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Abstract: In this manuscript, the nonlinear Burgers equations are studied via a fractal fractional
(FF) Caputo operator. The results of coupled fixed point theorems in cone metric space are used to
discuss the uniqueness of solution to the proposed coupled equations. The solution of the proposed
equation is computed via Natural transform associated with the Adomian decomposition method
(NADM). The acquired results are graphically presented for some values of fractional order and fractal
dimensions. The accuracy and consistency of the applied method is verified through error analysis.
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1. Introduction

Partial differential equations (PDEs) have attracted researchers from different scientific
fields due to their myriad of applications in natural and physical sciences [1–3]. There
are several kinds of special PDEs in the literature [4,5]. J. M. Burgers [6] introduced
the Burgers equation as a theoretical representation of turbulent fluid movement. As a
simplified version of the Navier–Stokes equation, which simulates flow behavior, the
Burgers equation is significant in a number of implications. Additionally, the Burgers
equation is utilized as a model PDE to systematically create many of the core tools needed
to investigate wider classes of PDEs in a reasonably simple environment. It has contributed
significantly to the theoretical growth of stochastic PDEs with the inclusion of stochastic
forcing. In addition, the Burgers equation has a normal form, which indicates that it at least
intuitively captures the behavior of a considerably broader class of equations.

For many physical phenomena, including traffic, shock waves, turbulence issues,
and continuous stochastic processes, the Burgers equation serves as a model example. It
is one of a select group of nonlinear partial differential equations that have had some of
their solutions analytically studied for various arbitrary beginning circumstances. These
solutions frequently require infinite series, which for low values of the viscosity coefficient
may converge extremely slowly. In addition, it may be used to evaluate different numerical
methods. This is due to the wide range of applications of the Burgers equation [7–10].

Nowadays fractional calculus (FC) has attracted a number of researchers from various
scientific fields. FC has the tendency to preserve short and long memory and provides
the global evolution of a physical process. FC has many applications in the field of mathe-
matical physics [11], biology [12], chemical reaction process [13], neural network [14,15],
time-delay problems [16–19], etc. Due to its use in the study of over-driven explosions
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in gas [20], anomalous diffusion in semiconductor development [21], hereditary effects
on nonlinear acoustic waves [22], nonlinear Markov processes, chaos propagation [23],
and other fields, fractional Burgers equations have recently attracted a lot of attention.
Through the use of the natural decomposition approach and nonsingular kernel deriva-
tives, Aljahdaly et al. [24] have looked into the fractional-order Burgers equation. In the
articles on Caputo–Fabrizio and Atangana–Baleanu derivatives, the two different kinds of
fractional derivatives are utilized. To arrive at the solution of the equations, they applied
the Natural transform to the fractional-order Burgers equation and then the Inverse Natu-
ral transform. With regard to the fractional view analysis of coupled Burgers equations,
Nehad et al. [25] employ a cutting-edge analytical approach. The presented issues have
undergone a Caputo–Fabrizio sense fractional analysis. The present strategy was first used
to apply the Yang transformation to the given situation. The Adomian decomposition
method is then used to produce the series form solution. For an appropriate selection
of the fractional orders, Zhiping Mao and George Em Karniadakis [26] explored a novel
fractional viscous Burgers equation with nonlinear fractional components that reduces to
the classic Burgers equation. The fact that this equation can be solved using an application
of the Hopf–Cole transformation to produce accurate solutions, which can be used to
precisely quantify the numerical errors, makes it a particularly useful model for creating
numerical techniques for nonlinear fractional conservation laws. Using effective methods,
Khan et al. [27] recently presented the analytical solutions of the following systems of
two-dimensional fractional Burgers equations.{

C
0 Dα

t Φ(θ, ζ, t) = Φθθ + Φζζ −ΦΦθ −ΨΦζ ,
C
0 Dα

t Ψ(θ, ζ, t) = Ψθθ + Ψζζ −ΦΨθ −ΨΨζ ,
(1)

with initial condition Φ(θ, ζ, 0) = θ + ζ , Ψ(θ, ζ, 0) = θ − ζ and{
C
0 Dα

t Φ(θ, t) = 2ΦΦθ −Φθθ + (ΦΨ)θ ,
C
0 Dα

t Ψ(θ, t) = −2ΨΨθ −Ψθθ − (ΦΨ)θ ,
(2)

where 0 < α ≤ 1 and initial conditions are Φ(θ, 0) = sin(θ) , Ψ(θ, 0) = −sin(θ).
A novel class of fractional derivatives with a power law kernel, known as fractal-

fractional (FF) derivatives, has several applications in practical issues. This operator is
utilized in this type of fluid flow for the first time. The main benefit of this operator is that it
makes it possible to create models that describe systems with memory effects considerably
more accurately. Additionally, there are numerous issues in the actual world where it is vital
to understand how much information the system contains. We explain some applications
of FF operators in different areas of science. Saifullah et al. investigated the nonlinear
Drinfeld–Sokolov–Wilson system using an FF operator [28]. Gulalai et al. studied a fractal
fractional analysis-modified KdV equation under different FF operators [29]. There are
several applications of FF operators in the literature [30–32].

