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Abstract: The present study investigates the stability analysis and chaos control of a fractional-order
three-population food chain model. Previous research has indicated that the predation relationship
within a long-established predator–prey system can be influenced by factors such as the prey’s fear
of the predator and its carry-over effects. This study examines the state evolution of fractional-
order systems and compares their dynamic behavior with integer-order systems. By utilizing the
Routh–Hurwitz condition and the stability theory of fractional differential equations, this paper
establishes the local stability conditions of the model through the application of the Jacobi matrix and
eigenvalue method. Furthermore, the conditions for the Hopf bifurcation generation are determined.
Subsequently, chaos control techniques based on the Lyapunov stability theory are employed to
stabilize the unstable trajectory at the equilibrium point. The theoretical findings are validated
through numerical simulations. These results enhance our understanding of the stability properties
and chaos control mechanisms in fractional-order three-population food chain models.

Keywords: stability analysis; chaos control; fractional derivative; Hopf bifurcation; three-population
model

1. Introduction

The study of population models remains a prominent area of research [1,2]. Various
mathematical models have been proposed to investigate the dynamic behavior of popula-
tions, encompassing ordinary differential equation models, partial differential equation
models [3], fractional differential equation models [4–7], stochastic models [8], models with
time delays [9], models with state feedback control [10], network models [11], and more. In
1959, Holling et al. introduced the Holling model [12], which incorporates the functional
response of predators and the growth term of prey. In 1991, Hasting and Powell [13] ex-
panded on the Holling model and pioneered the study of chaotic dynamic behavior in
three-population food chain models. Consequently, the control and harnessing of chaos
have emerged as essential topics in mechanics (e.g., pendulum, plate, and friction control),
communication [14], ecology, and medicine [15]. In ecology, researchers strive to utilize
biological factors to control the dynamic behavior of systems. Ghosh et al. [16] investigated
the Allee effect as a biological factor influencing predators. People modified and enhanced
the model by incorporating biological factors, such as the Allee effect and defense, fear,
migration, and delay effects. This paper primarily focuses on the impact of the fear effect
on population relationships. Fear profoundly influences ecosystems, particularly certain
predators that can alter the feeding behavior of multiple organisms. Notably, through sound
induction, Liana Zanette reintroduced fear of predators to a group of carefree raccoons. Her
study [17] revealed that when the sound of barking was broadcast, raccoons spent nearly
two-thirds less time foraging in the intertidal area, resulting in an 81% increase in fish
populations and a 60% increase in worms and red stone crabs. Wang et al. [18] investigated
the influence of fear on prey growth in their modeling, highlighting its significant impact
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on the dynamic behavior of predator–prey models. Panday et al. [19] examined a food
chain model incorporating fear of predation and demonstrated that appropriate fear levels
could enhance the system’s stability. The researchers suggested that induced fear could
serve as a control strategy with important implications for preventing species extinction.

In ecology, carry-over effects (COE) refer to the influence of past learning behavior on
the present behavior of a species. A carry-over effect is observed when individuals from a
new colony exhibit behavior influenced by previous events. Although carry-over effects
are common in animal and plant systems, they are seldom studied. Fear induction has been
proposed as a form of carry-over effect. Sasmal et al. [20] developed a model considering
the Allee effect caused by fear’s cost of predation and its legacy effect while investigating the
influence of fear on the system’s dynamic behavior. Elliott et al. [21] examined fear-induced
seasonal behavior. Dubey and Sasmal [22] proposed a phytoplankton–zooplankton–fish
system in which zooplankton growth rates are affected by fish-induced fear and COE. They
noted that the system exhibits chaotic behavior for moderate COE parameter values, while
stability or periodic dynamics occur for lower and higher values. Mondal et al. [23] studied
the dynamics of the Holling II type predator–prey system and the influence of carry-over
effects, demonstrating that fear and its carry-over effects substantially impact the stability
of the internal equilibrium point. Thus, incorporating COE into ecological models provides
a deeper understanding of the factors influencing species within ecosystems.

