∥∥∥∥2

+
(t2 − t1)

2α

2α− 1
M2
[
‖B‖2‖u‖2

L2
=(l,W )

+ ςωl
]

+
(t2 − t1)

2α−1/2

2α− 1/2
M2‖r1‖L2

=(l,R
+)

]
.

In a similar way, for t ∈ [ai, bi+1], i = 1, 2, · · · , m, ∃ ω ∈ S(ϑ) 3,
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E‖(Φ2ϑ)(t2)− (Φ2ϑ)(t1)‖2
PC

≤ 6
[(

(t1 − ε− ai)
2α

2α− 1

[
‖B‖2‖u‖2

L2
=(l,W )

+ ςωl
]

+
(t1 − ε− ai)

2α+1/2

2α− 1
‖r1‖L2

=(l,R
+)

)
sup

s∈(0,b1]

E
∥∥∥∥T ( tα

2 − sα

α

)

− T
(

tα
1 − sα

α

)∥∥∥∥2

+
ε2α

2α− 1

[
‖B‖2‖u‖2

L2
=(l,W )

+ ςωl
]
+

ε2α+1/2

2α− 1
‖r1‖L2

=(l,R
+)

)
× sup

s∈(0,b1]

E
∥∥∥∥T ( tα

2 − sα

α

)
− T

(
tα
1 − sα

α

)∥∥∥∥2

+
(t2 − t1)

2α

2α− 1
M2
[
‖B‖2‖u‖2

L2
=(l,W )

+ ςωl
]

+
(t2 − t1)

2α−1/2

2α− 1/2
M2‖r1‖L2

=(l,R
+)

]
.

t ∈ (0, b1] and t ∈ [ai, bi+1] are independent of ϑ and approach zero as t2 → t1 and
ε→ 0. Thus, E‖(Φ2ϑ)(t2)− (Φ2ϑ)(t1)‖2 → 0 as ε→ 0 independent of ϑ ∈ Bl, from which
it follows that {Φ2(ϑ), ϑ ∈ Bl} is equicontinuous.
Step 5. Claim: Φ2(ϑ) is completely continuous.

Let ξ be a real number and t ∈ l be fixed with 0 < ξ < t. The set π(t) = {Φ2(t)}
is relatively compact. We may define

(Φξ
2ϑ)(t) =


∫ t−ξ

0 sα−1T
(

tα−sα

α

)[
Bu(s) + ω(s, ϑξ(s))

]
ds, t ∈ [0, b1],

0, t ∈ (bi, ai], i = 1, 2, · · · , m,∫ t−ξ
ai

sα−1T
(

tα−sα

α

)[
Bu(s) + ω(s, ϑξ(s))

]
ds, t ∈ (ai, bi+1].

Since T (·) is compact, the set πε(t) = {Φε
2(t)} is relatively compact. Now, for each

0 < ξ < t and t ∈ (ai, bi+1], i = 1, 2, · · · , we obtain

E
∥∥∥Φ2(t)− φ

ξ
2(t)

∥∥∥2
≤ 2E

∥∥∥∥∫ t

t−ξ
sα−1T

(
tα − sα

α

)
Bu(s)ds

∥∥∥∥2

+ 2E
∥∥∥∥∫ t

t−ξ
sα−1T

(
tα − sα

α

)[
ω(s, ϑ(s))−ω(s, ϑξ(s))

]
ds
∥∥∥∥2

We see that, when ξ → 0, the above inequality tends to zero. Thus, the set π(t) is
relatively compact. Thus, from Step 4 and the Arzela Ascoli theorem, Φ2 is completely
continuous.
Step 6. Claim: Φ2(ϑ) has a closed graph.