The motivation behind employing the FF Caputo operator lies in its unique ability
to describe and capture long-range dependencies, nonlocal interactions, and complex
behaviors within the system. By incorporating this operator into the study of Burgers
equations, we can potentially overcome the limitations of traditional approaches and gain
a deeper understanding of the underlying dynamics. The FF Caputo operator also gives
a means to model and illustrate systems that exhibit nonlocal interactions, long-range
dependencies, and memory impacts. These aspects are often present in different natural
and engineered systems, such as turbulent fluid flows or complex biological processes.
Hence, using this operator in the analysis of Burgers equations enables us to enhance the
limitations of traditional techniques and escalate our ability to explain and predict real-
world phenomena more precisely. This enhances our ability to describe and forecast the
evolution of systems governed by Burgers equations, leading to more precise and reliable
outcomes. The use of the FF Caputo operator in studying Burgers equations studies gaps in
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the field by overcoming limitations of traditional methods. Conventional techniques often
struggle to capture nonlocal interactions, memory effects, and complex scaling features
accurately. By introducing the fractal fractional Caputo operator, this approach bridges
these gaps and provides a more comprehensive framework for analyzing and solving
Burgers equations. Motivated by the above literature, we consider Equations (1) and (2)
using the Caputo FF operator as:{

C
0 Dα, β

t Φ(θ, ζ, t) = Φθθ + Φζζ −ΦΦθ −ΨΦζ ,
C
0 Dα, β

t Ψ(θ, ζ, t) = Ψθθ + Ψζζ −ΦΨθ −ΨΨζ ,
(3)

with initial condition Φ(θ, ζ, 0) = θ + ζ , Ψ(θ, ζ, 0) = θ − ζ. In addition,{
C
0 Dα,β

t Φ(θ, t) = 2ΦΦθ −Φθθ + (ΦΨ)θ ,
C
0 Dα,β

t Ψ(θ, t) = −2ΨΨθ −Ψθθ − (ΦΨ)θ , where 0 < α, β ≤ 1,
(4)

with initial condition Φ(θ, 0) = sin(θ) , Ψ(θ, 0) = −sin(θ). where C
0 Dα, β

t denotes the
Caputo FF operator, which we define in the following section.

In this manuscript, we will solve (1) and (2) with the fractal fractional operator us-
ing the Natural transform decomposition approach. Utilizing some fixed point results,
it is investigated if the solutions to the provided issues exist and are unique. The solu-
tions to some examples are provided to demonstrate the validity and applicability of the
suggested strategies.

2. Preliminaries

In this section, we give some basic notions of Caputo FF operators and Natural
transform (NT). Let λ(t) be fractal differential and continuous on an open interval (m1, m2)

and d
dυβ = limt→υ

t(t)−t(υ)
tβ−υβ .

Definition 1 ([33]). For α, β ∈ (0, 1], the Caputo FF derivative is expressed as:

C
0 Dα,β

t λ(t) =
1

Γ(1− α)

∫ t

0
(t− υ)−α d

dυβ
λ(υ)dυ,

where α and β represent the fractional order and fractal dimension, respectively.

Definition 2 ([33]). For 0 < α, β ≤ 1, the FF integral is given by:

I
α,β

0,t λ(t) =
β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1λ(υ)dυ.

Definition 3 ([34]). The NT of the function λ(t) is presented by N[λ(t)] and with variables S and
℘ is defined by:

N[λ(t)] = R(S,℘) =
∫ ∞

−∞
e−Stλ(℘t)dt, S,℘ ∈ (−∞, ∞).

Definition 4 ([35]). The NT of C
0 Dα

t λ(t) is defined as:

N
[

C
0 Dα

t λ(t)
]
=

Sα

℘α
N[λ(t)]−

n−1

∑
k=0

Sα−(k+1)

℘α−k

[
Dkλ(t)

]
t=0

. (5)

Definition 5 ([36]). Let E denote a Banach space with norm ‖.‖ and P ⊆ E . Then, P is said to
be a cone if:

• P 6= ∅, closed, and P 6= {v} , where v denotes zero vector in E .
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• ∀ b, s ≥ 0 and x, y ∈ P then bx+ sy ∈ P .
• If x ∈ P and −x ∈ P then x = v.

Let P be a cone in a Banach space E ; then, a partial ordering � with respect to P is defined as:
x � y ⇔ y− x ∈ P . The cone P is said to be normal if ∃ k > 0, such that ∀ x, y ∈ E , we have
v � x � y⇒ ‖x‖ ≤ k‖y‖.

Definition 6 ([36]). A cone metric space is said to be an ordered pair (X , d) and d : X ×X → E
is a mapping which satisfies:

• d(x, y) ∈ P , that is v � d(x, y), ∀ x, y ∈ X , and d(x, y) = v if x = y.
• d(x, y) = d(y, x) ∀ x, y ∈ X .
• d(x, y) � d(x, z) + d(z, y) ∀ x, y, z ∈ X .

3. Existence of Unique Solution

In this part, the notions of fixed point theory are used to discuss the results concerned
with the existence of a unique solution of Equation (2). For Equation (3), the readers may
derive the same results. For these purposes first, we recall the following result:

Theorem 1 ([37]). Suppose E is the real Banach space and the cone P of E is normal. Furthermore,
F : [0, 1]× [0, 1] → E and F1 : [0, 1]× [0, 1] → E are completely continuous. If there exists
0 < κ < 1 such that

‖F (θ, ζ)−F1(ζ, θ)‖ ≤ κ‖θ − ζ‖,

∀(θ, ζ) ∈ [0, 1]× [0, 1]. Then, F has exactly one fixed point.

Now, we can write Equation (3) as:

0Dα
t Ψ = βtβ−1A(t, θ, ζ, Φ, Ψ),

0Dα
t Φ = βtβ−1A1(t, θ, ζ, Ψ, Φ),

with initial condition Φ(θ, ζ, 0) = Φ◦ , Ψ(θ, ζ, 0) = Ψ◦ and A and A1 denote the right-hand
side of Equation (3). Applying fractional integration, we have

Φ(t, θ, ζ) = Φ◦ +
β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1A(υ, θ, ζ, Φ, Ψ)dυ,

Ψ(t, θ, ζ) = Ψ◦ +
β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1A1(υ, θ, ζ, Ψ, Φ)dυ.