Fractional-order models have found applications and extensions in various domains,
including circuit systems [24], ecological models [25–27], rheology [28], control engineer-
ing [29], reflection diffusion [30], and chaos models [31]. Fractional derivatives offer a more
realistic depiction as they consider the entire time region of a biological process, whereas
integer derivatives only capture changes at specific points in time [26]. Adopting fractional
derivatives in ecological models enriches the results compared to integer derivatives and
allows for better fitting of realistic data through appropriate order selection. The fractional
derivative provides a novel approach for accurately describing the dynamic behavior
of ecosystems characterized by heritability and long memory. Researchers have investi-
gated various fractional models to improve the accuracy of results. Ji et al. [32] examined
fractional two-species systems and provided parameters for stable systems. Das [33] sys-
tematically introduced fractional differential equations and their applications. Mishra [27]
studied the dynamic behavior of the fractional-order three-population food chain model.
Tavazoei et al. [34] demonstrated that the limit set of trajectories in fractional-order sys-
tems might not correspond to the solution of the system, diverging from integer-order
systems. Tavazoei et al. [35,36] proved the non-existence of periodic solutions in time-
invariant fractional-order systems. They presented a system with non-periodic trajectories
converging to periodic signals.

This study investigates a fractional-order three-population food chain model incorpo-
rating fear and carry-over effects. The primary research objectives are as follows. Firstly,
the local stability of the model is analyzed using the fractional order theory. The conditions
for fractional Hopf bifurcation are examined, and stability conditions for the equilibrium
point under different circumstances are provided. Secondly, a hybrid control method is
employed to guide the unstable trajectory toward convergence with the equilibrium point.
It is demonstrated that the fractional order can induce changes in the stability of system.
Finally, the numerical simulation is conducted to validate the theoretical analysis. This
study extends the work previously conducted by Ramasamy et al. [1].

2. Preliminary Knowledge

Definition 1. The Caputo fractional derivative of order α ∈ (n− 1, n], n ∈ N of f (t) is defined as:

c
aDα

t f (t) = In−α

(
dn

dtn f (t)
)
=

1
Γ(n− α)

∫ t

a
f n(τ)(t− τ)n−α−1dτ, t > a. (1)
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Theorem 1 ([37]). Let x(t) ∈ R be a continuous and derivable function, then for any time instant
t ≥ a:

1
2

c
aDα

t x2(t) ≤ x(t)c
aDα

t x(t). (2)

Theorem 2. Consider the fractional-order system given below:

Dαx(t) = f (x(t)), x(0) = x0 ∈ RN , 0 < α < 1, (3)

where x(t) = (x1(t), x2(t), · · · , xN(t))T ∈ RN and f : ( f1, f2, · · · , fN)
T : RN → RN . The

equilibrium points of system (3) are determined by solving the equation f (x) = 0.
We suppose x∗ is an equilibrium point of system (3) and the Jacobian matrix J = ∂ f

∂x =
∂( f1, f2,··· , fN)
∂(x1,x2,··· ,xN)

. The equilibrium point x∗ is locally asymptotically stable, for all eigenvalues λi of J, if
and only if min

1≤i≤3
|arg(λi)| > απ

2 . This is easy to obtain, though the equilibrium x∗ is unstable when

the following condition holds min
1≤i≤3
|arg(λi)| ≤ απ

2 . The above results was proved in Matignon [38].

3. Systems Description

In [1], the author constructed and considered an integer-order system, given below:

dU(t)
dT

= R0U(1− U
K
) · 1 + E1U

1 + E2U + F1V
− C1 A1UV

B1 + U
,

dV(t)
dT

=
A1UV
B1 + U

· 1 + E2V
1 + E2V + F2W

− D1V − A2VW
B2 + V

,

dW(t)
dT

=
C2 A2VW

B2 + V
− D2W,

(4)

where U(T), V(T), and W(T) are the respective densities of prey, middle, and special
predators at time T. To simplify the notation, the state variables U(T), V(T), and W(T)
are denoted by U, V, and W, respectively. All parameters see Table 1 of the system (4) are
considered positive.

As a real model, subject to positive initial conditions, system (4) has the following
initial values: U(0) ≥ 0, V(0) ≥ 0, and W(0) ≥ 0.

Table 1. Parameters and their definitions.

Parameter Biological Meaning

R0 The intrinsic growth rate of the prey
K Environmental carrying capacity
A1 The maximum attack rate of the middle predator
A2 The maximum attack rate of the special predator
B1 The half-saturation coefficient of the prey
B2 The half-saturation coefficient of the middle predator
C1 Indicates the conversion efficiencies of the middle predator
C2 Indicates the conversion efficiencies of the special predator
D1 The death rate of the middle predator
D2 The death rate of the special predator
F1 The intensity of fear in the prey population
F2 The intensity of fear in the middle predator population
E1 The carry-over effect parameter due to the fear F1
E2 The carry-over effect parameter due to the fear F2

To minimize the complexity of the system, system (4) is transformed by taking
U = Kη1, V = K

