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Abstract: In this paper, we studied the Hölder regularities of solutions to an abstract fractional
differential equation, which is regarded as an abstract version of fractional Rayleigh–Stokes problems,
rising up to describing a non-Newtonian fluid with a Riemann–Liouville fractional derivative. The
purpose of this article was to establish the Hölder regularities of mild solutions, classical solutions,
and strict solutions. We introduced an interpolation space in terms of an analytic resolvent to lower
the spatial regularity of initial value data. By virtue of the properties of analytic resolvent and the
interpolation space, the Hölder regularities were obtained. As applications, the main conclusions
were applied to the regularities of fractional Rayleigh–Stokes problems.
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1. Introduction

Abstract fractional differential equations have been applied to many fields in science
and engineering, such as in viscoelastic mechanics, anomalous diffusion phenomena,
materials science, electrochemistry etc.; for more details we refer to the books and the
papers [1–7]. It is known that the abstract fractional differential equations can be used to
study some partial differential equations with fractional derivatives in an appropriate work
space using an operator-theoretic approach. When considering a nonlinear constitutive
relationship between shear stress and shear strain rate in fluids, non-Newtonian fluids
appear in human blood, oil, and mud-rock flow etc. that cannot be described in a single
model, contrasted to the Newtonian fluids. As mentioned in [8], fractional calculus has
proved an effective tool for describing viscoelastic fluids; a fractional Rayleigh–Stokes
problem in non-Newtonian fluids is more suitable for describing its qualitative properties
and behaviors. It is reasonable to analyze the properties and structures of solutions using
the operator -theoretic approach.

The exact solutions of fractional Rayleigh–Stokes equations in second grade
fluid [4,9,10], Maxwell fluid [3,11], and Oldroyed fluid [12] were obtained by virtue of
the Fourier sine transform and fractional Laplace transform. Under the conditions of
a non-local integral term, Luc et al. [13] obtained the existence and uniqueness of solu-
tions for nonlinear equations; by using the Fourier truncation method, they constructed a
regularization solution to tackle the ill-posedness of solutions. Wang et al. [14] obtained
the well-posedness for nonlinear Rayleigh–Stokes equations in view of the fixed point
arguments and they also showed the blow-up results. Nguyen et al. [15] obtained some
regularity properties of the solutions to the backward problem of determining initial con-
ditions. Lan [16] analyzed some sufficient conditions to ensure the global regularity of
solutions and, if the nonlinearity is Lipschizian, then the mild solution of the given problem
becomes a classical one. Wang et al. [17] obtained the existence, uniqueness, and regularity
of a weak solution in L∞(0, b; L2(Ω)) ∩ L2(0, b; H1

0(Ω)) by using the Galerkin method and
they also proved an improved regularity result of a weak solution in the case of non-
homogeneous term f ∈ L2(0, b; L2(Ω)) and initial value h ∈ H2(Ω). Bao et al. [18] studied
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an inverse problem with a nonlinear source and obtained some results on the existence and
regularity of mild solutions. By using an operator-theoretic approach, Bazhlekova et al. [19]
obtained the well-posedness and Sobolev regularity of the homogenous Rayleigh–Stokes
problem and Bazhlekova [20] showed a well-posed result associated with the bounded C0
a-semigroup by means of the subordination principle. Pham et al. [21] studied a final-value
problem involving weak-valued nonlinearities and obtained the existence and Hölder regu-
larity by using the regularity of the resolvent operators. Tran and Nguyen [22] obtained the
solvability and Hölder regularity on the embeddings of fractional Sobolev spaces.

In this paper, we considered the following abstract fractional differential equations:

u′(t) = Au(t) + γDµ
t Au(t) + f (t), t > 0; u(0) = u0, (1)

where Dµ
t is the Riemann–Liouville fractional derivative of order µ ∈ (0, 1), γ is a positive

parameter, and operator A generates a bounded analytic semigroup on a Banach X within
some sectors Σ(0, ϑ) and ϑ ∈ (0, π/2], in which Σ(ω, ϑ) = {λ ∈ C : |arg(λ− ω)| < ϑ},
u0 is an initial value and f is a continuous function. A prototype example is given by the
Rayleigh–Stokes problem on RN

∂tu− (1 + ∂
µ
t )∆u = f (t), t > 0; u(0, x) = u0(x), x ∈ RN ,

for ∂
µ
t , a Riemann–Liouville fractional partial derivative. Replacing f (t) with a semilinear

function f (u), the global well-posed result with a small initial value and a local well-posed
result on C([0, T); Lp(RN)) for some positive parameters p > 1, N ≥ 1, T ∈ (0, ∞] were
considered by He et al. [23].

We list several highlights in the following. Firstly, we note that there are few works
concerned with the classical solutions of abstract evolution problem (1), even with the
fractional Rayleigh–Stokes problem on RN or bounded domain Ω with smooth boundary
∂Ω. The Hölder regularity of solutions is also still a considerable problem because the
Hölder regularity of solutions plays an important role in the structure of solutions. Li [24]
studied the Hölder regularities of mild solutions for a class of fractional evolution equations
with an order of α ∈ (1, 2) and the author showed that a mild solution is the classical one
for f ∈ Cρ([0, T]; X) (ρ ∈ (0, 1)) especially. In [25], Li and Li also considered the case of the
order of α ∈ (0, 1) for the Hölder regularities of mild solutions. Alam et al. [26] established
the Hölder regularity of mild/strict solutions of fractional abstract differential equations
of the order of α ∈ (0, 1); the obtained results improved the existing results presented
in [25]. Allen et al. [27] established a Hölder regularity theorem of De Giorgi–Nash–Moser
type for a fractional diffusion equation, see e.g., [28–30] . Secondly, when operator A
acts on an analytical semigroup etA, it appears that ‖tAetAx‖ is bounded near t = 0 for
x in a Banach space X (and it goes to 0 as t → 0 if x ∈ D(A)), and ‖AetAx‖ is bounded
in (0, 1) for x ∈ D(A) ⊂ X. This means that, for studying the properties of classical
solutions, the concept of an intermediate space is naturally introduced in order to reduce
the requirement for x ∈ (X, D(A))θ,p (θ ∈ (0, 1), p ≥ 1). For the consideration (1), we
showed that ‖tµ−1 AS(t)x‖ is bounded in (0,1) for x ∈ X (S(t) is defined in Equation (2)); it
is not suitable for discussing the requirements of (X, D(A))θ,p since S(t) is no longer an
analytic semigroup essentially, and should construct a new interpolation space to lower the
spatial regularity on initial condition for the classical solutions. Thirdly, we also proved
that a mild solution to problem (1) is also a classical solution if u0 ∈ X and f ∈ C1([0, T]; X),
even if it is a strict solution with zero initial value data. In particular, the results we obtained
reflect the relevant properties and the structure of solutions of problem (1).

For these targets, we established the existence and Hölder regularity of solutions to
problem (1) under an analytic resolvent S(t) determined by A as follows:

S(t) =
1

2πi

∫
Γδ,ϑ

eztG(z)dz, (2)
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where

G(z) =
g(z)

z
R(g(z), A), g(z) =

z
1 + γzµ ,

and for ϑ ∈ (0, π/2) and δ > 0, the contour Γδ,ϑ is defined by

Γδ,ϑ = {re−iϑ, r ≥ δ} ∪ {δeiψ, |ψ| ≤ ϑ} ∪ {reiϑ, r ≥ δ};

the circular arc is oriented counterclockwise. We showed that the mild solution is Hölder-
continuous for f ∈ Lp(0, T; X), p > 1. Additionally, the solution shall be singular at
t = 0 for considering the Hölder continuous, in order to lower the regularity of the initial
value data. By using the K-method, we introduced a new interpolation space SDA(θ, p)
compared to the classical one DA(θ, p) driven by the analytic semigroup, and we proved
that these two spaces are isometric isomorphic. In particular, if f ∈ C1([0, T]; X) and u0 ∈ X,
the mild solution is indeed a classical solution. If u0 ≡ 0, the solution will still be a strict
solution. Especially, it possesses a Hölder regularity with an exponent of µ ∧ (1− µ− 1

q )

for 1
1−µ < q < 1

(1−µ)(1−θ)
and u0 ∈ SDA(θ, p). Our proofs of the main results are based on

the analytic properties of S(t) and the operator approach.
The present paper is constructed as follows. In Section 2, in view of the Hardy type

inequality, we showed several main properties of the analytic resolvent S(t). In Section 3,
we constructed a new interpolation space in terms of the analytic resolvent and we analyzed
its properties. In Section 4, we proved the existence and uniqueness of the solutions of the
problem (1), and we established the Hölder regularity of solutions. Finally, some examples
are presented to check the main results.