Consider{
Φ(t, θ, ζ) = Φ◦ +

β
Γ(α)

∫ t
0 (t− υ)α−1υβ−1A(υ, θ, ζ, Φ, Ψ)dυ = F (t, θ, ζ, Φ, Ψ)

Ψ(t, θ, ζ) = Ψ◦ +
β

Γ(α)

∫ t
0 (t− υ)α−1υβ−1A1(υ, θ, ζ, Ψ, Φ)dυ = F1(t, θ, ζ, Ψ, Φ).

(6)

The following theorem shows that there exists a unique solution to the system (6).

Theorem 2. Let (C, d) be the space of all continuous function d(θ, ζ) = sup |θ − ζ| = ‖θ − ζ‖.
In addition, F : C × C → C and F1 : C × C → C. Then, the system (6) has a unique solution if
the following conditions hold

i. P is a normal cone and F and F1 are completely continuous.

ii. The operators ∂2

∂θ2 , ∂2

∂ζ2 , ∂
∂θ , ∂

∂ζ satisfied the Lipschitz condition.

iii. ‖Φ‖ ≤ h̄ and ‖Ψ‖ ≤ }, where h̄,} > 0 and ‖Φ◦ −Ψ◦‖ ≤ ‖Φ−Ψ‖
2 for all (θ, ζ) ∈ [0, 1].

iv. β
Γ(α)

∫ t
0 (t− υ)α−1υβ−1dυ ≤ 1 and 0 <

(
1
2 + ρ + $ + h̄σ + }ς

)
= v < 1.
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Proof. Since for all (θ, ζ) ∈ [0, 1]× [0, 1], we have

|F (t, θ, ζ, Φ, Ψ)−F1(t, θ, ζ, Ψ, Φ)| =

∣∣∣∣Φ◦ + β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1A(υ, θ, ζ, Φ, Ψ)dυ

−Ψ◦ −
β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1A1(υ, θ, ζ, Ψ, Φ)dυ

∣∣∣∣
≤ |Φ◦ −Ψ◦|+

β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1

×|A(t, θ, ζ, Φ, Ψ)−A1(t, θ, ζ, Ψ, Φ)|dυ

= |Φ◦ −Ψ◦|+
β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1

×
∣∣Φθθ + Φζζ −ΦΦθ −ΨΦζ

−Ψθθ −Ψζζ + ΦΨθ + ΨΨζ

∣∣dυ

= |Φ◦ −Ψ◦ |+
β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1

∣∣∣∣ ∂2

∂θ2 (Φ−Ψ) +
∂2

∂ζ2 (Φ−Ψ)

−Φ
∂

∂θ
(Φ−Ψ)−Ψ

∂

∂ζ
(Φ−Ψ)

∣∣∣∣dυ

≤ |Φ◦ −Ψ◦ |+
β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1

[∣∣∣∣ ∂2

∂θ2 (Φ−Ψ)

∣∣∣∣+ ∣∣∣∣ ∂2

∂ζ2 (Φ−Ψ)

∣∣∣∣
+|Φ|

∣∣∣∣ ∂

∂θ
(Φ−Ψ)

∣∣∣∣+ |Ψ|∣∣∣∣ ∂

∂ζ
(Φ−Ψ)

∣∣∣∣]dυ

≤ |Φ◦ −Ψ◦ |+
β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1(ρ|Φ−Ψ|+ $|Φ−Ψ|+ σ|Φ||Φ−Ψ|+ ς|Ψ||Φ−Ψ|)dυ,

where ρ, $, σ and ς are Lipschitz constants for the operators ∂2

∂θ2 , ∂2

∂ζ2 , ∂
∂θ , ∂

∂ζ . Therefore,

sup |F (t, θ, ζ, Φ, Ψ)−F1(t, θ, ζ, Ψ, Φ)| = sup
(
|Φ◦ −Ψ◦|+

β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1

(ρ|Φ−Ψ|+ $|Φ−Ψ|+ σ|Φ||Φ−Ψ|+ ς|Ψ||Φ−Ψ|)dυ)

≤ sup |Φ◦ −Ψ◦|+
β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1

(ρ sup |Φ−Ψ|+ $ sup |Φ−Ψ|+ σ‖Φ‖ sup |Φ−Ψ|

+ς‖Ψ‖ sup |Φ−Ψ|)dυ

= ‖Φ◦ −Ψ◦‖+
β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1

(ρ‖Φ−Ψ‖+ $‖Φ−Ψ‖+ h̄σ‖Φ−Ψ‖+ }ς‖Φ−Ψ‖)dυ

≤ ‖Φ−Ψ‖
2

+ (ρ‖Φ−Ψ‖+ $‖Φ−Ψ‖+ h̄σ‖Φ−Ψ‖+ }ς‖Φ−Ψ‖)

β

Γ(α)

∫ t

0
(t− υ)α−1υβ−1dυ

≤ ‖Φ−Ψ‖
2

+ (ρ‖Φ−Ψ‖+ $‖Φ−Ψ‖+ h̄σ‖Φ−Ψ‖+ }ς‖Φ−Ψ‖)

=

(
1
2
+ ρ + $ + h̄σ + }ς

)
‖Φ−Ψ‖

= v‖Φ−Ψ‖.

Consequently

‖F (t, θ, ζ, Φ, Ψ)−F1(t, θ, ζ, Ψ, Φ)‖ ≤ v‖Φ−Ψ‖.