C1
η2, W = C2K

C1
η3, T = t

R0
, α1 = A1K

R0B1
, α2 = A2C2K

R0B2C1
, β1 = K

B1
, β2 = K

C1B2
,
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δ1 = D1
R0

, δ2 = D3
R0

, f1 = F1K
C1

, f2 = F2C2K
C1

, e1 = E1K, and e2 = E2K
C1

. As a result, the following
system was obtained:

dη1

dt
= η1

(
(1− η1) ·

1 + e1η1

1 + e1η1 + f1η2
− α1η2

1 + β1η1

)
,

dη2

dt
= η2

(
α1η1

1 + β1η1
· 1 + e2η2

1 + e2η2 + f2η3
− δ1 −

α2η3

1 + β2η2

)
,

dη3

dt
= η3

(
α2η2

1 + β2η2
− δ2

)
.

(5)

The following parameters were considered by [1]:

α1 = 5, α2 = 0.1, β1 = 3, β2 = 2, δ1 = 0.4, δ2 = 0.01, f1 = 0, f2 = 1, e1 = 0, e2 = 2.85, (6)

For the initial value (η1, η2, η3) = (0.7, 0.1, 6), the system (5) has a positive Lyapunov
exponent, as follows: LE1 = 0.0019705, LE2 = −0.0026498, LE3 = −0.40525. The dynamic
behavior of the system (5) is shown in Figure 1.

(a) (b)

Figure 1. Phase—space diagram (a) and Lyapunov Exponents diagram (b) for system (5).

As shown in Figure 2, the parameter e2 of the carry-over effects caused by the fear f2
is taken as an example. It was observed that the fear-induced carry-over effects parameters
changed the dynamic behavior of the system.
Case 1: If f1, f2, and e1 are fixed and e2 changes, the dynamic behavior of the system is

shown in Figure 2 after selecting appropriate e2 value.

(i) For e2 < 1.361, the solution trajectories is stable, which is shown in Figure 2a.
(ii) For e2 ≥ 1.361, system (5) exhibits periodic oscillations, which is shown in Figure 2b.

(a) (b)

Figure 2. The phase space diagram of system (5) for different values of e2: (a) LAS for e2 = 1 and
(b) periodic oscillation for e2 = 1.4. The remaining parameters are assigned the values specified in
Equation (6), except for f1 = 3.5, f2 = 0.1 and e1 = 1.
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The choice to utilize fractional-order differential Equations (FDE) instead of integer-
order systems is motivated by their ability to mitigate errors arising from neglected parame-
ters in applications [39]. The following system is obtained by substituting the integer-order
derivative with the Caputo fractional derivative. The resulting FDE is as follows:

dαη1

dtα
= η1

(
(1− η1) ·

1 + e1η1

1 + e1η1 + f1η2
− α1η2

1 + β1η1

)
,

dαη2

dtα
= η2

(
α1η1

1 + β1η1
· 1 + e2η2

1 + e2η2 + f2η3
− δ1 −

α2η3

1 + β2η2

)
,

dαη3

dtα
= η3

(
α2η2

1 + β2η2
− δ2

)
,

(7)

where α ∈ (0, 1]. In particular, when α = 1, the system (7) simplifies to the well-known
integer-order system.

4. Analysis of the Local Stability of the Equilibrium Point
4.1. Existence of Equilibrium Points

For equilibrium points, we consider the following equation:

η1

(
(1− η1) ·

1 + e1η1

1 + e1η1 + f1η2
− α1η2

1 + β1η1

)
= 0,

η2

(
α1η1

1 + β1η1
· 1 + e2η2

1 + e2η2 + f2η3
− δ1 −

α2η3

1 + β2η2

)
= 0,

η3

(
α2η2

1 + β2η2
− δ2

)
= 0.

(8)

The following four equilibrium points of system (7) are determined by solving the
above equations: E0 = (0, 0, 0),E1 = (1, 0, 0), E2 = (η21, η22, 0), and E3 = (η∗1 , η∗2 , η∗3 ),
where:

η21 =
δ1

α1 − δ1β1
, (9)

η22 =
−(1 + e1η21) +

√
(1 + e1η21)2 + 4α−1

1 f1(1− η21)(1 + e1η21)(1 + β1η21)

2 f1
. (10)

If η21 < 1 and 0 < δ1
α1−δ1β1

< 1, it is evident that E2 exists. When η21 < 1, the system
(7) has the special predator-free equilibrium point.

After solving the following equation and obtaining the positive real roots, η∗1 , η∗2 , and
η∗3 are obtained: 

(1− η1) ·
1 + e1η1

1 + e1η1 + f1η2
− α1η2

1 + β1η1
= 0,

α1η1

1 + β1η1
· 1 + e2η2

1 + e2η2 + f2η3
− δ1 −

α2η3

1 + β2η2
= 0,

α2η2

1 + β2η2
− δ2 = 0.