2. Preliminaries

Let X and X1 be two Banach spaces; the notation B(X, X1) denotes the space of all
bounded linear operators mapping from X into X1 with the norm ‖ · ‖B(X,X1)

—for short,
‖ · ‖B by x 7→ B(X). We denote by C(J, X) the space of continuous functions that from
an interval J ⊆ R+ to X. Let A be a linear closed operator; we set ρ(A) and σ(A) by the
resolvent set and spectral set of A, respectively, and the resolvent operator of A is given by
R(z; A) = (zI − A)−1. I is an identity operator. The notation ∧ denotes a ∧ b = min{a, b}
for any constant a, b ∈ R. For convenience, the notation C will denote a positive constant.

For γ ∈ (0, 1), the Hölder continuous function space Cγ(J; X) is defined by

Cγ(J; X) :=

{
f ∈ C(J; X) : [ f ]γ = sup

τ,σ∈J,τ 6=σ

‖ f (τ)− f (σ)‖
|τ − σ|γ < ∞

}
,

equipped with the norm ‖ f ‖Cγ(J;X) = supσ∈J ‖ f (σ)‖+ [ f ]γ.
For 1 ≤ p < ∞, denote a space by Lp

∗(J) := Lp(J, dt/t), equipped with norm

‖h‖Lp
∗(J) =

(∫
J
|h(τ)|p dτ

τ

) 1
p

and ‖h‖L∞∗ (J) = ess sup
s∈J
|h(s)|.

It is known that the K-method is a classical method for producing real interpolation
spaces; for every t > 0 and y ∈ X, let

K(t, y; X, X1) := inf{‖y1‖X + t‖y2‖X1 : y = y1 + y2, y1 ∈ X, y2 ∈ X1}.

For any p ∈ [1, ∞], θ ∈ (0, 1), denote the following space

(X, X1)θ,p = {y ∈ X : t 7→ φ(t) = t−θK(t, y; X, X1) ∈ Lp
∗(0, ∞)},
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with its norm ‖y‖(X,X1)θ,p
= ‖φ‖Lp

∗(0,∞). Then, the real interpolation (X, X1)θ,p is a
Banach space.

Note that K(t, y; X, X1) ≤ ‖y‖X as X1 ↪→ X; in order to check y ∈ (X, X1)θ,p, it is
sufficient to show that t 7→ φ(t) ∈ Lp

∗(0, c) for some fixed c > 0. In terms of the analytic
semigroup T(·) generated by A, (X, D(A))θ,p also has the following expression:

(X, D(A))θ,p = {y ∈ X : t 7→ ϕ(t) = t1−θ‖AT(t)y‖X ∈ Lp
∗(0, 1)} := DA(θ, p),

with norm ‖y‖θ,p = ‖y‖X + ‖ϕ‖Lp
∗(0,1), see e.g., [31].

Consider the weak singular kernel in Riemann–Liouville fractional integral
gµ(t) = tµ−1/Γ(µ), t > 0, µ > 0, where Γ(·) is the Gamma function. And let ∗ denote the
convolution of functions a, b ∈ L1(0, T; X) by

(a ∗ b)(t) =
∫ t

0
a(t− σ)b(σ)dσ, t > 0.

Definition 1. Let g ∈ L1(0, T; X). The Riemann–Liouville fractional integral Iµg(t) of order
µ ≥ 0 is defined by

Iµg(t) =
∫ t

0

1
Γ(1− µ)

(t− σ)µ−1g(σ)dσ, t ∈ [0, T].

Definition 2. Let h ∈ L1(0, T; X). The Riemann–Liouville fractional derivative Dµ
t h(t) of order

µ > 0 is defined by

Dµ
t h(t) =

d
dt

I1−µh(t).

Recall that the following definition of analytic resolvent Q(t) is introduced by Prüss [32].

Definition 3. A resolvent Q(t) is called analytic if the function Q(·) : R+ → B(X) admits an
analytic extension to a sector Σ(0, ϑ0) for some 0 < ϑ0 ≤ π/2. An analytic resolvent Q(t) is said
to be of analyticity type (ω0, ϑ0) if, for each ω > ω0 and ϑ < ϑ0, there is M = M(ω, ϑ) such that
‖Q(z)‖B ≤ MeωRe(z) for z ∈ Σ(0, ϑ0).

Suppose that (1) admits a solution, then the problem can be rewritten as the following
integral equation:

u(t) = u0 +
∫ t

0
(1 + γg1−µ(t− σ))Au(σ)dσ +

∫ t

0
f (σ)dσ.

By the variation of the parameters formula—for example, see [20,23]—the solution is
given by

u(t) = S(t)u0 + (S ∗ f )(t), t ≥ 0, (3)

where S(·) is defined in (2). Note that, since â(z) = z−1 + γzµ−1 6= 0 admits meromorphic
extension to Σ(0, ϑ + π/2), 1/â(z) ∈ ρ(A), and ‖G(z)‖B ≤ M|z|−1 for z ∈ Σ(0, ϑ + π/2)
from [23], it yields that the analytic resolvent S(·) is an analyticity type Σ(0, ϑ) by Prüss ([32],
Theorem 2.1).

We observe that A is the infinitesimal generator of an analytic semigroup T(t), t ≥ 0,
we know that Ŝ(λ) = G(λ), where Ŝ(·) is the Laplace transform of S(·). From the identity
of the Laplace transform,

R(z, A) =
∫ ∞

0
e−ztT(t)dt,

it follows that

G(s) =
g(s)

s

∫ ∞

0
e−tg(s)T(t)dt =

∫ ∞

0

(∫ ∞

0
e−st ϕ(t, σ)dt

)
T(σ)dσ,
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where the probability density function ϕ(t, σ) satisfies the inverse Laplace integral,

ϕ(t, σ) =
1

2πi

∫ τ+i∞

τ−i∞
est− σs

1+γsµ 1
1 + γsµ ds, τ > 0, t, σ > 0.

Therefore—for example, see [20]—by the uniqueness of the Laplace transform, it
also yields

S(t) =
∫ ∞

0
ϕ(t, σ)T(σ)dσ, t ≥ 0. (4)

Lemma 1. Let S(·) be defined in Equation (2). Then,

(i) For every t > 0, S(t) ∈ B(X) and ‖S(t)‖B ≤ C;
(ii) For each x ∈ X, lim

t→0
‖S(t)x− x‖ = 0;

(iii) For any x ∈ X, S(·)x ∈ C([0, ∞); X) and AS(·)x ∈ C((0, ∞); X);
(iv) For every t > 0, ‖AS(t)‖B ≤ Ctµ−1.

Proof. The proof is similar to ([23], Lemma 2.2), so we omit it.

Let C be an arbitrary piecewise smooth simple curve in Σ(0, ϑ + π/2) running from
∞e−i(ϑ+π/2) to ∞ei(ϑ+π/2) and ϑ ∈ (0, π/2); we have the following Lemma.

Lemma 2 ([33], Lemma 4.1.1). Assume that the map F : Σ(0, ϑ + π/2) × X × R+ → X,
satisfying:

(i) For (x, t) ∈ X×R+, F(·, x, t) : Σ(0, ϑ + π/2)→ X is holomorphic;
(ii) For z ∈ Σ(0, ϑ + π/2), F(z, ·, ·) ∈ C(X×R+, X);
(iii) For (z, x, t) ∈ Σ(0, ϑ + π/2)× X×R+, there exists constant ς ∈ R such that

‖F(z, x, t)‖ ≤ C|z|ς−1etRe(z).

Then,
(x, t) 7→

∫
C

F(z, x, t)dz ∈ C(X×R+, X)

and ∥∥∥∥∫C F(z, x, t)dz
∥∥∥∥ ≤ Ct−ς, (x, t) ∈ X×R+.

Lemma 3. Let S(·) be defined in Equation (2). Then, the following results hold:

(i) For each t > 0, AS(t)x = S(t)Ax for x ∈ D(A);
(ii) The mapping t 7→ S(t) ∈ Cn((0, ∞);B(X)) and for n ∈ N, there holds

‖S(n)(t)‖B ≤ Ct−n, and ‖AS′(t)‖B ≤ Ctµ−2, t > 0;

(iii) ∀x ∈ X yields
(g1 ∗ S)(t)x + γ(g1−µ ∗ S)(t)x ∈ D(A),

and

(g1 ∗ AS)(t)x + γ(g1−µ ∗ AS)(t)x = S(t)x− x, (5)

uniformly in a compact interval.