Therefore, from Theorem 1, there exists exactly one fixed point of F . Hence, the system (3)
has exactly one fixed point. So, the solution of (3) is unique.
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4. Solution Strategy

Consider the following nonlinear general partial differential equation with an FF
operator as

C
0 Dα,β

t Φ(θ, ζ, t) = −ψ(θ, ζ)Φ(θ, ζ, t)− ϕ(θ, ζ)Φ(θ, ζ, t) + η(θ, ζ, t),
C
0 Dα,β

t Ψ(θ, ζ, t) = −ψ(θ, ζ)Ψ(θ, ζ, t)− ϕ(θ, ζ)Ψ(θ, ζ, t) + η(θ, ζ, t), (7)

where t > 0, 0 < α, β ≤ 1, ψ(θ) is a general linear term and ϕ(θ) is a nonlinear term. Now,
from Equation (2), we have

C
0 Dα

t Φ(θ, ζ, t) = βtβ−1[−ψ(θ, ζ)Φ(θ, ζ, t)− ϕ(θ, ζ)Φ(θ, ζ, t) + η(θ, ζ, t)].

Applying Natural transform, we obtain

Sα

ρα
N[Φ]− Sα−1

ρα
Φ(θ, ζ, 0) = N

[
βtβ−1(−ψ(θ, ζ)Φ(θ, ζ, t)− ϕ(θ, ζ)Φ(θ, ζ, t) + η(θ, ζ, t))

]
.

Or

N[Φ] =
1
S

Φ(θ, ζ, 0) +
ρα

Sα
N
[

βtβ−1(−ψ(θ, ζ)Φ(θ, ζ, t)− ϕ(θ, ζ)λ(θ, ζ, t) + η(θ, ζ, t))
]
.

Now, applying the inverse of the Natural transform, we have

Φ(θ, ζ, t) = Φ(θ, ζ, 0) + N−1
[

ρα

Sα
N
(

βtβ−1(−ψ(θ, ζ)Φ(θ, ζ, t)− ϕ(θ, ζ)Φ(θ, ζ, t) + η(θ, ζ, t))
)]

. (8)

Then, the series solution is given by

Φ(θ, ζ, t) =
∞

∑
h=0

Φh(θ, ζ, t).

The nonlinear term is decomposed by Adomian polynomial as

Ah =
1
h!

dh

dρh

[
ζ

(
h

∑
i=0

ρiΦi

)]
ρ=0

, h = 0, 1, 2, ...

So, Equation (8) becomes

∞

∑
h=0

Φh(θ, ζ, t) = Φ(θ, ζ, 0) + N−1

[
ρα

Sα
N

[
βtβ−1

(
−ψ(θ, ζ)

∞

∑
h=0

Φ(θ, ζ, t)−
∞

∑
h=0

Ah

∞

∑
h=0

Φh + η(θ, ζ, t)

)]]
.

So, we can write the first few terms of the series as

Φ◦(θ, ζ, t) = Φ(θ, ζ, 0)

Φ1(θ, ζ, t) = N−1
[

ρα

Sα
N
[

βtβ−1(−ψ(θ, ζ)Φ◦(θ, ζ, t)− A◦Φ◦(θ, ζ, t) + η(θ, ζ, t))
]]

,

Φ2(θ, ζ, t) = N−1
[

ρα

Sα
N
[

βtβ−1(−ψ(θ, ζ)Φ1(θ, ζ, t)− A1Φ1(θ, ζ, t) + η(θ, ζ, t))
]]

,

Φ3(θ, ζ, t) = N−1
[

ρα

Sα
N
[

βtβ−1(−ψ(θ, ζ)Φ2(θ, ζ, t)− A2Φ2(θ, ζ, t) + η(θ, ζ, t))
]]

,

...

Φh+1(θ, ζ, t) = N−1
[

ρα

Sα
N
[

βtβ−1(−ψ(θ, ζ)Φh(θ, ζ, t)− AhΦh(θ, ζ, t) + η(θ, ζ, t))
]]

,
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for h = 0, 1, 2, . . .Similarly, for Ψ(θ, ζ, t)

Ψ◦(θ, ζ, t) = Ψ(θ, ζ, 0),

Ψ1(θ, ζ, t) = N−1
[

ρα

Sα
N
[

βtβ−1(−ψ(θ, ζ)Ψ◦(θ, ζ, t)− A◦Ψ◦(θ, ζ, t) + η(θ, ζ, t))
]]

,

Ψ2(θ, ζ, t) = N−1
[

ρα

Sα
N
[

βtβ−1(−ψ(θ, ζ)Ψ1(θ, ζ, t)− A1Ψ1(θ, ζ, t) + η(θ, ζ, t))
]]

,

Ψ3(θ, ζ, t) = N−1
[

ρα

Sα
N
[

βtβ−1(−ψ(θ, ζ)Ψ2(θ, ζ, t)− A2Ψ2(θ, ζ, t) + η(θ, ζ, t))
]]

,

...

Ψh+1(θ, ζ, t) = N−1
[

ρα

Sα
N
[

βtβ−1(−ψ(θ, ζ)Ψh(θ, ζ, t)− AhΨh(θ, ζ, t) + η(θ, ζ, t))
]]

,

for h = 0, 1, 2, . . .. To obtain solutions for the given FF Burgers equations, we will utilize
the previously developed procedure. This procedure, which has been outlined above,
will be applied to numerical examples of the FF Burgers equation under consideration.
The implementation will be carried out using a detailed, step-by-step approach.

5. Convergence Analysis

In this section, we show that the result of (7) is convergent. For this purpose, we have
to just prove that sequence (Φm, Ψm) is Cauchy or we may prove that Φm, Ψm Cauchy in C.
To prove the following theorem, for convenience taking P(Φ) = −ψ(θ, ζ)Φh(θ, ζ, t) and
Q(Ψ) = −AhΨh(θ, ζ, t) + η(θ, ζ, t)

Theorem 3. Assume that P(Φ) and Q(Ψ) satisfy the Lipschitz condition. Then, the acquired
solution of Equation (7) is a convergent series.