Let ϑ̃n → ϑ̃∗ in X and ỹn → ỹ∗ in X . Our aim is to show that ỹ∗ ∈ Φ2(ϑ̃∗).
Let ỹn ∈ Φ2(ϑ̃n); then, ∃ ω(s, ϑ̃n) ∈ S(ϑ̃n) with

ỹn(t) =
∫ t

0
sα−1T

(
tα − sα

α

)
[Bu(s) + ω(s, ϑ(s))]ds (4)

With the use of (A2) (iii),

{(ω(s, ϑn(s)))}n≥1 ⊆ L2
=(l, H ) is bounded. (5)

Let us consider the subsequence ω(s, ϑ̃n(s)) → ω(s, ϑ̃∗(s)) weakly in L2
=(l, H ). From

the condition of the compactness of T (t), using (A2) and Equations (4) and (5),

ϑ̃n(t)→
∫ t

0
sα−1T

(
tα − sα

α

)[
Bu(s) + ω(s, ϑ̃∗(s))

]
ds (6)
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We may note that ỹn → ỹ∗ in X and ω(s, ϑ̃n) ∈ S(ϑ̃n). Lemma 4 and (6) give
ω(s, ϑ̃∗) ∈ S(ϑ̃∗). Hence, ϑ̃∗ ∈ Φ2(ϑ̃∗). Thus, Φ2(ϑ) has a closed graph. Φ2 is upper
semi-continuous. Thus, Φ2(ϑ) has a closed graph.
Step 7. The operator inclusion πϑ ∈ Φ1(ϑ) + Φ2(ϑ) has a solution for π = 1.

With the use of Theorem 1, it is enough to claim that there is no ϑ ∈ X that satisfies
πϑ ∈ Φ1(ϑ) + Φ2(ϑ) for π > 1, and there exists ω ∈ S(ϑ) with

ϑ(t) =



T
(

tα

α

)
ϑ0 +

∫ t

0
sα−1T

(
tα − sα

α

)
[Bu(s) + ω(s, ϑ(s)) + σ(s, ϑ(s), ϑ(e(ϑ(s), s)))]ds

+
∫ t

0

∫
Z

sα−1T
(

tα − sα

α

)
λ(s, ϑ(s), δ(s))Ñ(ds, dδ), t ∈ (0, b1],

hi
(
t, ϑ(b−i )

)
, i = 1, 2, · · ·m,

T
(

tα−sα

α

)
hi
(
s, ϑ(b−i )

)
+
∫ t

ai

sα−1T
(

tα − sα

α

)[
Bu(s) + ω(s, ϑ(s)) + σ

(
s, ϑ(s),

ϑ(e(ϑ(s), s))
)]

ds +
∫ t

ai

∫
Z
sα−1T

(
tα − sα

α

)
λ(s, ϑ(s), δ(s))Ñ(ds, dδ), t ∈ [ai, bi+1].

For t ∈ (0, b1], ∃ ω ∈ S(ϑ),

E‖ϑ(t)‖2
PC

= 5
[
M2E‖ϑ0‖2 +M2‖B‖2b1

∫ t

0
s2α−2E‖u(s)‖2ds + b1M2

∫ t

0
s2α−2

[
r1(s) + ςωE‖ϑ(s)‖2

]
ds

+ 2b1M2
∫ t

0
s2α−2E‖σ(s, ϑ(s), ϑ(e(ϑ(s), s)))− σ(s, 0, ϑ(e(ϑ(0), 0)))‖2ds

+ 2b1M2
∫ t

0
s2α−2E‖σ(s, 0, ϑ(e(ϑ(0), 0)))‖2ds + b1M2

∫ t

0
s2α−2

[
r2(s) + ςωE‖ϑ(s)‖2

]
ds
]

≤ 5
[
M2E‖ϑ0‖2 +M2

(
‖B‖2 b2α

1
2α− 1

‖u‖2
L2
=(l,W )

+ 2
b2α

1
2α− 1

σ0

)
+

M2b2α+1/2
1

2α− 1/2

[
‖r1‖L2

=(l,R
+)

+ ‖r2‖L2
=(l,R

+)

]
+ b1M2[ςω + 2Mσl(Me + 1) + ςλ]

∫ t

0
s2α−2E‖ϑ(s)‖2ds

]
≤ S1 + S2

∫ t

0
s2α−2E‖ϑ(s)‖2ds.

where

S1 = 5
[
M2E‖ϑ0‖2 +M2

(
‖B‖2 b2α

1
2α− 1

‖u‖2
L2
=(l,W )

+ 2
b2α

1
2α− 1

σ0

)
+

M2b2α+1/2
1

2α− 1/2

[
‖r1‖L2

=(l,R
+) + ‖r2‖L2

=(l,R
+)

]
S2 = 5b1M2[ςω + 2Mσl(Me + 1) + ςλ].