Proof. Since T(t) is an analytic semigroup, and for x ∈ D(A), AT(t)x = T(t)Ax, it can
readily be seen that AS(t)x = S(t)Ax is true by (4) .

Let us check (ii). From ([23], Lemma 2.2), we know that ‖(g(z)I + A)−1‖B ≤
C|g(z)|−1 and g(z) ∈ Σ(0, ϑ + π/2) for z ∈ Σ(0, ϑ + π/2), also |g(z)| ≤ C|z|1−µ. Thus, we
get ‖G(z)‖B ≤ C|z|−1. Function F(z, x, t) = eztznG(z)x is continuous for z ∈ Σ(0, ϑ+π/2),
x ∈ X, it yields from Lemma 2 that
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S(n)(t) =
1

2πi

∫
Γδ,ϑ

eztznG(z)dz, t > 0,

belongs to C((0, ∞);B(X)). Hence, it follows that S(·) ∈ Cn((0, ∞);B(X)). Moreover, by
the analyticity of G(z) in Γδ,ϑ, we get that

‖S(n)(t)‖B ≤
∫

Γ1/t,ϑ

eRe(z)t‖znG(z)‖B |dz|

≤C
(∫ ∞

1/t
rn−1e−rt cos(ϑ)dr +

∫ ϑ

−ϑ
ecos(ψ)t−ndψ

)
≤Ct−n.

Therefore, for z ∈ Σ(0, ϑ + π/2), from the identity of the inequality ‖AG(z)‖B ≤ C|z|−µ,
we have

‖AS′(t)‖B ≤
∫

Γ1/t,ϑ1

eRe(z)t‖zAG(z)‖B |dz|

≤2C
∫ ∞

1/t
r1−µe−rt cos(ϑ)dr + C

∫ ϑ

−ϑ
ecos(ψ)tµ−2dψ

≤Ctµ−2
∫ ∞

cos(ϑ)
e−uu1−µdu + Ctµ−2

∫ ϑ

−ϑ
ecos(ψ)dψ

≤Ctµ−2, t > 0.

For (iii), by Lemma 1, we note that

‖A(g1 ∗ S)(t)x‖ ≤ Ctµ‖x‖, ‖A(g1−µ ∗ S)(t)x‖ ≤ C‖x‖, x ∈ X. (6)

Therefore, we also obtain (g1 ∗ S)(t)x + γ(g1−µ ∗ S)(t)x ∈ D(A) uniformly in a com-
pact interval.

By the Laplace transform and its uniqueness, obverse that the integrals

(g1 ∗ AS)(t)x =
1

2πi

∫
Γδ,ϑ

eztz−1 AG(z)xdz

and

(g1−µ ∗ AS)(t)x =
1

2πi

∫
Γδ,ϑ

eztzµ−1 AG(z)xdz

are uniformly bounded on a compact interval. For x ∈ X, by AG(z) = (G(z)− z−1 I)g(z),
we have

(g1 ∗ AS)(t)x + γ(g1−µ ∗ AS)(t)x

=
1

2πi

∫
Γδ,ϑ

eztz−1G(z)g(z)xdz− 1
2πi

∫
Γδ,ϑ

eztz−2g(z)xdz

+
γ

2πi

∫
Γδ,ϑ

eztzµ−1G(z)g(z)xdz− γ

2πi

∫
Γδ,ϑ

eztzµ−2g(z)xdz.

From the identity z−1g(z) + γzµ−1g(z) = 1 for z ∈ Γδ,ϑ, it follows that:

(g1 ∗ AS)(t)x + γ(g1−µ ∗ AS)(t)x =
1

2πi

∫
Γδ,ϑ

eztG(z)xdz− 1
2πi

∫
Γδ,ϑ

eztz−1xdz

=S(t)x− x,

which shows Equation (5). The proof is completed.

Corollary 1. Let S(·) be defined in Equation (2). Then,
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∥∥∥Dµ
t S(t)x

∥∥∥ ≤ Ct−µ‖x‖, for t > 0, x ∈ X,

and Dµ
t S(t) ∈ C((0, ∞);B(X)). In particular, it follows that:

‖Dµ
t S(t)x− Dµ

s S(s)x‖ ≤ C(t− s)−µ‖x‖, for t > s > 0, x ∈ X.

Proof. Obverse that the integral,

(g1−µ ∗ S)(t)x =
1

2πi

∫
Γδ,ϑ

eztzµ−1G(z)xdz, t > 0,

is uniform in a compact interval, and then

d
dt
(g1−µ ∗ S)(t)x =

1
2πi

∫
Γδ,ϑ

eztzµG(z)xdz, t > 0.

By using Lemma 2 and applying the similar proof in Lemma 3 and the definition of
operator Dµ

t , we get ‖Dµ
t S(t)x‖ ≤ Ct−µ‖x‖ for any x ∈ X. Another conclusion follows the

same approach. We thus obtain this corollary.

Remark 1. By the similar proof in Corollary 1, from the analytic resolvent of S(t), then for t > 0,
x ∈ X, it also yields that ‖Dµ

t AS(t)x‖ ≤ Ct−1‖x‖.

Remark 2. Since A generates a bounded analytic semigroup on a Banach X within some sector
Σ(0, θ) and θ ∈ (0, π/2], the equation (g1 ∗ AS)(t)x + γ(g1−µ ∗ AS)(t)x = S(t)x− x is valid
on X for every t ≥ 0, which derives that analytic resolvent S(t) is a solution operator of the
homogeneous equation to problem (1) and also S′(t)x = AS(t)x + γDµ

t AS(t)x for t > 0, x ∈ X.

Next, we introduce the concepts of solutions as follows:

Definition 4. A function u : [0, T]→ X is a mild solution of problem (1) on [0, T] if the function
u defined in Equation (3) belongs to C([0, T]; X).

Definition 5. A function u : [0, T] → X is called a classical solution of problem (1) on [0, T]
if u is continuous on [0, T], continuously differentiable on (0, T], u(t) and Dµ

t u(t) ∈ D(A) for
0 < t ≤ T,and (1) is satisfied on [0, T].

Definition 6. A function u : [0, T]→ X is called a strict solution of problem (1) on [0, T] if u is
continuous on D(A) and continuously differentiable on [0, T], Dµ

t u(t) ∈ D(A) for 0 ≤ t ≤ T
and (1) is satisfied on [0, T].

Clearly, the relations satisfy: the strict solution⇒, the classical solution⇒, and the
mild solution. Next, we will use the Hardy-type inequalities involving the Riemann–
Liouville fractional integral.

Lemma 4 ([34]). Let 1 < p ≤ q < ∞ and 1
p′ = 1− 1

p . Then, for non-negative weight functions u
and v, it yields

Iµ : Lp((0, ∞); v(s)ds)→ Lq((0, ∞); u(s)ds),

iff for ∀ R > 0, (∫ R

0
(v(s))1−p′ds

) 1
p′
(∫ ∞

2R
s(µ−1)qu(s)ds

) 1
q
≤ C. (7)

Lemma 5 ([35]). Let u, v be non-negative weight functions. If there is constant 0 ≤ β ≤ 1,
such that
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(∫ ∞

r
(s− r)(µ−1)βu(s)ds

)(
ess sup

s∈(0,r)
(r− s)(µ−1)(1−β)[v(s)]−1

)
≤ C, ∀ r > 0. (8)

Then, ∫ ∞

0
|(Iµ f )(s)|u(s)ds ≤ C

∫ ∞

0
| f (s)|v(s)ds.

Let us recall the Hardy–Young inequality.

Lemma 6 ([36]). Let p ≥ 1 and 0 < a ≤ ∞. Then, for any β > 0 and measurable function
g : (0, a)→ R+, it yields

∫ a

0
s−βp

(∫ s

0
g(τ)

dτ

τ

)p ds
s
≤ 1

βp

∫ a

0
τ−βpgp(τ)

dτ

τ
.

3. A New Interpolation Space

Let 1 ≤ p ≤ ∞, 0 < θ < 1; we now introduce an interpolation space with µ ∈ (0, 1) by

SDA(θ, p) := {y ∈ X : t 7→ ω(t) = t(1−µ)(1−θ)‖AS(t)y‖ ∈ Lp
∗(0, 1)},

which is a Banach space endowed with normS‖y‖θ,p = ‖y‖+ ‖ω‖Lp
∗(0,1).