Proof. Since C is a Banach space with the norm ‖Φ‖ = supt∈[0,1] |Φ| where Φ = Φ(θ, ζ, t),
let Φm = ∑m

h=0 Φh. To show that Φm is a Cauchy sequence in C, consider

‖Φm −Φn‖ = sup
t∈[0,1]

∣∣∣∣∣ m

∑
h=n+1

Φh

∣∣∣∣∣
≤ sup

t∈[0,1]

∣∣∣∣∣N−1

[
ρα

Sα
N

[
βtβ−1

m

∑
h=n+1

(P(Φh) +Q(Φh))

]]∣∣∣∣∣
≤ sup

t∈[0,1]

∣∣∣∣N−1
[

ρα

Sα
N
[

βtβ−1(P(Φm−1)−P(Φn−1) +Q(Φm−1)−Q(Φn−1))
]]∣∣∣∣

= sup
t∈[0,1]

∣∣∣∣∣N−1

[
β(β− 1)!

ρα+β−1

Sα+β
(P(Φm−1)−P(Φn−1) +Q(Φm−1)−Q(Φn−1))

]∣∣∣∣∣
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= sup
t∈[0,1]

∣∣∣∣[ β(β− 1)!
(α + β− 1)!

tα+β−1(P(Φm−1)−P(Φn−1) +Q(Φm−1)−Q(Φn−1))

]∣∣∣∣
≤ sup

t∈[0,1]

∣∣∣∣[ β(β− 1)!
(α + β− 1)!

(P(Φm−1)−P(Φn−1) +Q(Φm−1)−Q(Φn−1))

]∣∣∣∣
≤ sup

t∈[0,1]

∣∣∣∣∣ β(β− 1)!
(α + β− 1)!

(P(Φm−1)−P(Φn−1))|+ sup
t∈[0,1]

| β(β− 1)!
(α + β− 1)!

(Q(Φm−1)−Q(Φn−1))

∣∣∣∣∣
≤ β(β− 1)!

(α + β− 1)!
sup
t∈[0,1]

|P(Φm−1)−P(Φn−1)|+
β(β− 1)!

(α + β− 1)!
sup
t∈[0,1]

|Q(Φm−1)−Q(Φn−1)|

=
β(β− 1)!

(α + β− 1)!
‖P(Φm−1)−P(Φn−1)‖+

β(β− 1)!
(α + β− 1)!

‖Q(Φm−1)−Q(Φn−1)‖

≤ r1
β(β− 1)!

(α + β− 1)!
‖Φm−1 −Φn−1‖+ r2

β(β− 1)!
(α + β− 1)!

‖Φm−1 −Φn−1‖

= (r1 + r2)

(
β(β− 1)!

(α + β− 1)!

)
‖Φm−1 −Φn−1‖,

where r1, r2 represent the Lipschitz constants for P(Φ) and Q(Ψ). Let m = n + 1, then

‖Φn+1 −Φn‖ ≤ r‖Φn −Φn−1‖ ≤ r2‖Φn−1 −Φn−2‖ ≤ r3‖Φn−2 −Φn−3‖...... ≤ rn‖Φ1 −Φ0‖,

where r = (r1 + r2)
(

β(β−1)!
(α+β−1)!

)
. By triangular, we have

‖Φm −Φn‖ ≤ ‖Φn+1 −Φn‖+ ‖Φn+2 −Φn−1‖+ ........ + ‖Φm −Φm−1‖

≤
(

rn + rn+1 + ....... + rm−1
)
‖Φ1 −Φ0‖

≤ rn
(

1− rm−n

1− r

)
‖Φ1‖.

As 0 < r < 1, we have 1− rm−n < 1. Therefore

‖Φm −Φn‖ ≤
rn

1− r
‖Φ1‖.

Since ‖Φ1‖ < ∞, ‖Φm −Φn‖ → 0 as n→ ∞. Therefore, Φm is Cauchy sequence. Similarly,
from (7), we can show that Ψ is Cauchy in the C. Therefore, (Φm, Ψm) is Cauchy in C.
Hence, the series solution (Φm, Ψm) is a convergent series.

Theorem 4. If there is K ∈ (0, 1) such that

‖Φh+1(θ, ζ, t)‖ ≤ K‖Φh(θ, ζ, t)‖, ∀h.

and

‖Ψh+1(θ, ζ, t)‖ ≤ K‖Ψh(θ, ζ, t)‖∀h,

and assume that ∑m
h=0 Φh(θ, ζ, t)( 1

$ )
h and ∑m

h=0 Ψh(θ, ζ, t)( 1
$ )

h are mth-order approximate solu-
tions of Φ and Ψ respectively. Following that,∥∥∥∥∥Φ(θ, ζ, t)−

m

∑
h=0

Φh(θ, ζ, t)
(
(

1
$
)h
)∥∥∥∥∥ ≤ Km+1

$m($−K)‖Φ0(θ, ζ, t)‖,

and ∥∥∥∥∥Ψ(θ, ζ, t)−
m

∑
h=0

Ψh(θ, ζ, t)
(
(

1
$
)h
)∥∥∥∥∥ ≤ Km+1

$m($−K)‖Ψ0(θ, ζ, t)‖,
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may be used to determine the greatest absolute truncation error.