By the generalized Gronwall’s inequality,

E‖ϑ(t)‖2
PC ≤ S1eS2t = d1. (7)

For t ∈ [ai, bi+1], i = 1, 2, · · · , m, ∃ ω ∈ S(ϑ) such that

E‖ϑ(t)‖2 ≤ 5M2TfiE‖ϑ(t)‖2 + 5M2 T2α

2α− 1

[
‖B‖2‖u‖2

L2
=(l,W )

+ 2σ0

]
+ 5M2 T2α+1/2

2α− 1/2

[
‖r1‖L2

=(l,R
+) + ‖r2‖L2

=(l,R
+)

]
+ 5TM2[ςω + 2Mσl(Me + 1) + ςλ]

∫ t

ai

s2α−2E‖ϑ(s)‖2ds.
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Thus,

E‖ϑ(t)‖2 ≤ 1
1− 5M2Tfi

[
M2 T2α

2α− 1

[
‖B‖2‖u‖2

L2
=(l,W )

+ 2σ0

]
+ 5M2 T2α+1/2

2α− 1/2

[
‖r1‖L2

=(l,R
+)

+ ‖r2‖L2
=(l,R

+)

]
+ 5TM2[ςω + 2Mσl(Me + 1) + ςλ]

∫ t

ai

s2α−2E‖ϑ(s)‖2ds
]

.

Therefore,

E‖ϑ(t)‖2
PC ≤ S3 + S4

∫ t

ai

s2α−2E‖ϑ(s)‖2ds.

Here,

S3 = max
i=1,2,··· ,m

1
1− 5M2Tfi

[
M2 T2α

2α− 1

[
‖B‖2‖u‖2

L2
=(l,W )

+ 2σ0

]
+ 5M2 T2α+1/2

2α− 1/2

[
‖r1‖L2

=(l,R
+) + ‖r2‖L2

=(l,R
+)

]
S4 = 5TM2[ςω + 2Mσl(Me + 1) + ςλ]

Using Gronwall’s inequality,

E‖ϑ(t)‖2
PC ≤ S3eS4t = d2. (8)

By summarizing (7) and (8),

E‖ϑ(t)‖2
PC ≤ d where d = max{d1, d2}.

The set χd = {ϑ ∈ X ,E‖ϑ‖2
PC < d + 1}. Clearly, χd is an open subset of X .

From χd, there is no ϑ ∈ X that satisfies πϑ ∈ Φ1(ϑ) + Φ2(ϑ) for π > 1. Hence, we
conclude that the operator inclusion ϑ ∈ Φ(ϑ) has a mild solution in J .

4. T-Controllability

This section uses the generalized Gronwall’s inequality to establish the T-controllability
of the conformable fractional stochastic differential system

Theorem 3. If (A1)–(A6) are satisfied, the system (1) is T-controllable on (0, T].

Proof. Let ψ(t) be a given trajectory on T. Let us choose the feedback control u(t) as

u(t) = B−1
[
Dαψ(t)−Λψ(t)−ω(t, ψ(t))− σ(t, ψ(t), ψ(e(ψ(t), t)))

−
∫
Z

λ(t, ψ(t), δ)Ñ(dt, dδ)

]
, t ∈ (ai, bi+1], i = 0, 1, 2, · · · , m,

u(t) = 0, t ∈ (bi, ai], i = 1, 2, · · · , m.

Thus, (1) implies

Dαϑ(t) = Λϑ(t) +
[
Dαψ(t)−Λψ(t)−ω(t, ψ(t))− σ(t, ψ(t), ψ(e(ψ(t), t)))

−
∫
Z

λ(t, ψ(t), δ)Ñ(dt, dδ)

]
+ ω(t, ϑ(t)) + σ(t, ϑ(t), ϑ(e(ϑ(t), t)))

+
∫
Z

λ(t, ϑ(t), δ)Ñ(dt, dδ), t ∈ (ai, bi+1], i = 0, 1, 2, · · · , m.