Theorem 1. Let 1 ≤ p ≤ ∞, 0 < θ < µ
1−µ ∧ 1. Then,

DA(θ, p) = SDA(θ, p);

the respective norms are equivalent.

Proof. Let y ∈ DA(θ, p) := (X, D(A))θ,p and y = y1 + y2, where y1 ∈ X and y2 ∈ D(A).
Then, for t > 0, by using Lemma 1 (iv), we have

‖AS(t)y‖ ≤ ‖AS(t)y1‖+ ‖AS(t)y2‖ ≤ C(tµ−1‖y1‖+ ‖Ay2‖).

By the definition of (X, D(A))θ,p, we know that

t 7→ φ(t1−µ) = t−θ(1−µ)K(t1−µ, y; X, D(A)) ∈ Lp
∗(0, ∞).

Therefore, the mapping follows

t 7→ t−(1−µ)θ inf{‖y1‖+ t1−µ‖y2‖D(A) : y = y1 + y2, y1 ∈ X, y2 ∈ D(A)} ∈ Lp
∗(0, ∞).

Let ω(t) = t(1−µ)(1−θ)‖AS(t)y‖, since D(A) ↪→ X, the map t 7→ ω(t) ∈ Lp
∗(0, 1) and

S‖y‖θ,p ≤ C‖y‖θ,p. Thus, we get

DA(θ, p) ↪→ SDA(θ, p). (9)

Conversely, let y ∈ SDA(θ, p). From Lemma 3 (iii), for t ∈ (0, 1), we have

y =− (S(t)y− y) + S(t)y

=−
(
(g1 ∗ AS)(t)y + γ(g1−µ ∗ AS)(t)y

)
+ S(t)y.

From inequalities (6) and ω ∈ Lp
∗(0, 1), we know that A(g1 ∗ S)(t)y and

γA(g1−µ ∗ S)(t)y belong to X for every t ∈ (0, 1). Moreover, S(·)y ∈ D(A) from Lemma 1.
Therefore, we derive that:
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K(t1−µ, y; X, D(A)) ≤‖S(t)y− y‖+ t1−µ‖S(t)y‖

≤
∫ t

0
‖AS(τ)y‖dτ +

γ

Γ(1− µ)

∫ t

0
(t− τ)−µ‖AS(τ)y‖dτ

+ t1−µ‖AS(t)y‖.

For the case of p = ∞, we first see that:

K(t1−µ, y; X, D(A)) ≤
∫ t

0
τ−(1−µ)(1−θ)ω(τ)dτ +

γ

Γ(1− µ)

∫ t

0
(t− τ)−µτ−(1−µ)(1−θ)ω(τ)dτ

+ Ct1−µ‖y‖

≤Ctµ+θ(1−µ)‖ω‖L∞∗ (0,1) + Ctθ(1−µ)‖ω‖L∞∗ (0,1) + Ct1−µ‖y‖,

implying t−(1−µ)θK(t1−µ, y; X, D(A)) ≤ CS‖y‖θ,∞. By the change of variable t 7→ t1−µ, we
derive that:

‖y‖DA(θ,∞) ≤ C S‖y‖θ,∞.

For the case of 1 ≤ p < ∞, it also yields

K(t1−µ, y; X, D(A)) ≤ ‖(g1 ∗ AS)(t)y + γ(g1−µ ∗ AS)(t)y‖+ t1−µ‖AS(t)y‖.

Therefore, it follows from the elementary inequality (a1 + a2)
p ≤ 2p(ap

1 + ap
2 ) for

a1, a2 ≥ 0, p ≥ 1, and y ∈ SDA(θ, p) that:∫ 1

0
t−(1−µ)θpK(t1−µ, y; X, D(A))p dt

t

≤
∫ 1

0
t−(1−µ)θp(‖(g1 ∗ AS)(t)y + γ(g1−µ ∗ AS)(t)y‖+ t1−µ‖AS(t)y‖)p dt

t

≤ 2p
∫ 1

0
t−(1−µ)θp(‖(g1 ∗ AS)(t)y + γ(g1−µ ∗ AS)(t)y‖p + t(1−µ)p‖AS(t)y‖p)

dt
t

≤ C
∫ 1

0
t−(1−µ)θp‖(g1 ∗ AS)(t)y + γ(g1−µ ∗ AS)(t)y‖p dt

t
+ C‖ω‖p

Lp
∗(0,1)

.

The Hardy-type and Hardy–Young inequalities show that:∫ 1

0
t−(1−µ)θp‖(g1 ∗ AS)(t)y + γ(g1−µ ∗ AS)(t)y‖p dt

t
≤C S‖y‖p

θ,p. (10)

In fact, for 1 < p < ∞, by 0 < θ < µ
1−µ ∧ 1, Lemmas 1 and 6 show that:

∫ 1

0
t−(1−µ)θp‖(g1 ∗ AS)(t)y‖p dt

t
=
∫ 1

0
t−(1−µ)θp

∥∥∥ ∫ t

0
AS(s)yds

∥∥∥p dt
t

≤
∫ 1

0
t−(1−µ)θp

(∫ t

0
‖AS(s)y‖ds

)p dt
t

≤C
∫ 1

0
t−(1−µ)θp

(∫ t

0
sµ−1‖y‖ds

)p dt
t

≤C‖y‖p
∫ 1

0
s−(1−µ)θpsµp ds

s
≤C‖y‖p.

(11)

Therefore, we have∫ 1

0
t−(1−µ)θp‖(g1 ∗ AS)(t)y‖p dt

t
≤ C S‖y‖p

θ,p.

It is easy to get that the inequality (7) is true for u(t) = t−(1−µ)θp−1 and
v(t) = t(1−µ)(1−θ)p−1. Hence, by Lemmas 1 and 4, we get
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I1−µ : Lp((0, ∞); v(t)dt)→ Lp((0, ∞); u(t)dt);

this means that∫ 1

0
t−(1−µ)θp‖(g1−µ ∗ AS)(t)y‖p dt

t
=
∫ 1

0
t−(1−µ)θp‖(I1−µ AS)(t)y‖p dt

t

≤
∫ ∞

0
t−(1−µ)θp‖(I1−µ AS)(t)y‖p dt

t

≤ C
∫ ∞

0
t(1−µ)(1−θ)p‖AS(t)y‖p dt

t

≤ C
(∫ 1

0
t(1−µ)(1−θ)p‖AS(t)y‖p dt

t
+ ‖y‖p

)
,

(12)

which shows that∫ 1

0
t−(1−µ)θp‖(g1−µ ∗ AS)(t)y‖p dt

t
≤ C

(
‖ω‖p

Lp
∗(0,1)

+ ‖y‖p) ≤ C S‖y‖p
θ,p.

This deduces that (10) holds.
On the other hand, for the case of p = 1, by using the similar procedure of (11), we

obtain that ∫ t

0
t−(1−µ)θ‖(g1 ∗ AS)(t)y‖dt

t
≤ C‖y‖. (13)

Moreover, set u(t) = t−(1−µ)θ−1, v(t) = t(1−µ)(1−θ)−1, and β = 1, we see that the
inequality (8) holds. Thus, by Lemma 5 and the similar procedure of (12) , we get that:∫ t

0
t−(1−µ)θ‖(g1−µ ∗ AS)(t)y‖p dt

t
≤ C(‖y‖+ ‖ω‖L1∗(0,1)). (14)

Consequently, combined (13) with (14), it follows that:∫ 1

0
t−(1−µ)θ‖(g1 ∗ AS)(t)y + γ(g1−µ ∗ AS)(t)y‖dt

t
≤ C S‖y‖θ,1.

Hence, it follows that (10) and ‖y‖DA(θ,p) ≤ C S‖y‖DA(θ,p) for all 1 ≤ p ≤ ∞. Conse-
quently, we get the embedding

SDA(θ, p) ↪→ DA(θ, p), (15)

The conclusion follows (9) and (15).

Remark 3 (Alam et al. [26], Theorem 3.2). introduced two new interpolation spaces in terms of
solution operators for considering the fractional differential equation of order µ ∈ (0, 1) by

Sβ DA(θ, p) := {x ∈ X : t 7→ tβ−µθ‖ASβ(t)x‖ ∈ Lp
∗(0, 1)},

where β = 1, or β = µ ∈ (0, 1) and

Sβ(t) = tβ−1
∫ ∞

0
(µs)[β]Mµ(s)T(stµ)ds.

The Mµ(·) is a probability density function, see e.g., [6], and [β] is the integer part of β. It is noted
that the characterization of these interpolation spaces has the connection

Sµ DA(θ, p) = S1 DA(θ, p) = DA(θ, p), θ ∈ (0, 1), p ∈ [1, ∞].