Proof. Here, one has∥∥∥∥∥Φ(θ, ζ, t)−
m

∑
h=0

Φh(θ, ζ, t)(
1
$
)h

∥∥∥∥∥ =

∥∥∥∥∥ ∞

∑
h=m+1

Φh(θ, ζ, t)
(
(

1
$
)h
)∥∥∥∥∥

≤
∞

∑
h=m+1

∥∥∥∥Φh(θ, ζ, t)
(
(

1
$
)h
)∥∥∥∥

≤
∞

∑
h=m+1

Kh
(

1
$

)h
‖Φ0(θ, ζ, t)‖

≤
(
K
$

)m+1(
1 +
K
$
+
K2

$2 + .......
)
‖Φ0(θ, ζ, t)‖

≤
(
K
$

)m+1
(

1
1− K$

)
‖Φ0(θ, ζ, t)‖

≤ Km+1

$m($−K)‖Φ0(θ, ζ, t)‖.

Similarly, we can prove that∥∥∥∥∥Ψ(θ, ζ, t)−
m

∑
h=0

Ψh(θ, ζ, t)(
1
$
)h

∥∥∥∥∥ ≤ Km+1

$m($−K)‖Ψ0(θ, ζ, t)‖.

Hence the result.

6. Numerical Examples

To implement and validate the developed procedure for the solution of the considered
FF Burgers equations, in this section, we study two numerical examples and illustrate the
detailed step-by-step procedure.

Example 1. Consider the FF Burgers equation as:{
C
0 Dα,β

t Φ = Φθθ + Φζζ −ΦΦθ −ΨΦζ ,
C
0 Dα,β

t Ψ = Ψθθ + Φζζ −ΦΨθ −ΨΨζ ,
(9)

with initial condition Φ(θ, ζ, 0) = θ + ζ , Ψ(θ, ζ, 0) = θ − ζ.

Solution 1. Since from Equation (12), we have{
C
0 Dα

t Φ = βtβ−1(Φθθ + Φζζ −ΦΦθ −ΨΦζ

)
,

C
0 Dα

t Ψ = βtβ−1(Ψθθ + Φζζ −ΦΨθ −ΨΨζ

)
.

(10)

Applying Natural transform, we obtain{
Sα

ρα N[Φ]− Sα−1

ρα Φ(ζ, 0) = N
[
β tβ−1(Φθθ + Φζζ −ΦΦθ −ΨΦζ

)]
,

Sα

ρα N[Ψ]− Sα−1

ρα Ψ(θ, 0) = N
[
β tβ−1(Ψθθ + Φζζ −ΦΨθ −ΨΨζ

)]
,

(11)

{
N[Φ) = 1

S Φ(θ, ζ, 0) + ρα

Sα N
[
βtβ−1(Φθθ + Φζζ −ΦΦθ −ΨΦζ

)]
,

N[Ψ] = 1
S Ψ(θ, ζ, 0) + ρα

Sα N
[
βtβ−1(Ψθθ + Φζζ −ΦΨθ −ΨΨζ

)]
.

(12)
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Applying the inverse of the Natural transform, we obtainΦ(θ, ζ, t) = θ + ζ + N−1
[

ρα

Sα N
[
βtβ−1(Φθθ + Φζζ −ΦΦθ −ΨΦζ

)]]
,

Ψ(θ, ζ, t) = θ − ζ + N−1
[

ρα

Sα N
[
βtβ−1(Ψθθ + Φζζ −ΦΨθ −ΨΨζ

)]]
.

(13)

The series solution is given by{
Φ(θ, ζ, t) = ∑∞

h=0 Φh(θ, ζ, t),
Ψ(θ, ζ, t) = ∑∞

h=0 Ψh(θ, ζ, t).

Now, Equation (13) can be written as

∑∞
h=0 Φh(θ, ζ, t) = θ + ζ − N−1

[
ρα

Sα N
[
βtβ−1(∑∞

h=0 Ah(ΦΦθ) + ∑∞
h=0 Bh(ΨΦζ )−∑∞

h=0(Φθθ)−∑∞
h=0(Φζζ )

)]]
,

∑∞
h=0 Ψh(θ, ζ, t) = θ − ζ − N−1

[
ρα

Sα N
[
βtβ−1(∑∞

h=0 Ch(ΦΨθ) + ∑∞
h=0 Dh(ΨΨζ )−∑∞

h=0(Ψθθ)−∑∞
h=0(Ψζζ )

)]]
,

where Ah(ΦΦθ), Bh(ΨΦζ), Ch(ΦΨθ), Dh(ΨΨζ) represent Adomian polynomials which are
given below:

A◦ = Φ◦Φ◦θ B◦ = Ψ◦Ψ◦ζ ,
A1 = Φ◦Φ1θ + Φ1Φ◦θ B1 = Ψ◦Φ1θ + Ψ1Φ◦ζ ,
A2 = Φ◦Φ2θ + Φ1Φ1θ + Φ2Φ◦θ B2 = Ψ◦Φ2ζ + Ψ1Φ1ζ + Ψ2Φ◦ζ ,
C◦ = Φ◦Ψ◦θ

D◦ = Ψ◦Ψ◦ζ
,

C1 = Φ◦Ψ1θ + Φ1Ψ◦θ D1 = Ψ◦Ψ1ζ + Ψ1Ψ◦ζ ,
C2 = Φ◦Ψ2θ + Φ1Ψ1θ + Φ2Ψ◦θ D2 = Ψ◦Ψ2ζ + Ψ1Ψ1ζ + Ψ2Ψ◦ζ .

Now

Φ◦(θ, ζ, t) = θ + ζ,

Φ1 = N−1
[

ρα

Sα
N
[

βtβ−1(A◦ + B◦ + Φ◦θθ −Φ◦ζζ

)]]
= N−1

[
ρα

Sα
N
[

βtβ−1(2θ)
]]

= −N−1
[

ρα

Sα
N
[

βtβ−1(2θ)
]]

= −2θβN−1
[

ρα

Sα

[
(β− 1)!