(11)

Clearly, η∗2 = δ2
α2−β2δ2

and α2 > β2δ2. By making η2 = η∗2 in Equation (11), we obtain:

e1β1η3
1 + k1η2

1 + k2η1 + k3 = 0 (12)

In Equation (12), k1 = e1 + β1 − e1β1, k2 = α1e1η∗2 + 1− e1 − β1, and k3 = α1η∗2 (1 +
f1η∗2 )− 1. If ki > 0, for i = 1, 2, 3, Equation (12) cannot have positive roots. Equation (12)
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has at least one positive root for any one negative ki. η∗1 is the positive root of Equation (12).
Now, η∗3 is obtained by the following equation:

α2 f2

1 + β2η∗2
η2

3 +

(
α2(1 + e2η∗2 )

1 + β2η∗2
+ δ1 f2

)
η3 − (1 + e2η∗2 )

(
α1η∗1

1 + β1η∗1
− δ1

)
= 0. (13)

If α1η∗1
1+β1η∗1

> δ1, Equation (13) gives a sufficient condition for positive roots. The coordi-
nate of the special predator, denoted as η∗3 , corresponds to the positive root of Equation (13).
Based on the analysis as mentioned earlier, it can be inferred that in practical scenarios, for
the special predators to thrive, the death rate of the middle predator must remain below the
critical threshold value φ0, where φ0 =

α1η∗1 R0
1+β1η∗1

. Reasonable control of the number of middle
predators is conducive to promoting ecological prosperity and development. Therefore,
the middle predators play an important role in the ecosystem system.

4.2. Local Stability Analysis

The Jacobian matrix of the system (7) at any point E(η1, η2, η3) is given below:

J(E) =

 a11 a12 0
a21 a22 a23
0 a32 a33

, (14)

where

a11 =
1− 2η1 + 2e1η1 − 3e1η1

2

1 + e1η1 + f1η2
− e1η1(1− η1)(1 + e1η1)

(1 + e1η1 + f1η2)2 − α1η2

(1 + β1η1)2 ,

a12 = − f1η1(1− η1)(1 + e1η1)

(1 + e1η1 + f1η2)2 − α1η1

1 + β1η1
, a21 =

α1(1 + e2η2)η2

(1 + e2η2 + f2η3)(1 + β1η1)2 ,

a22 =
α1η1((1 + e2η2)

2 + f2η3(1 + 2e2η2))

(1 + β1η1)(1 + e2η2 + f2η3)
− α2η3

(1 + β2η2)2 − δ1,

a23 = − α1 f2(1 + e2η2)η1 η2

(1 + β1η1)(1 + e2η2 + f2η3)2 −
α2η2

1 + β2η2
,

a32 =
α2η3

(1 + β2η2)2 , a33 =
α2η2

1 + α2η2
− δ2.

Lemma 1. The species-free equilibrium point E0(0, 0, 0) is unstable for 0 < α ≤ 1.

Proof. At the point E0(0, 0, 0), the characteristic polynomial in view of Equation (14) is
(λ + δ1)(λ + δ2)(λ1 − 1) = 0. The eigenvalues are λ1 = −δ1, λ2 = −δ2, and λ3 = 1.
According to Theorem 2, arg(λ1) = arg(λ2) = π > απ

2 and arg(λ3) = 0 < απ
2 . Thus, the

point E0 is unstable for 0 < α ≤ 1.

Lemma 2. The predator-free equilibrium point E1(1, 0, 0) is unstable for 0 < α ≤ 1 if δ1 < α1
β1+1 .

Proof. The equilibrium point E1(1, 0, 0) is free from middle and special predators. The
following characteristic equation at the point E1 is obtained:

(δ2 + λ)(λ + 1)
(δ1 − α1 + λ + β1δ1 + β1λ)

β1 + 1
= 0. (15)

The eigenvalues of Equation (15) are λ1 = −δ2, λ2 = −1 and λ3 = −δ1 +
α1

β1+1 . If
δ1 < α1

β1+1 , then arg(λ3) = 0 < απ
2 . Moreover, if δ1 > α1

β1+1 , then arg(λ3) = 0 < απ
2 . In view

of Theorem 2, the equilibrium point E1 is unstable for δ1 < α1
β1+1 .
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Note 1: The characteristic equation of the above two propositions does not include fear-
related terms for the equilibrium point. Therefore, the system exhibits identical dynamic
behavior in both cases, with or without fear-related terms.