Put ρ(t) = ϑ(t)− ψ(t).
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Dαρ(t) = Λρ(t) + [ω(t, ϑ(t))−ω(t, ψ(t))] + [σ(t, ϑ(t), ϑ(e(ϑ(t), t)))− σ(t, ψ(t), ψ(e(ψ(t), t)))]

+
∫
Z
[λ(t, ϑ(t), δ)− λ(t, ψ(t), δ)]Ñ(dt, dδ), t ∈ (ai, bi+1], i = 0, 1, 2, · · · , m.

ρ(t) = hi
(
t, ϑ(b−i )

)
− hi

(
t, ψ(b−i )

)
, t ∈ (bi, ai], i = 1, 2, · · · , m,

ρ(0) = ϑ(0)− ψ(0) = 0.

(9)

Thus, the mild solution of (9) is

ρ(t) =
∫ t

0
sα−1T

(
tα − sα

α

)
[ω(s, ϑ(s))−ω(s, ψ(s))]ds

+
∫ t

0
sα−1T

(
tα − sα

α

)[
σ(s, ϑ(s), ϑ(e(ϑ(s), s)))− σ(s, ψ(s), ψ(e(ψ(s), s)))

]
ds

+
∫ t

0

∫
Z

sα−1T
(

tα − sα

α

)
[λ(s, ϑ(s), δ)− λ(s, ψ(s), δ)]Ñ(ds, dδ), t ∈ (0, b1]

ρ(t) = hi
(
t, ϑ(b−i )

)
− hi

(
t, ψ(b−i )

)
, t ∈ (bi, ai], i = 1, 2, · · · , m.

For t ∈ (0, b1],

E‖ρ(t)‖2

≤ 3b1M2
∫ t

0
s2α−2E‖ω(s, ϑ(s))−ω(s, ψ(s))‖2ds + 3b1M2

∫ t

0
s2α−2E

∥∥∥∥σ(s, ϑ(s), ϑ(e(ϑ(s), s)))

− σ(s, ϑ(s), ϑ(e(ψ(s), s)))− σ(s, ψ(s), ψ(e(ψ(s), s))) + σ(s, ϑ(s), ϑ(e(ψ(s), s)))
∥∥∥∥2

ds

+ 3b1M2
∫ t

0

∫
Z

s2α−2E‖λ(s, ϑ(s), δ)− λ(s, ψ(s), δ)‖2h(dδ)ds

≤ 3b1M2
[ ∫ t

0
s2α−2

[
E‖∂Υ(s, ϑ(s))− ∂Υ(s, ψ(s))‖2

]
ds + 2Mσ

∫ t

0
s2α−2E

∥∥∥∥ϑ
(
e(ϑ(s), s)

− e(ψ(s), s)
)∥∥∥∥2

+E‖ϑ(s)− ψ(s)‖2 +E‖(ϑ− ψ)(e(ψ(s), s)− e(ψ(0), 0))‖2ds

+ Mλ

∫ t

0
s2α−2E‖ϑ(s)− ψ(s)‖2ds

]
≤ 3b1M2[Mω + 2Mσl(2Me + 1) +Mλ]

∫ t

0
s2α−2E‖ρ(s)‖2ds

≤ S5

∫ t

0
s2α−2E‖ρ(s)‖2ds,

where
S5 = 3b1M2[Mω + 2Mσl(2Me + 1) +Mλ].

For t ∈ (ai, bi+1], i = 1, 2, 3, · · · , m, ∃ ω ∈ S(ϑ), and we have

E‖ρ(t)‖2 ≤ 4M2TfiE‖ρ(t)‖2 + 4TM2[Mω + 2Mσl(2Me + 1) +Mλ]
∫ t

ai

s2α−2E‖ρ(s)‖2ds

≤ 1
1− 4M2Tfi

[
4TM2[Mω + 2Mσl(2Me + 1) +Mλ]

∫ t

ai

s2α−2E‖ρ(s)‖2ds
]

≤ S6

∫ t

ai

s2α−2E‖ρ(s)‖2ds,
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where
S6 =

1
1− 4M2Tfi

4TM2[Mω + 2Mσl(2Me + 1) +Mλ].