ρβ−1

Sβ

]]
= −2θβ(β− 1)!N−1

[
ρα+β−1

Sα+β

]
Φ1 =

−2θβ(β− 1)!
(α + β− 1)!

tα+β−1,

and

Φ2 =
4(θ + ζ)β2(β− 1)!

(α + β− 1)!(2α + 2β− 2)!
t2α+2β−2.

Similarly

Ψ◦(θ, ζ, t) = θ − ζ,

Ψ1(θ, ζ, t) =
−2ζβ(β− 1)!
(α + β− 1)!

tα+β−1,

Ψ2(θ, ζ, t) =
4(θ − ζ)β2(β− 1)!(α + 2β− 2)!

(α + β− 1)!(2α + 2β− 2)!
t2α+2β−2.
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Hence, the required solution is given by:

Φ(θ, ζ, t) = Φ◦(θ, ζ, t) + Φ1(θ, ζ, t) + Φ2(θ, ζ, t) + . . . (14)

Φ(θ, ζ, t) = θ + ζ − 2θβ(β− 1)!
(α + β− 1)!

tα+β−1 +
4(θ + ζ)β2(β− 1)!(α + 2β− 2)!

(2α + 2β− 2)!(α + β− 1)!
t2α+2β−2 − . . . . (15)

Ψ(θ, ζ, t) = Ψ◦(θ, ζ, t) + Ψ1(θ, ζ, t) + Ψ2(θ, ζ, t) + . . . (16)

Ψ(θ, ζ, t) = θ − ζ − 2ζβ(β− 1)!
(α + β− 1)!

tα+β−1 +
4(θ − ζ)β2(β− 1)!(α + 2β− 2)!

(α + β− 1)!(2α + 2β− 2)!
t2α+2β−2 − . . . . (17)

Remark 1. (a) When β = 1, then

Φ(θ, ζ, t) = θ + ζ − 2θtα

α!
+

4(θ + ζ)

(2α)!
t2α − . . . , (18)

Ψ(θ, ζ, t) = θ − ζ − 2ζtα

α!
+

4(θ − ζ)

(2α)!
t2α − . . . , (19)

which is the solution of fractional-order problem given in [27].

(b) When α = β = 1, then

Φ(θ, ζ, t) = θ + ζ − 2θt+ 2(θ + ζ)t2 − . . . ,

Ψ(θ, ζ, t) = θ − ζ − 2ζt+ 2(θ − ζ)t2 − . . . ,

the exact solutions are

Φ(θ, ζ, t) =
θ − 2θt+ ζ

1− 2t2
,

Ψ(θ, ζ, t) =
θ − 2ζt− ζ

1− 2t2
,

which is the closed-form solution of integer-order problem.

6.1. Simulations and Discussion of Solution of Example 1

In this section, we present the numerical results obtained by applying our proposed
method to the nonlinear Burgers equations using the fractal fractional Caputo operator.
The numerical simulations were conducted for various values of the fractional order α and
the fractal dimension β. The results are depicted graphically in Figures 1 and 2. In Figure 1a,
we observe the two-dimensional behavior of the solution for β = 1 and α = 0.8, 0.9, and 0.1.
This graph elucidates how the solution evolves for different choices of α while keeping
β fixed. Next, to portray the effect of the fractal dimension β, we take α = 1 and vary
β. Figure 1b displays the two-dimensional simulation of the solution for β = 0.75, 0.85,
and 0.95, while α takes the values 0.7, 0.8, and 0.9. These figures allow us to analyze the
impact of β on the solution dynamics. To give a more comprehensive analysis, Figure 1c,d
portray the three-dimensional behavior of the achieved outcomes for two selected sets of α
and β. These simulations exemplify the complex dynamics of the solution in 3D space and
yield further analysis into the system’s behavior. Moreover, Figure 2 represents the two-
dimensional and three-dimensional dynamics of the variable Ψ for various combinations
of α and β. These pictures represent the variations in Ψ and how they are affected by the
choice of α and β. From the graphs presented in Figures 1 and 2, it becomes evident that
both α and β significantly affect the behavior of the obtained results. Even small variations
in α or β result in notable changes in the solution’s behavior, indicating the sensitivity of
the system to these parameters. To explain the accuracy of our technique, we compare the
obtained outcomes with the exact solution. Figure 3 studies the absolute error between the
series solution and the exact solution. This graph supplies a visual representation of the
deviation between the two solutions, allowing us to evaluate the accuracy of our approach.
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On the top of that, Table 1 presents the numerical values of the absolute error for various
parameter values. These values provide quantitative measures of the deviation between
the achieved outcomes and the exact solution, further confirming the validity and efficiency
of our proposed strategy.

Example 2. Consider the 1D-order FF Burgers equation as:{
C
0 Dα,β

t Φ = 2ΦΦθ −Φθθ + (ΦΨ)θ ,
C
0 Dα,β

t Ψ = −2ΨΨθ −Ψθθ − (ΦΨ)θ , where 0 < α, β ≤ 1,
(20)

with initial condition Φ(θ, 0) = sin(θ) , Ψ(θ, 0) = −sin(θ).

Solution 2. Since from Equation (20), we have{
C
0 Dα

t Φ = βtβ−1(2ΦΦθ −Φθθ + (ΦΨ)θ),
C
0 Dα

t Ψ = βtβ−1(−2ΨΨθ −Ψθθ − (ΦΨ)θ).
(21)

Applying Natural transform, we obtain{
Sα

ρα N[Φ]− Sα−1

ρα Φ(θ, 0) = N
[
β tβ−1(2ΦΦθ −Φθθ + (ΦΨ)θΦζ

)]
,

Sα

ρα N[Ψ]− Sα−1

ρα Ψ(θ, 0) = N
[
β tβ−1(−2ΨΨθ −Ψθθ − (ΦΨ)θ)

]
.