Lemma 3. The special predator-free equilibrium E2 = (η21, η22, 0) is unstable for 0 < α ≤ 1 when
the fear terms and the fear-induced COE parameters are f1 = 0.5, f2 = 0, e1 = 0, and e2 = 0.

Proof. Consider the following fear-related terms f1 = 0.5, f2 = 0, e1 = 0, and e2 = 0.
Other parameters are α1 = 5, α2 = 0.1, β1 = 3, β2 = 2, δ1 = 0.4, and δ2 = 0.01. The
equilibrium point E2(0.1053, 0.2128, 0) is acquired, and the characteristic equation at E2 is
λ3 − 0.1039λ2 + 0.26997λ− 0.00133 = 0. The eigenvalues are λ1 = 0.0049, λ2 = 0.0495 +
0.5168i, and λ3 = 0.0495− 0.5168i. Because arg(λ1) = 0 < απ

2 , for every 0 < α ≤ 1.
According to Theorem 2, the point is unstable for 0 < α ≤ 1.

Lemma 4. The special predator-free equilibrium point E2 = (η21, η22, 0) is unstable for 0 < α ≤ 1
when the fear-related parameters are f1 = 3.5, f2 = 0, e1 = 1.4, and e2 = 0.

Proof. Let us choose the following fear terms and the fear-induced COE parameters
f1 = 3.5, f2 = 0, e1 = 1.4, and e2 = 0, while other parameters are selected from Equation (6).
Now, the equilibrium point E2 is E2(0.1053, 1.9436, 0), and the characteristic equation at E2
is λ3 + 5.4553λ2 + 2.1156λ− 0.06784 = 0. The eigenvalues are λ1 = −5.0332, λ2 = −0.4529,
and λ3 = 0.0298. As per Theorem 2, the equilibrium point E2(0.1053, 1.9436, 0) is unstable
for 0 < α ≤ 1.

Lemma 5. For parameters α1 = 5, α2 = 0.1, β1 = 3, β2 = 2, δ1 = 0.4, δ2 = 0.01, f1 = 0,
f2 = 0, e1 = 0, and e2 = 0. The special predator-free equilibrium point E2 = (η21, η22, 0) is stable
for 0 < α ≤ 1.

Proof. After taking the arguments in the proposition, the characteristic equation at point
E2(

4
38 , 0, 0) is λ3 − 0.7794λ2 − 0.0078λ = 0. Thus, the eigenvalues of the characteristic

equation are λ1 = 0.7895, λ2 = 0, and λ3 = −0.01. According to Theorem 2, the equilibrium
point E2(

4
38 , 0, 0) is unstable for every 0 < α ≤ 1.

Lemma 6. The coexistence equilibrium point E3 = (η∗1 , η∗2 , η∗3 ) is stable for α < 0.9531 when the
fear terms and the fear-induced COE parameters are f1 = 3.5, f2 = 0.1, e1 = 1.0, and e2 = 1.4.

Proof. The equilibrium point E3 is E3(0.7627, 0.125, 5.0228) with f1 = 3.5, f2 = 0.1, e1 = 1.0,
and e2 = 1.4. The characteristic equation at E3 is the following:

λ3 + 0.3351λ2 + 0.00263λ + 0.0024 = 0. (16)

From the above characteristic equation, the respective eigenvalues are λ1 = −0.3473,
λ2 = 0.0061+ 0.0827i and λ3 = 0.0061− 0.0827i. Thus, arg(λ1) = π > απ

2 and |arg(λ2,3)| =
1.4972 > απ

2 for α < 0.9531. Moreover, from Theorem 2, the point E3(0.7627, 0.125, 5.0228)
is stable for α < 0.9531.

Lemma 7. The coexistence equilibrium point E3 = (η∗1 , η∗2 , η∗3 ) is stable for α < 0.9269 with the
fear-related parameters f1 = 3.5, f2 = 0, e1 = 2.1 and e2 = 0.

Proof. The rest of the parameters are selected from Equation (6) when the fear-related
terms are selected in the proposition. The equilibrium point E3 = (0.7824, 1

8 , 9.6090), and
the characteristic equation at E3 is given below:

λ3 + 0.3701λ2 + 0.0001λ + 0.0032 = 0. (17)
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The eigenvalues of Equation (17) are λ1 = −0.3910 and λ2,3 = 0.0104± 0.0902i. Due
to arg(λ1) = π > απ

2 and |arg(λ2,3)| = 1.4560 > απ
2 for α < 0.9269. Moreover, from

Theorem 2, the point E3 is stable for α < 0.9269.