=⇒ E‖ρ(t)‖2
PC = 0 (i.e) ϑ(t) = ψ(t)

a.e. Hence, the proof is complete.

5. Illustration

Example 1. Consider the conformable stochastic differential inclusion with NIIs as follows:

D
1
3 ϑ(t, s) ∈ ∂2

∂s2 ϑ(t, s) + u(t, s) + ∂Υ
(

t2 + |ϑ(t, s)|2
7

)
+

1
15

[
tϑ(t, s)

2
+ ϑ

(
t,
√

7 sin t|ϑ(t, s)|/3
)]

+
∫
Z

ϑ(t, s) sin |sδ|
36

Ñ(dt, dδ),

t ∈ (0, 0.25] ∪ (0.5, 1] and s ∈ [0, π], (10)

ϑ(t, ω) =
(t− 0.25)e−t

1 + 5et +
|ϑ(0.25, s)|

6
, t ∈ (0.25, 0.5),

ϑ(t, 0) = ϑ(t, π) = 0, t ∈ (0, 1)× [0, π]

ϑ(0, s) = ϑ0(s) on [0, π].

Assume that [0, π] is a bounded domain in Rn, (n ≥ 2) with the Lipschitz boundary. Here,D 1
3

is a conformable fractional derivative of order 1
3 . Let H = U = L2([0, π]), ω0(s) ∈H , and let

Λ : L2([0, π]), ω0(s) ∈ H , and let A : L2([0, π]) → L2([0, π]).
Aω = ∆ω, ω ∈ D(A); we define D(Λ) = {y ∈ H : y, dy

ds as absolutely continuous and
d2y
ds2 ∈ H , y(0) = y(π) = 0}. Λ generates a C0-semigroup {T (t)}t≥0 that is analytic
and self-adjoint. Furthermore, Λ has the discrete spectrum, and ∃ eigenvalues −n2 having

orthogonal eigenvectors Ψn(y) =
√

2
π sin(ny); then, Λy =

∞

∑
n=1
−n2〈y, Ψn〉Ψn, n ∈ R.

Also, T (t)y =
∞

∑
n=1

e−n2t〈y, Ψn〉Ψn, y ∈ H and ∀ t > 0. In addition, ‖T (t)‖ ≤ M = 1,

(A1) holds, andR(λ, Λ) = (λ−Λ)−1 is a compact operator for every λ ∈ D(Λ).
Define the nonlinear functions as follows:

ω(t, ϑ(t, s)) ∈ ∂Υ(t, ϑ(t, s)) and ω(t, ϑ(t, s)) =
t2 + |ϑ(t, s)|2

7
,

σ(t, ϑ(t, s), ϑ(e(ϑ(t, s))), t) =
1

15

[
tϑ(t, s)

2
+ ϑ

(
t,
√

7 sin t|ϑ(t, s)|/3
)]

,∫
Z

λ(t, ϑ(t, s), δ)Ñ(dt, dδ) =
∫
Z

ϑ(t, s) sin |sδ|
36

Ñ(dt, dδ),

e(ϑ(t, s), t) =
√

7 sin t|ϑ(t, s)|/3,

h
(
t, ϑ(b−i , s)

)
=

(t− 0.25)e−t

1 + 5et +
|ϑ(0.25, s)|

6
.