Combining this result and Theorem 1, it follows thatS1 DA(θ, p) = SDA(θ, p) for 1 ≤ p ≤ ∞
and the restriction θ ∈ (0, µ

1−µ ∧ 1). This means that we can construct different interpolation
spaces under the classical interpolation space (X, D(A))θ,p, which are equivalent with respect to
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the corresponding norms. We can thus construct an appropriate interpolation space for different
considerable problems.

Another construction of SDA(θ, p) is obtained below.

Theorem 2. Let 1 ≤ p ≤ ∞ and 0 < θ < µ
1−µ ∧ 1. Then,

SDA(θ, p) = {y ∈ X : t 7→ φµ(t) = t−(1−µ)θ‖S(t)y− y‖ ∈ Lp
∗(0, 1)};

the norms ‖y‖+ ‖φµ‖Lp
∗(0,1) and S‖y‖θ,p are equivalent.

Proof. Let y ∈ SDA(θ, p) for p = ∞ and t ∈ (0, 1); by Lemma 3 (iii), we get

‖S(t)y− y‖ = ‖(g1 ∗ AS)(t)y + γ(g1−µ ∗ AS)(t)y‖

≤
∫ t

0
s−(1−µ)(1−θ)ω(s)ds +

γ

Γ(1− µ)

∫ t

0
(t− s)−µs−(1−µ)(1−θ)ω(s)ds

≤ Ct(1−µ)θ‖ω‖L∞∗ (0,1).

This implies that φµ(t) ∈ Lp
∗(0, 1) and ‖φµ‖L∞∗ (0,1) ≤ C‖ω‖L∞∗ (0,1). Therefore, we have

‖y‖+ ‖φµ‖L∞∗ (0,1) ≤ CS‖y‖θ,∞.

For 1 ≤ p < ∞, by the same procedure of (10), we obtain∫ 1

0
t−(1−µ)θp‖(g1 ∗ AS)y + γ(g1−µ ∗ AS)(t)y‖p dt

t
≤ CS‖y‖p

θ,p.

Hence, for all 1 ≤ p ≤ ∞, it yields

‖y‖+ ‖φµ‖Lp
∗(0,1) ≤ CS‖y‖θ,p.

Conversely, let y ∈ X satisfy t 7→ φµ(t) = t−(1−µ)θ‖S(t)y− y‖ ∈ Lp
∗(0, 1). For every

t > 0, we have the following identity:

y =tµ−1Γ(2− µ)(g1−µ ∗ (y− S(·)y))(t)
+ tµ−1Γ(2− µ)

(
(g1−µ ∗ S)(t)y + γ−1(g1 ∗ S)(t)y

)
− γ−1tµ−1Γ(2− µ)(g1 ∗ S)(t)y.

Therefore, from Lemma 3 (i) and (iii), we obtain

AS(t)y =AS(t)tµ−1Γ(2− µ)(g1−µ ∗ (y− S(·)y))(t)
+ S(t)Γ(2− µ)γ−1tµ−1(S(t)y− y)− AS(t)γ−1tµ−1Γ(2− µ)(g1 ∗ S)(t)y.

For p = ∞, by using Lemma 1, we have

‖AS(t)y‖ ≤ Ct2(µ−1)
∫ t

0
(t− s)−µs(1−µ)θφµ(s)ds + Ct−(1−µ)(1−θ)φµ(t) + Ct2µ−1‖y‖

≤ Ct−(1−µ)(1−θ)‖φµ‖L∞∗ (0,1) + Ct2µ−1‖y‖.

Thus, we derive that:

ω(t) = t(1−µ)(1−θ)‖AS(t)y‖ ≤ C‖φµ‖L∞∗ (0,1) + Ctµ−θ+µθ‖y‖.

We also have ω ∈ L∞
∗ (0, 1) for θ ∈ (0, µ

1−µ ∧ 1) and S‖y‖θ,∞ ≤ C(‖y‖+ ‖φµ‖L∞∗ (0,1)).
For 1 ≤ p < ∞, we see that

t(1−µ)(1−θ)‖AS(t)y‖ ≤ Ct−(1−µ)(1+θ)‖(I1−µ(y− S(· )y))(t)‖+ Cφµ(t) + Ctµ−θ+µθ‖y‖.
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Set u(t) = t−1−(1−µ)(1+θ), v(t) = t−1−(µ+(1−µ)θ)p, p = q and β = 1, then by
Lemmas 4 and 5 and Minkowski inequality, we get

‖ω‖Lp
∗(0,1) ≤ C(‖y‖+ ‖φµ‖Lp

∗(0,1)).

Therefore, for all 1 ≤ p ≤ ∞, we deduce that
S‖y‖θ,p ≤ C(‖y‖+ ‖φµ‖Lp

∗(0,1)).

The proof is completed.

4. The Existence and Hölder Regularity

For convenience, we set

ψ(t) :=
∫ t

0
S(t− δ) f (δ)dδ, t ≥ 0.

Theorem 3. Let f ∈ Lp(0, T; X) for p ∈ (1, ∞) and u0 ∈ X. Then, problem (1) admits a unique
mild solution.

Proof. It is clear from Lemma 1 and Hölder’s inequality that

‖u(t)‖ ≤‖S(t)u0‖+
∥∥∥∥∫ t

0
S(t− δ) f (δ)dδ

∥∥∥∥
≤C‖u0‖+ C

∫ t

0
‖ f (δ)‖dδ ≤ C‖u0‖+ Ct1− 1

p ‖ f ‖Lp(0,T;X).
(16)

From Lemma 1, we know that S(·)u0 ∈ C([0, T]; X). For 0 ≤ t < t + h ≤ T, we have

‖S(t + h)x− S(t)x‖ ≤ 2C‖x‖, x ∈ X, t ∈ [0, T].

Moreover, Lemma 3 implies that

‖S(t + h)x− S(t)x‖ =
∥∥∥∥∫ t+h

t
S′(δ)xdδ

∥∥∥∥ ≤ Ch
t
‖x‖, t ∈ (0, T].

Therefore, we get

‖S(t + h)− S(t)‖B ≤ χ(h, t) := C
(

1∧ h
t

)
. (17)

Note from (17) that∫ t

0
(χ(h, t− s))

p
p−1 ds =

∫ t

0
(χ(h, τ))

p
p−1 dτ ≤

∫ ∞

0
(χ(h, τ))

p
p−1 dτ = ph

p
p−1 .

By Lemma 3, for 0 ≤ t < t + h ≤ T with small h > 0, we have∥∥∥∥∫ t+h

0
S(t + h− δ) f (δ)dδ−

∫ t

0
S(t− δ) f (δ)dδ

∥∥∥∥
≤
∥∥∥∥∫ t

0
(S(t + h− δ)− S(t− δ)) f (δ)dδ

∥∥∥∥+ ∥∥∥∥∫ t+h

t
S(t− δ) f (δ)dδ

∥∥∥∥
≤
∫ t

0
χ(h, t− δ)‖ f (δ)‖dδ + C

∫ t+h

t
‖ f (δ)‖dδ

≤
(∫ t

0
(χ(h, t− δ))

p
p−1 dδ

)1− 1
p
‖ f ‖Lp(0,T;X) + C‖ f ‖Lp(0,T;X)h

1− 1
p

≤C‖ f ‖Lp(0,T;X)h
1− 1

p → 0, as h→ 0.



Fractal Fract. 2023, 7, 549 13 of 21

We also show that u(t + h) − u(t) → 0 for 0 ≤ t < t + h ≤ T with small h > 0.
Similarly, we can obtain u(t) − u(t − h) → 0 for 0 ≤ t − h < t ≤ T with small h > 0.
Therefore, we obtain the continuity of u and the uniqueness follows (16). This means that u
is a unique mild solution to problem (1).

A basic computation shows that the Riemann–Liouville fractional integral has the
following property:

Lemma 7. For µ ∈ (0, 1
2 ), 1 < p < 1

2µ , let k ∈ Lp(0, a) with 0 < a < ∞, then

I1−µk ∈ C
p−1

p ∧µ
[0, a].

Proof. We show the Hölder continuity of I1−µk for k ∈ Lp(0, a). In fact, for any 0 ≤ t <
t + h ≤ a, it yields

|I1−µk(t + h)− I1−µk(t)| ≤
∫ t+h

t
|g1−µ(t + h− σ)k(σ)|dσ

+
∫ t

0
|(g1−µ(t + h− σ)− g1−µ(t− σ))k(σ)|dσ.