Lemma 8. The coexistence equilibrium point E3 = (η∗1 , η∗2 , η∗3 ) is stable for α < 0.6960, with fear
terms and the fear-induced COE parameters are f1 = 0, f2 = 0, e1 = 0, and e2 = 0.

Proof. The equilibrium point E3(0.8192, 0.1250, 9.8075) is obtained when the rest of the pa-
rameters are the same as in Equation (6). The characteristic equation at E3 is λ3 + 0.5337λ2−
0.0402λ + 0.0043 = 0. The eigenvalues are λ1 = −0.6111 and λ2,3 = 0.0387± 0.0748i. More-
over, arg(λ1) = π > απ

2 and |arg(λ2,3)| = 1.0933 > απ
2 for α < 0.6960. According to

Theorem 2, the equilibrium point E3 = (0.8192, 1
8 , 9.8075) is stable for α < 0.9269.

5. Hopf Bifurcation

In this section, let us take e1 as the bifurcation parameter and fix other parameters. In
this way, the condition for a Hopf bifurcation can be established to occur at the equilibrium
point E3. The Jacobian matrix of the system (7) at any point E3(η

∗
1 , η∗2 , η∗3 ) is given by the

following expression:

J(E) =

 a1 −a2 0
a3 a4 −a5
0 a6 0

, (18)

where

a1 =
1− 2η1 + 2e∗1η∗1 − 3e1η∗21

1 + e1η∗1 + f1η∗2
−

e1η∗1 (1− η∗1 )(1 + e1η∗1 )

(1 + e1η∗1 + f1η∗2 )
2 − α1η∗2

(1 + β1η∗1 )
2 ,

a2 =
f1η∗1 (1− η∗1 )(1 + e1η∗1 )

(1 + e1η∗1 + f1η∗2 )
2 +

α1η∗1
1 + β1η∗1

, a3 =
α1(1 + e2η∗2 )η

∗
2

(1 + e2η∗2 + f2η∗3 )(1 + β1η∗1 )
2 ,

a4 =
α1e2 f2η∗1 η∗2 η∗3

(1 + β1η∗1 )(1 + e2η∗2 + f2η∗3 )
2 +

α2β2η∗2 η∗3
(1 + β2η∗2 )

2 ,

a5 =
α1 f2(1 + e2η∗2 )η

∗
1 η∗2

(1 + β1η∗1 )(1 + e2η∗2 + f2η∗3 )
2 +

α2η∗2
1 + β2η∗2

, a6 =
α2η∗3

(1 + β2η∗2 )
2 .

The characteristic polynomial for Equation (18) at the equilibrium point E3 is given
below:

λ3 + R1λ2 + R2λ + R3 = 0. (19)

The discriminant D(P) can be defined using the fractional-order Routh–Hurwitz
conditions [40]:

D(P) = 18R1R2R3 + (R1R2)
2 − 4R3R3

1 − 4R3
2 − 27R2

3, (20)

where
R1 = −(a1 + a4), R2 = a1a4 + a2a3 + a5a6, R3 = −a1a5a6.

Theorem 3. When a bifurcation parameter e1 passes through the critical value e∗1 , the fractional-
order system (7) undergoes a Hopf bifurcation at the equilibrium point E3(η

∗
1 , η∗2 , η∗3 ), if the

following conditions hold:

(a) The corresponding characteristic Equation (19) has a pair of complex conjugate roots λ1,2 =
θ ±ωi, where θ > 0, and one negative real root λ3;

(b) u(α, e1) =
π
2 α− min

1≤i≤3
|arg(λi)| = 0;

(c) du(e1)
de1
|e1=e∗1

6= 0 (transversality condition).
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Proof. If Equation (19) has a pair of complex conjugate roots λ1,2 = θ± iω with θ > 0 and a
negative root λ3. Using the previously reported results [40], if D(P) < 0, the Equation (19)
has a pair of complex conjugate roots λ1,2 and one real root λ3. From the relationship
between the roots and the coefficients, it is known that λ1λ2λ3 = −R3 = a1a5a6. Hence,
λ3 < 0 if a1a5a6 < 0.

Now, we want to make sure the condition (b) is satisfied. The critical value e∗1 can be
described in the following fashion:

u(e∗1) = α
π

2
− min

1≤i≤3
|arg(λi(e∗1))| = α

π

2
− arctan|

ω(e∗1)
θ(e∗1)

| = 0 (21)

and

tan2(
απ

2
) =

ω2(e∗1)
θ2(e∗1)

. (22)

For Equation (19), the following relations can be obtained from the relationship be-
tween roots and coefficients: 

θ2 + ω2 + 2θλ3 = R2,

(θ2 + ω2)λ3 = −R3,

2θ + λ3 = −R1.