We define the ball Br̃ = {ϑ ∈H : E‖ϑ‖2 ≤ r̃} with r̃ > 0. For ϑ1, ϑ2 ∈ Br̃,

E|e(ϑ1(t, s), t)− e(ϑ2(t, s), t)|2 = E

∣∣∣∣∣
√

7 sin t | ϑ1(t, s)
3

−
√

7 sin t | ϑ2(t, s)
3

∣∣∣∣∣
≤ 7

9
E|ϑ1(t, s)− ϑ2(t, s)|2.

Also, e(·, 0) = 0. =⇒ e satisfies (A4) with Me = 7/9.
Now,
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E‖σ(t, ϑ1(t, s), ϑ1(e(ϑ1(t, s))), t)− σ(t, ϑ2(t, s), ϑ2(e(ϑ2(t, s))), t)‖2

≤ 1
225

E
∥∥∥∥ tϑ1(t, s)

2
+ ϑ1

(
t,
√

7 sin t|ϑ1(t, s)|/3
)
− tϑ2(t, s)

2
+ ϑ2

(
t,
√

7 sin t|ϑ2(t, s)|/3
)

+ ϑ1

(
t,
√

7 sin t|ϑ2(t, s)|/3
)
− ϑ1

(
t,
√

7 sin t|ϑ2(t, s)|/3
)∥∥∥∥2

≤ 1
75

[
E‖ϑ1(t, s)− ϑ2(t, s)‖2 +E

∥∥∥ϑ1

(
t,
√

7 sin t|ϑ2(t, s)|/3
)
− ϑ2

(
t,
√

7 sin t|ϑ2(t, s)|/3
)∥∥∥2

]
.

This implies that σ satisfies (A3) with Mσ = 1
75 . Also,

E‖ω(t, ϑ(t, s))‖2 ≤ E
∥∥∥∥ t2 + |ϑ(t, s)|

5

∥∥∥∥2

≤ 2
25

[
1 +E‖ϑ(t, s)‖2

]
and

E‖ω(t, ϑ1(t, s))−ω(t, ϑ2(t, s))‖2 ≤ E
∥∥∥∥ t2 + |ϑ1(t, s)|

7
− t2 + |ϑ2(t, s)|

7

∥∥∥∥2

≤ 2r̃
49

E‖ϑ1(t, s)− ϑ2(t, s)‖2.

This implies that ω satisfies (A2) with ςω = 2
49 .

∫
Z
E‖λ(t, ϑ1(t, s), δ)− λ(t, ϑ2(t, s), δ)‖2h(dδ) ≤

∫
Z
E
∥∥∥∥ϑ1(t, s) sin |sδ|

36
− ϑ2(t, s) sin |sδ|

36

∥∥∥∥2

h(dδ)

≤ 1
1296

E‖ϑ1(t, s)− ϑ2(t, s)‖2.

This implies that λ satisfies (A5) with Mλ = 1
1296 . Moreover,

E
∥∥h(t, ϑ1(b

−
i , s)

)
− h
(
t, ϑ2(b

−
i , s)

)∥∥2
= E

∥∥∥∥ |ϑ1(0.25, s)|
6

− |ϑ2(0.25, s)|
6

∥∥∥∥2

≤ 1
36

E‖ϑ1(0.25, s)− ϑ2(0.25, s)‖2.

This implies that (A6) holds with fi =
1

36 . Substituting (3), we can obtain C < 1. Thus, it satisfies
the conditions of Theorem 2, and therefore, there is at least one mild solution for the system (10).
Theorem 3’s presumptions are satisfied, proving that (10) is T-controllable on (0, 1].

Example 2. Consider the stochastic fractional partial differential inclusion with NIIs as follows:

Dαϑ(t, w) ∈ ∂2

∂w2 ϑ(t, w) +
∫ 1

0
Bu(s, w)ds + ∂Υ

(
t2 − |ϑ(t, w)|

9

)
+

t2ϑ(t, w) + ϑ(t, sin t|ϑ(t, w)|)
5π

+
∫
Z

(
cos|tw|

5
+

(t2 + 1)|ϑ(t, w)|
5 + |ϑ(t, w)|

)
Ñ(dt, dw),

t ∈ (0, 0.25] ∪ (0.5, 1] and w ∈ [0, π], (11)

ϑ(t, w) =
sin|w|+ t2ϑ−0.25(t, w)