Since g1−µ(·) ∈ Lp(0, T; X) with 1 < p < 1
µ , then∫ t+h

t
|g1−µ(t + h− σ)k(σ)|dσ ≤ C|k(·)|Lp(0,a)h

1− 1
p .

By the inequality aγ
2 − aγ

1 ≤ (a2 − a1)
γ for 0 ≤ a1 < a2 < ∞ and γ ∈ [0, 1], we obtain

|(g1−µ(t + h− σ)− g1−µ(t− σ))k(σ)| ≤ g1−2µ(t− σ)|k(σ)|hµ,

integrating the above inequality a.e. [0, a], and for 1 < p < 1
2µ , we get

∫ t

0
|(gµ(t + h− σ)− gµ(t− σ))k(σ)|dσ ≤C|k(·)|Lp(0,a)h

µ.

Therefore, we derive the conclusion as follows:

|I1−µk(t + h)− I1−µk(t)| ≤C|k(·)|Lp(0,a)h
1− 1

p + C|k(·)|Lp(0,a)h
µ.

The proof is completed.

Remark 4. Note that in Lemma 4.1 in [24], for µ ∈ (0, 1), 0 < µ− 1
p < 1, let k ∈ Lp(0, a) with

0 < a < ∞, then Iµk ∈ Cµ− 1
p [0, a].

In the sequel, we show the Hölder regularity of the mild solution.

Theorem 4. Let u0 ∈ X, f ∈ Lp(0, T; X) for 1 < p < ∞. Then, for every ε > 0,

u ∈ C1− 1
p ([ε, T]; X) for 1 < p < ∞. If, moreover, u0 ∈ X for 1 < p < 1

1−µ ∧
1

2µ , 0 < µ < 1
2 ,

then u ∈ Cµ∧(1− 1
p )([0, T]; X), and if u0 ∈ SDA(θ, p) for p > 1

1−µ , 1
1−µ < q ≤ 1

(1−µ)(1−θ)
∧ p,

0 < θ < µ
1−µ ∧ 1, 0 < µ < 1, then u ∈ Cµ∧(1−µ− 1

q )([0, T]; X). Especially, if u0 ∈ D(A),

then u ∈ C1− 1
p ([0, T]; X) for 1 < p < 1

µ , 0 < µ < 1. If u0 ∈ X, p > 1
µ , then for any ε > 0,

u ∈ Cµ− 1
p ([ε, T]; X).

Proof. The existence of the mild solution u to problem (1) follows Theorem 3 and it satisfies
u = S(·)u0 + ψ. By Lemma 3, we know that ‖S′(t)‖B ≤ Ct−1 for all t > 0. Hence, for every
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ε > 0, u0 ∈ X, by the mean value theorem, S(t)u0 is Lipschitz-continuous on [ε, T]. For
0 ≤ s < t ≤ T, from Lemma 1, we obtain

‖ψ(t)− ψ(s)‖ ≤
∫ t

s
‖S(t− δ) f (δ)‖dδ +

∫ s

0
‖(S(t− δ)− S(s− δ)) f (δ)‖dδ

≤C(t− s)1− 1
p ‖ f ‖Lp(0,T;X) +

∫ s

0
χ(t− s, s− δ)‖ f (δ)‖dδ

≤C‖ f ‖Lp(0,T;X)(t− s)1− 1
p ;

this implies that ψ ∈ C
p−1

p ([0, T]; X). Consequently, u ∈ C
p−1

p ([ε, T]; X).
For u0 ∈ X, by Remark 2, we know that

S(t)u0 = (g1 ∗ AS)(t)u0 + γ(g1−µ ∗ AS)(t)u0 + u0.

Obviously, A(g1 ∗ S)(t)u0 is Hölder-continuous with exponent µ on [0, T]. Let
k(t) = AS(t)u0. Clearly, k(·) ∈ Lp(0, T; X) for p < 1

1−µ . Lemma 7 shows that

(g1−µ ∗ AS)(t)u0 ∈ C
p−1

p ∧µ
([0, T]; X). Consequently, S(·)u0 ∈ C

p−1
p ∧µ

([0, T]; X). Based

on ψ ∈ C
p−1

p ([0, T]; X), the second result is shown.
Due to u0 ∈ SDA(θ, p), it yields that k(·) ∈ Lq(0, T; X) for 1

1−µ < q ≤ 1
(1−µ)(1−θ)

∧ p.
In fact, by Hölder inequality, let r = (1− µ)(1− θ); we derive that∫ t

0
|k(s)|qds =

∫ t

0
s−rqω(s)qds

≤
(∫ t

0
(s−rq+ q

p )
p

p−q ds
) p−q

p
(∫ t

0
ω(s)ps−1ds

) q
p

≤ C‖u0‖θ,p

(∫ t

0
s

q−rpq
p−q ds

) p−q
p

,

which means that k(·) ∈ Lq(0, T; X). By Remark 4, one can check that (g1−µ ∗ k)(t) ∈
C1−µ− 1

q ([0, T]; X), thus u ∈ Cµ∧(1−µ− 1
q )([0, T]; X).

In particular, for u0 ∈ D(A), it suffices to check that (g1−µ ∗ S)(t)Au0 ∈ C
p−1

p ([0, T]; X)

for 1 < p < 1
µ . In fact, for 0 ≤ t < t + h ≤ T, we have

(g1−µ ∗ S)(t + h)Au0 − (g1−µ ∗ S)(t)Au0 =
∫ t+h

t
S(t + h− σ)g1−µ(σ)Au0dσ

+
∫ t

0
(S(t + h− σ)− S(t− σ))g1−µ(σ)Au0dσ

=I1 + I2.

Since g1−µ(·) ∈ Lp(0, T) for 1 < p < 1
µ . By Lemma 1 and Hölder inequality, we have

‖I1‖ ≤ C‖Au0‖
∫ t+h

t
g1−µ(σ)dσ ≤ C‖Au0‖‖g1−µ(·)‖Lp(0,T)h

1− 1
p .

As for I2, by Hölder inequality, we get

‖I2‖ ≤ C‖Au0‖
∫ t

0
χ(h, t− σ)g1−µ(σ)dσ

≤C‖Au0‖‖g1−µ(·)‖Lp(0,T)

(∫ t

0
(χ(h, τ))

p
p−1 dτ

) p−1
p

≤C‖Au0‖‖g1−µ(·)‖Lp(0,T)h
1− 1

p .
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Combined with the above arguments, the fourth conclusion follows.
For u0 ∈ X, p > 1

µ , from the proof of the first result, we know that S(t)u0 is Lipschitz-

continuous on [ε, T]. Similar to the proof of Theorem 3, we obtain ψ(·) ∈ Cµ− 1
p ([ε, T]; X).

The proof is completed.

The following means that the mild solution is a classical solution.

Theorem 5. Let f ∈ C1([0, T]; X), u0 ∈ X. Then, the following descriptions hold:

(i) ψ(·) ∈ D(A), 0 ≤ t ≤ T, and ψ ∈ C([0, T]; D(A));
(ii) u is a classical solution of (1).

Proof. By Lemma 1, it follows that ψ(·) ∈ D(A) for all t ∈ [0, T]. In fact, one can derive that

‖Aψ(t)‖ ≤
∫ t

0
‖AS(t− δ) f (δ)‖dδ ≤ C‖ f ‖C1([0,T];X).

Since the integral

µ(1− µ)
∫ s

0

∫ t−δ

s−δ
τµ−2dτdδ = sµ − tµ + (t− s)µ

holds for all 0 ≤ s < t ≤ T, we see that

‖Aψ(t)− Aψ(s)‖ ≤
∫ t

s
‖AS(t− δ) f (δ)‖dδ +

∫ s

0
‖(AS(t− δ)− AS(s− δ)) f (δ)‖dδ

≤C
∫ t

s
(t− δ)µ−1‖ f (δ)‖dδ + C

∫ s

0

∫ t−δ

s−δ
τµ−2‖ f (δ)‖dτdδ

≤C‖ f ‖C1([0,T];X)(t− s)µ,

which shows that ψ ∈ C([0, T]; D(A)).
From the assumptions and Theorem 3, we know that u is the mild solution of

problem (1) and obviously u ∈ C([0, T]; D(A)) due to S(t)u0 ∈ D(A) for u0 ∈ X, 0 ≤ t ≤ T,
and S(·)u0 ∈ C1((0, T]; X) from Lemma 3, and u(0) = u0. Corollary 1 and Remark 1 show
that Dµ

t S(t)u0 ∈ C((0, T]; X) and Dµ
t S(t)u0 ∈ D(A) for u0 ∈ X, 0 < t ≤ T. This means that

S(t)u0 is the classical solution of the homogeneous equation by Remark 2. Consequently, it
suffices to check that the remaining is a classical solution of the nonhomogeneous equation.