(23)

Combined with Equation (22), the following expressions can be computed:

θ(e1) =
−2R3

(R2 − tan2 απ
2 )(1 + tan2 απ

2 )
, (24)

ω2(e1) = R2 −
12R2

3
(R2 − tan2 απ

2 )2(1 + tan2 απ
2 )2 +

−4R1R3

(R2 − tan2 απ
2 )(1 + tan2 απ

2 )
, (25)

where e1 is a bifurcation parameter. The critical value e∗1 can be solved from the following

relation ω2(e∗1)
θ2(e∗1)

= απ
2 . The condition (c) guarantees that the sign of u(e1) can change when

the bifurcation parameter e1 passes through the critical value e∗1 . In summary, we can be
reiterated that a Hopf bifurcation of system (7) occurs at e1 = e∗1 .

In the second scenario, when the fractional-order parameter α passes through
α∗ = 2

π arctan |ωθ |, the fractional-order system (7) undergoes a Hopf bifurcation. The dis-
tinction between fractional and integer-order systems lies in the behavior of their limit
cycles, while the limit cycle of an integer-order system can serve as a solution to the sys-
tem, in a fractional-order system, the trajectory only approaches the limit cycle without
becoming the exact solution of the fractional-order system. Moreover, the fractional system
at 0 < α < α∗ is stable. In other words, it is possible to produce limit cycles only for
α ≥ α∗.

6. Chaos Control

Consider the following controlled system with control functions u1(t), u2(t), u3(t):

dαη1

dtα
= η1

(
(1− η1) ·

1 + e1η1

1 + e1η1 + f1η2
− α1η2

1 + β1η1

)
+ u1(t),

dαη2

dtα
= η2

(
α1η1

1 + β1η1
· 1 + e2η2

1 + e2η2 + f2η3
− δ1 −

α2η3

1 + β2η2

)
+ u2(t), (26)

dαη3

dtα
= η3

(
α2η2

1 + β2η2
− δ2

)
+ u3(t),

where (η1, η2, η3) is the solution of system (7).
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Now, the error functions are defined as e1 = η1 − η1, e2 = η2 − η2, and e3 = η3 − η3.
The following error systems can be defined:

dαe1

dtα
=η1

(
(1− η1) ·

1 + e1η1

1 + e1η1 + f1η2
− α1η2

1 + β1η1

)
+ u1(t)

− η1

(
(1− η1) ·

1 + e1η1

1 + e1η1 + f1η2
− α1η2

1 + β1η1

)
,

dαe2

dtα
=η2

(
α1η1

1 + β1η1
· 1 + e2η2

1 + e2η2 + f2η3
− δ1 −

α2η3

1 + β2η2

)
+ u2(t)

− η2

(
α1η1

1 + β1η1
· 1 + e2η2

1 + e2η2 + f2η3
− δ1 −

α2η3

1 + β2η2

)
,

dαe3

dtα
=η3

(
α2η2

1 + β2η2
− δ2

)
+ u3(t)− η3

(
α2η2

1 + β2η2
− δ2

)
.

(27)

Theorem 4. The error system (27) converges to zero if the control functions are considered as
follows: 

u1(t) = −e1 − η1

(
(1− η1) ·

1 + e1η1

1 + e1η1 + f1η2
− α1η2

1 + β1η1

)
+ η1

(
(1− η1) ·

1 + e1η1

1 + e1η1 + f1η2
− α1η2

1 + β1η1

)
,

u2(t) = −η2

(
α1η1

1 + β1η1
· 1 + e2η2

1 + e2η2 + f2η3
− α2η3

1 + β2η2

)
+ η2

(
α1η1

1 + β1η1
· 1 + e2η2

1 + e2η2 + f2η3
− α2η3

1 + β2η2

)
,

u3(t) = −η3

(
α2η2

1 + β2η2

)
+ η3

(
α2η2

1 + β2η2

)
.

(28)

Proof. The following Lyapunov function can be defined as:

V =
1
2

(
e2

1 + e2
2 + e2

3

)
. (29)

Taking the fractional derivative with respect to V as per the fractional derivative
definition, yield the following expression:

dαV
dtα
≤ e1

dαe1

dtα
+ e2

dαe2

dtα
+ e3

dαe3

dtα
. (30)

The following equation results in after substituting Equation (27) into the above
equation:

dαV
dtα
≤ −e2

1 − δ1e2
2 − δ2e2

3 < 0. (31)

Therefore, the trajectories (η1, η2, η3) converges to a point (η∗1 , η∗2 , η∗3 ). Moreover, the
periodic orbital that was unstable at the equilibrium point can be stabilized by controlling
this convergence.