12
, t ∈ (0.25, 0.5),

ϑ(t, 0) = ϑ(t, π) = 0, t ∈ [0, 1],

ϑ(0, w) = ϑ0(w), w ∈ [0, π].
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Let α = 0.9, and B : [0, π] × [0, 1] → R is a continuous function. Let H = U =
L2([0, π]), ω0(s) ∈ H , and let Λ : L2([0, π]), ω0(s) ∈ H , and let A : L2([0, π]) →
L2([0, π]).
Aω = ∆ω, ω ∈ D(A), and we define D(Λ) = {y ∈ H : y, dy

ds as absolutely continuous and
d2y
ds2 ∈ H , y(0) = y(π) = 0}. Λ generates a C0-semigroup {T (t)}t≥0 that is analytic
and self-adjoint. Furthermore, Λ has the discrete spectrum, and there exists eigenvalues −n2

having orthogonal eigenvectors Ψn(y) =
√

2
π sin(ny); then, Λy =

∞

∑
n=1
−n2〈y, Ψn〉Ψn, n ∈ R.

Also, T (t)y =
∞

∑
n=1

e−n2t〈y, Ψn〉Ψn, y ∈H and ∀ t > 0. In addition, ‖T (t)‖ ≤M = 1, (A1) holds,

and R(λ, Λ) = (λ − Λ)−1 is a compact operator for every λ ∈ D(Λ).
Here, the nonlinear functions are

∂Υ(t, ϑ(t)) = ∂Υ
(

t2 − |ϑ(t, w)|
9

)
,

σ(t, ϑ(t), ϑ(e(ϑ(t), t))) =
t2ϑ(t, w) + ϑ(t, sin t|ϑ(t, w)|)

5π
,

λ(t, ϑ(t), δ) =

(
cos|wη|

5
+

(t2 + 1)|ϑ(t, w)|
5 + |ϑ(t, w)|

)
,

and

hi
(
t, ϑ(b−i )

)
=

sin|w|+ t2ϑ−0.25(t, w)

12
.

Further,

‖∂Υ(t, ϑ(t))‖2 ≤ 1
81
‖1− |ϑ(t, w)|‖2,

≤ 1
81

[
1 + ‖ϑ(t, w)‖2 − 2‖ϑ(t, w)‖

]
≤ 1

81

[
1 + ‖ϑ‖2

]
.

‖σ(t, ϑ(t), ϑ(e(ϑ(t), t)))‖2 ≤
∥∥∥∥ t2ϑ(t, w) + ϑ(t, sin t|ϑ(t, w)|)

5π

∥∥∥∥2

,

≤ 4
25

(1 + 4‖ϑ‖2).

Also,

∫
Z
‖λ(t, ϑ(t), δ)‖2 ≤

∥∥∥∥ cos|wη|
5

+
(t2 + 1)|ϑ(t, w)|

5 + |ϑ(t, w)|

∥∥∥∥2

dη

≤ 2
25

(1 + 4‖ϑ‖2).

and

∥∥hi
(
t, ϑ(b−i )

)∥∥ ≤
∥∥∥∥∥ sin|w|+ t2ϑ−0.25(t, w)

12

∥∥∥∥∥
≤ 1

2

∥∥∥∥(1 + 1
4
)ϑ−0.25(t, w)

∥∥∥∥
≤ 0.1‖ϑ‖.
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Here, r1 = ςω = 1
81 , Mσ = 4

25 , Mc = 0.1, C ≈ 0.0405 < 1. Thus, all the hypotheses of
Theorem 2 are fulfilled. Hence, the solution set of (11) is nonempty and compact. And easily, one
can verify that the hypotheses of Theorem 3 are fulfilled, so (11) is T-controllable on (0, 1].

6. Conclusions

This paper presents a mild solution for the given situation using the multivalued
fixed point theorem, Clarke subdifferential properties, fractional calculus, and stochastic
analysis. Additionally, for the aforementioned system (1), the T-controllability conditions
are confirmed in the mean square moment. The obtained innovative theoretical conclusions
are illustrated in the later portion of the paper with an application. The presented results can
be further expanded to include the averaging principle and the results of well-posedness
for conformable fractional stochastic differential equations with Lévy noise and a time and
state delay on an infinite horizon.
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