From f ∈ C1([0, T]; X), we have (S ∗ f ′)(t) ∈ C([0, T]; X). In fact, it yields

‖(S ∗ f ′)(t)− (S ∗ f ′)(s)‖ ≤
∫ t

s
‖S(t− δ) f ′(δ)‖dδ +

∫ s

0
‖(S(t− δ)− S(s− δ)) f ′(δ)‖dδ

≤C‖ f ′‖C([0,T];X)(t− s) + C
∫ s

0

∫ t−δ

s−δ
τ−1dτdδ‖ f ′‖C([0,T];X)

≤C‖ f ′‖C([0,T];X)(t− s) + C‖ f ′‖C([0,T];X)

√
t− s,

where we have used∫ s

0

∫ t−δ

s−δ
τ−1dτdδ =

∫ s

0
(log(t− δ)− log(s− δ))dδ ≤

√
(t− s)s

2
, 0 < s < t,

and the inequality

log a2 − log a1 <
a2 − a1√

a1a2
, ∀ a2 > a1 > 0.

Hence, ψ′(t) = (S ∗ f ′)(t) + S(t) f (0) ∈ C([0, T]; X). Since Aψ ∈ C([0, T]; X), by
Remark 2, we also have (g1−µ ∗ AS ∗ f )(t) = γ−1[−(g1 ∗ AS ∗ f )(t) + (S ∗ f )(t)− 1 ∗ f (t)]
and

d
dt
(g1−µ ∗ AS ∗ f )(t) = γ−1(−Aψ(t) + ψ′(t)− f (t)).
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The definition of the fractional derivative shows that

Dµ
t Aψ(t) = γ−1(−Aψ(t) + ψ′(t)− f (t)) ∈ C([0, T]; X).

Therefore, we have

ψ′(t) = Aψ(t) + γDµ
t Aψ(t) + f (t),

combined with ψ(0) = 0. Thus, u is a classical solution of (1).

The following corollary is immediate.

Corollary 2. Let f ∈ C1([0, T]; X), u0 ≡ 0. Then, u is a strict solution of (1).

Lemma 8. Let f ∈ C([0, T]; X). Then ψ(·) ∈ Cµ([0, T]; D(A)).

Proof. By Lemma 1, we have ‖Aψ‖ ≤ C‖ f ‖C([0,T];X) for 0 ≤ t ≤ T. For 0 ≤ s < t ≤ T,
from Lemma 3, we see that

‖Aψ(t)− Aψ(s)‖ ≤
∫ s

0
‖[AS(t− δ)− AS(s− δ)] f (δ)‖dδ +

∫ t

s
‖AS(t− δ) f (δ)‖dδ

≤
∫ s

0

∫ t−δ

s−δ
‖AS′(τ) f (δ)‖dτdδ + C

∫ t

s
(t− δ)µ−1‖ f (δ)‖dδ

≤ C‖ f ‖C([0,T];X)

(∫ s

0

∫ t−δ

s−δ
τµ−2dτdδ + (t− s)µ

)
≤ C‖ f ‖C([0,T];X)(t− s)µ.

Thus, ψ ∈ Cµ([0, T]; D(A)).

In the sequel, we obtain the Hölder regularity of the classical solution.

Theorem 6. Let u0 ∈ D(A), f ∈ Cϑ([0, T]; D(A)) for ϑ ∈ (0, 1). Then, there exists a classical
solution u of (1) satisfying u ∈ Cµ∧(1−µ)([0, T]; X) for µ ∈ (0, 1). Moreover, there holds

‖u‖Cµ∧(1−µ)([0,T];X) ≤ C(‖ f ‖Cϑ([0,T];D(A)) + ‖Au0‖).

Proof. Obviously, Theorem 3 implies that there is a unique mild solution u. Lemma 1
and Corollary 1 show that S(·)v ∈ C([0, ∞); X) and Dµ

t S(t)v ∈ C((0, ∞); X) for any v ∈ X.
Hence, it suffices to check that ψ(·) ∈ C1((0, T]; X). Note that∫ t

s
S′(t− τ) f (τ)dτ =

∫ t

s
S′(t− τ)( f (τ)− f (t))dτ +

∫ t

s
S′(t− τ) f (t)dτ

=
∫ t

s
S′(t− τ)( f (τ)− f (t))dτ +

∫ t−s

0
S′(τ) f (t)dτ

=
∫ t

s
S′(t− τ)( f (τ)− f (t))dτ +

∫ t−s

0
AS(τ) f (t)dτ

+
∫ t−s

0
ADµ

τ S(τ) f (t)dτ;

for any ε > 0, ε ≤ s < t ≤ T, it follows from Remark 2 that
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‖(S′ ∗ f )(t)− (S′ ∗ f )(s)‖

≤
∫ t

s
‖S′(t− τ) f (τ)‖dτ +

∫ s

0
‖(S′(t− τ)− S′(s− τ)) f (τ)‖dτ

≤
∫ t

s
‖S′(t− τ)( f (τ)− f (t))‖dτ +

∫ t−s

0
‖AS(τ) f (t)‖dτ

+
∫ t−s

0
‖Dµ

τ S(τ)A f (t)‖dτ +
∫ s

0
‖(S′(t− τ)− S′(s− τ)) f (τ)‖dτ

≤C‖ f ‖Cϑ([0,T];X)(t− s)ϑ + C(t− s)µ‖ f ‖Cϑ([0,T];D(A))

+ C(t− s)1−µ‖ f ‖Cϑ([0,T];D(A)) +
∫ s

0
‖(S′(t− τ)− S′(s− τ)) f (τ)‖dτ.

From S′(t)x = AS(t)x + ADµ
t S(t)x, we have∫ s

0
‖(S′(t− τ)− S′(s− τ)) f (τ)‖dτ

≤
∫ s

0
‖(AS(t− τ)− AS(s− τ)) f (τ)‖dτ +

∫ s

0
‖(Dµ

t S(t− τ)− Dµ
s S(s− τ))A f (τ)‖dτ

≤
∫ s

0

∫ t−τ

s−τ
‖AS′(σ) f (τ)‖dσdτ + C(t− s)−µ

∫ s

0
‖A f (τ)‖dτ

≤C
∫ s

0

∫ t−τ

s−τ
σµ−2dσdτ‖ f ‖Cϑ([0,T];D(A)) + C‖ f ‖Cϑ([0,T];D(A))(t− s)−µ.

Hence, S′ ∗ f ∈ C([ε, T]; X) for any f ∈ Cϑ([0, T]; D(A)). Therefore, by
ψ′(t) = (S′ ∗ f )(t) + f (t), we obtain ψ′(·) ∈ C([ε, T]; X) for any ε > 0. Thus, u is the
classical solution of (1).

Additionally, by Lemma 8, we get that ψ(·) ∈ Cµ([0, T]; D(A)). From Lemma 3 (iii),
we next check S(t)u0 ∈ Cµ∧(1−µ)([0, T]; X). In fact, for any 0 ≤ s < t ≤ T, by Remark 2
and Corollary 1, we see that

‖S(t)u0 − S(s)u0‖ ≤
∫ t

s
‖S′(τ)u0‖dτ

≤
∫ t

s
‖AS(τ)u0‖dτ + C

∫ t

s
‖Dµ

τ S(τ)Au0‖dτ

≤ C(t− s)µ∧(1−µ)‖Au0‖.

Thus, S(·)u0 ∈ Cµ∧(1−µ)([0, T]; X) for u0 ∈ D(A). Then, u ∈ Cµ∧(1−µ)([0, T]; X). The
inequality easily follows the above arguments. The proof is completed.

Theorem 7. Let f ∈ C1([0, T]; X) and let 1
1−µ < p ≤ ∞, 0 < µ < 1, 0 < θ < µ

1−µ ∧ 1. If

u0 ∈ SDA(θ, p), for 1
1−µ < q ≤ 1

(1−µ)(1−θ)
∧ p, then the classical solution

u ∈ Cµ∧(1−µ− 1
q )([0, T]; X). If, moreover, u0 ∈ D(A), then Au ∈ Cµ∧(1−µ− 1

q )([0, T]; X). In
particular, if u0 ≡ 0, f (0) ∈ SDA(θ, p), then the strict solution u, Au ∈ Cµ∧(1−µ)([0, T]; X) and

u′ ∈ C
1
2∧µ∧(1−µ− 1

q )([0, T]; X).