7. Numerical Simulation

In this section, MATLAB is employed for numerical simulations to investigate diverse,
complex dynamic behaviors of the system under study by manipulating system parameters.
Incorporating fractional-order in the system enables a more authentic representation of
predator–prey dynamics. It should be noted that for the convenience of handling the
system (4), we have transformed some variables. When working with real data, refer to the
relationships between the variables described in this article.
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According to the fractional-order stability theory, parameters f1 = 3.5, f2 = 0.1, e1 = 1,
and e2 = 1.4 should be used, while other parameters are the same as in Equation (6). The
necessary condition for the system (7) to reach an unstable state is α ≥ 0.9531. Therefore,
the order α = 0.9531 is the minimum order for the system to reach unstable state. Figure 3a
gives the system phase diagram of α = 0.9 and verifies the stability condition of Lemma 6.
As a comparison, the order α = 0.99 is selected, and the periodic oscillation for α = 0.99
can be seen in Figure 4a. Similarly, let us verify Lemma 7. The minimum order for system
(7) to reach the unstable state is α = 0.9269. Therefore, the order α = 0.9 was selected, as
shown in Figure 3b. For comparison, the system phase diagram with the order α = 0.99
is drawn, as shown in Figure 4b. The observation shows that the result accords with the
conclusion of Lemma 7. In the same way, it is pretty straightforward to verify Lemma 8 by
taking the order α = 0.65 in Figure 3c and α = 0.99 in Figure 4c.

Figure 5 shows that the numerical solutions are converging to E1 = (1, 0, 0). We
present numerical simulations of fractional-order system (7) using time series plots for all
state variables to illustrate some of the results obtained. Except for δ1 = 1.5, the rest of the
parameters are the same as those taken in Figure 4b. α changes from α = 0.75 to α = 1, as
shown in Figure 5. With the increase of fractional-order α, the convergence rate of the state
solution to the equilibrium point is faster. We conclude that the derivative order α can play
a role in understanding the history and dynamics of populations.

(a) (b)

(c)

Figure 3. The chaotic attractor phase diagrams of the system (7): (a) LAS for α = 0.9, f1 = 3.5,
f2 = 0.1, e1 = 1.0, and e2 = 1.4, (b) LAS for α = 0.9, f1 = 3.5, f2 = 0, e1 = 2.1, and e2 = 0, and (c)
LAS for α = 0.65, f1 = 0, f2 = 0, e1 = 0, and e2 = 0.
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(a) (b)

(c)

Figure 4. The chaotic attractor phase diagrams of the system (7) at α = 0.99: (a) f1 = 3.5, f2 = 0.1,
e1 = 1.0, and e2 = 1.4, (b) f1 = 3.5, f2 = 0, e1 = 2.1, and e2 = 0, and (c) f1 = 0, f2 = 0, e1 = 0, and
e2 = 0.

Figure 5. Adam–Bashforth–Moulton numerical results of system (7) via a Caputo fractional operator
for different fractional-order α values.
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The dynamic behavior of the system (7) when the order is α = 0.99 is shown in
Figure 4. After applying the chaotic control, it can be seen from Figure 6 that the unstable
trajectory is controlled at the equilibrium point. If the fear-induced COE parameters e1 = 0
and e2 = 0 are considered, then the system (7) is reduced to a fractional-order three-species
food chain model with fear, which has been discussed by Mishra et al. [27].

(a) (b)

(c)

Figure 6. The plot of the control trajectories η1, η2, and η3 of the system (7): (a) at the equilibrium
point E3 = (0.7627, 0.125, 5.0228), (b) at the equilibrium point E3 = (0.7824, 0.125, 9.6090), and (c) at
the equilibrium point E3 = (0.8192, 0.125, 9.8075).

8. Conclusions

This work examines the fractional three-population food chain model with fear and
its carry-over effects, analyzing the stability of system under different fear terms and its
carry-over effect (COE) parameters. The findings emphasize the significance of the order in
determining system dynamics parameters. Predator fear and COE influences the growth
rates of prey and intermediate predators, resulting in the emergence of complex dynamic
behaviors. Furthermore, this study provides analytical conditions for a Hopf bifurcation in
fractional-order systems, revealing chaotic behavior across various orders. Additionally, by
incorporating mixed control elements into the fractional-order system from an equilibrium
standpoint, this study demonstrates the stability of the fractional-order system with chaos
control through numerical simulations and illustrations.
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