Proof. From Theorem 5, we know that the mild solution u is a classical one for
f ∈ C1([0, T]; X). Using the proof of Theorem 4, we get that S(·)u0 ∈ Cµ∧(1−µ− 1

q )([0, T]; X).
Moreover, by the proof of Theorem 3, we see from Hölder inequality that

‖ψ(t + h)− ψ(t)‖ =‖(S ∗ f )(t + h)− (S ∗ f )(t)‖

≤C
(∫ t

0
(χ(h, t− δ))

p
p−1 dδ

)1− 1
p
‖ f ‖C1(0,T;X) + C‖ f ‖C1(0,T;X)h

≤C‖ f ‖C1(0,T;X)h,
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for h ∈ (0, T). Consequently, u ∈ Cµ∧(1−µ− 1
q )([0, T]; X).

By using the proof of Lemma 8, it follows that Aψ ∈ Cµ([0, T]; X). By u0 ∈ D(A) and
Lemma 3, we have

AS(t)u0 = (g1 ∗ AS)(t)Au0 + γ(g1−µ ∗ AS)(t)Au0 + Au0.

From the proof of the third conclusion of Theorem 4, we know that AS(t)Au0 ∈
Lq(0, T; X) for 1

1−µ < q ≤ 1
(1−µ)(1−θ)

∧ p. Thus, by Remark 4, it follows that (g1−µ ∗

AS)(t)Au0 ∈ C1−µ− 1
q ([0, T]; X). Furthermore, (g1 ∗ AS)(t)Au0 is Hölder-continuous with

exponent µ. Hence, AS(·)u0 ∈ Cµ∧(1−µ− 1
q )([0, T]; X). Therefore, Au ∈ Cµ∧(1−µ− 1

q )([0, T]; X).

Let us check the case u0 ≡ 0. In fact, Theorem 6 and the mentioned arguments in the
current proof imply that u, Au ∈ Cµ∧(1−µ)([0, T]; X). Since u′(t) = ( f ′ ∗ S)(t) + S(t) f (0),
from the proof of Theorem 5, we obtain ( f ′ ∗ S)(t) ∈ C1/2([0, T]; X). For f (0) ∈ SDA(θ, p),

by Remark 2 and the proof of Theorem 4, we get S(·) f (0) ∈ Cµ∧(1−µ− 1
q )([0, T]; X). Hence,

u′ ∈ C
1
2∧µ∧(1−µ− 1

q )([0, T]; X). The proof is completed.

5. Applications

Let N ≥ 2. We consider the following fractional partial differential equation:{
∂tu− (1 + ∂

µ
t )∆u = f (t, x), t > 0, x ∈ RN ,

u(0, x) =u0(x),
(18)

where ∂
µ
t is the Caputo fractional partial derivative of order µ ∈ (0, 1), ∆ is the Laplace

operator, and f takes the Lp(RN) data.
Note from ([37], Theorem 2.3.2) that the Laplace operator ∆ with maximal domain

D(∆) = {u ∈ Lp(RN) : ∆u ∈ Lp(RN)} generates a bounded analytic semigroup of the
spectral angle that is less than or equal to π/2 on Lp(RN) with 1 < p < +∞. We set A = ∆.
By He et al. [23], the problem (18) can be reformulated as problem (1). It follows that the
analytic resolvent S(t) generated by A is defined in (2). For the Lp(RN) data of u0, we know
that there exists a unique mild solution of (18) from Theorem 3. Due to the interpolation

(W2,p(RN), Lp(RN))θ,q = B2θ
p,q(RN), 1 ≤ p, q ≤ ∞, 0 < θ < 1,

and if further u0 ∈ B2θ
p,q(RN) for 1

1−µ < p ≤ 1
(1−µ)(1−θ)

, 1 ≤ q ≤ ∞, 0 < θ < µ
1−µ ∧ 1,

0 < µ < 1, then u ∈ C(1−µ− 1
p )∧µ

([0, T]; Lp(RN)) from Theorem 4. In addition, by
Theorem 7, if f ∈ C1([0, T]; Lp(RN)), then the mild solution will be a classical solution
which possesses the Hölder continuity with the same exponent (1− µ− 1

p ) ∧ µ and the es-
timate

‖Au‖Cµ∧(1−µ)([0,T];Lp(RN)) + ‖u‖C(1−µ− 1
p )∧µ

([0,T];Lp(RN))

≤C(‖ f ‖C1([0,T];Lp(RN)) + ‖u0‖B2θ
p,q(RN)).

For another consideration of the following initial-boundary value problem,
∂tu = (1 + γ∂

µ
t )∆u + f (t, x), in Ω× (0, T),

∂u
∂ν

= 0, in ∂Ω× (0, T),

u(0, x) = u0(x), in Ω,

(19)

where Ω ⊂ RN is a bounded domain and boundary ∂Ω is C2, γ > 0. It is clear that Ap
is a realization of the Laplace operator A = ∆ on Lp(Ω) (1 < p < ∞) under Neumann
type boundary condition ∂u

∂ν = 0. It is known that −Ap generates an analytic semigroup
on Lp(Ω) of the spectral angle that is less than π/2; by (4) and the definition of S(t),
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the problem (19) can be reformulated as problem (1). Then, by a direct application of
Theorem 6, we know that for any u0 ∈ D(Ap), f ∈ Cϑ([0, T]; D(Ap)) for 0 < ϑ < 1,
problem (19) possesses a unique classical solution in the function space
Cµ∧(1−µ)([0, T]; Lp(Ω)) ∩ C1((0, T]; Lp(Ω)) with the estimate

‖u‖Cµ∧(1−µ)([0,T];Lp(Ω)) ≤ C(‖ f ‖Cϑ([0,T];D(Ap))
+ ‖Apu0‖).

In particular, we consider an initial-boundary value problem with a Dirichlet boundary
value condition as follows:

∂tu(t, x) = (1 + γ∂
µ
t )uxx + f (t, x), t ∈ [0, 1], x ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, 1],

u(0, x) = 0, x ∈ [0, π],

(20)

where γ > 0 and f (t, x) =
(

2t + t2 + 2γ
Γ(3−µ)

t2−µ
)

sin x, t ∈ [0, 1].

Let A = ∂xx and let us consider the spectral problem on L2[0, π], i.e., Aek = −λkek,
ek(0) = ek(π) = 0. It is known that λk = k2 is the eigenvalue of −A corresponding
to the eigenfunction ek(x) =

√
2/π sin(kx). According to the discussion in [14,19], the

problem (20) can be rewritten as the sum of the Fourier series for problem

u′k(t) + λku(t) + γλkDµ
t uk(t) = fk(t), t > 0; uk(0) = 0.

It follows that the analytic resolvent S(t) is given by

S(t)u =
∞

∑
k=1

Sk(t)(u, ek)ek, u ∈ L2[0, π],

where

Sk(t) =
1
π

∫ ∞

0
e−zt γλkzα sin(µπ)

(−z + λkγ cos(µπ) + λk)2 + (λkγzα sin(µπ))2 dz.

Since f ∈ C1([0, 1]; L2[0, π]), the Corollary 2 shows that problem (20) has a strict
solution. In fact, one can check that u(t, x) = t2 sin(x) meets all equations in (20) and u
is indeed the strict solution. Also, in view of f (0) = 0, it is clear that the strict solution

u, uxx ∈ Cµ∧(1−µ)([0, T]; L2[0, π]) and u′ ∈ C
1
2∧µ∧(1−µ− 1

q )([0, T]; L2[0, π]) for a suitable
number q > 1

1−µ by Theorem 7.

6. Conclusions

In this paper, we considered an abstract fractional differential equation that involves
the fractional Rayleigh–Stokes problem in the abstract version. First of all, we proved that
the interpolation space constructed by the analytic resolvent is isometric isomorphic to
a classical real interpolation space. Secondly, we obtained the existence and uniqueness
of the mild solution. And then, by using some properties of the analytic resolvent and
the interpolation space, we established the Hölder regularities of the mild solution. In
addition, we showed that the mild solution becomes a classical solution. Finally, based on
the efficient conditions and the interpolation space, we obtained the Hölder regularities
of the classical solution and the strict solution. The obtained properties of this type of
fractional differential equation will be further made clear to understand the structure of
solutions to the fractional Rayleigh–Stokes problem.
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