(22)

{
N[Φ) = 1

S Φ(θ, 0) + ρα

Sα N
[
βtβ−1(2ΦΦθ −Φθθ + (ΦΨ)θ)

]
,

N[Ψ] = 1
S Ψ(θ, 0) + ρα

Sα N
[
βtβ−1(−2ΨΨθ −Ψθθ − (ΦΨ)θ)

]
.

(23)

Applying the inverse of the Natural transform, we obtainΦ(θ, t) = sin(θ) + N−1
[

ρα

Sα N
[
βtβ−1(2ΦΦθ −Φθθ + (ΦΨ)θ)

]]
,

Ψ(θ, t) = −sin(θ) + N−1
[

ρα

Sα N
[
βtβ−1(−2ΨΨθ −Ψθθ − (ΦΨ)θ)

]]
.

(24)

The series solution is given by: {
Φ(θ, t) = ∑∞

h=0 Φh(θ, t,
Ψ(θ, t) = ∑∞

h=0 Ψh(θ, t).

Now, Equation (24) can be written as:∑∞
h=0 Φh(θ, t) = sin(θ) + N−1

[
ρα

Sα N
[
βtβ−1(2 ∑∞

h=0 Ah(ΦΦθ) + ∑∞
h=0 Bh(ΦΨ)θ −∑∞

h=0(Φθθ))
]]

,

∑∞
h=0 Ψh(θ, t) = −sin(θ)− N−1

[
ρα

Sα N
[
βtβ−1(2 ∑∞

h=0 Ch(ΨΨθ) + ∑∞
h=0 Dh((ΦΨ)θ) + ∑∞

h=0(Ψθθ))
]]

.

where Ah(ΦΦθ), Bh((ΦΨ)θ), Ch(ΨΨθ), Dh(PhiΨθ) represent Adomian polynomials, which are
given below:

A◦(ΦΦθ) = Φ◦Φ◦θ , B◦((ΦΨ)θ) = Φ◦Ψ◦θ ,
A1(ΦΦθ) = Φ◦Φ1θ + Φ1Φ◦θ , B1((ΦΨ)θ) = Φ◦θΨ1θ + Φ1θΦ◦θ ,
A2(ΦΦθ) = Φ◦Φ2θ + Φ1Φ1θ + Φ2Φ◦θ , B2((ΦΨ)θ) = Φ◦θΨ2θ + Φ1θΨ1θ + Φ2θΨ◦θ ,
C◦(ΨΨθ) = Ψ◦Ψ◦θ

, D◦((ΦΨ)θ) = Φ◦θΨ◦θ
,

C1(ΨΨθ) = Ψ◦Ψ1ζ + Ψ1Ψ◦ζ , D1((ΦΨ)θ) = Φ◦θΨ1θ + Φ1θΨ◦θ ,
C2(ΨΨθ) = Ψ◦Ψ2θ + Ψ1Ψ1θ + Ψ2Ψ◦θ , D2((ΦΨ)θ) = Φ◦θΨ2θ + Φ1θΨ1θ + Φ2θΨ◦θ .
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Now

Φ◦(θ, t) = sin(θ),

Φ1(θ, t) = N−1
[

ρα

Sα
N
[

βtβ−1(2A◦ + B◦ + Φ◦θθ)
]]

= N−1
[

ρα

Sα
N
[

βtβ−1(sin(θ))
]]

= N−1
[

ρα

Sα
N
[

βtβ−1(sin(θ))
]]

= sin(θ)βN−1
[

ρα

Sα

[
(β− 1)!

ρβ−1

Sβ

]]
= sin(θ)β(β− 1)!N−1

[
ρα+β−1

Sα+β

]
Φ1(θ, t) =

sin(θ)β(β− 1)!
(α + β− 1)!

tα+β−1,

and

Φ2(θ, t) =
sin(θ)β2(β− 1)!(α + 2β− 2)!
(α + β− 1)!(2α + 2β− 2)!

t2α+2β−2.

Similarly

Ψ◦(θ, t) = −sin(θ),

Ψ1(θ, t) = − sin(θ)β(β− 1)!
(α + β− 1)!

tα+β−1,

Ψ2(θ, t) = − sin(θ)β2(β− 1)!(α + 2β− 2)!
(α + β− 1)!(2α + 2β− 2)!

t2α+2β−2.

Hence, the required solution is given by{
Φ(θ, t) = Φ◦(θ, t) + Φ1(θ, t) + Φ2(θ, t) + . . .
Ψ(θ, t) = Ψ◦(θ, t) + Ψ1(θ, t) + Ψ2(θ, t) + . . . .

(25)

Φ(θ, t) = sin(θ) +
sin(θ)β(β− 1)!
(α + β− 1)!

tα+β−1 +
sin(θ)β2(β− 1)!(α + 2β− 2)!
(2α + 2β− 2)!(α + β− 1)!

t2α+2β−2 + . . . , (26)

Ψ(θ, t) = −sin(θ)− sin(θ)β(β− 1)!
(α + β− 1)!

tα+β−1 − sin(θ)β2(β− 1)!(α + 2β− 2)!
(α + β− 1)!(2α + 2β− 2)!

t2α+2β−2 − . . . . (27)

Remark 2. (a) When β = 1, thenΦ(θ, t) = sin(θ) + sin(θ)tα

α! + sin(θ)
(2α)! t

2α − . . . ,

Ψ(θ, t) = −sin(θ)− sin(θ)tα

α! − sin(θ)
(2α)! t

2α − . . . ,
(28)

which is the solution of fractional-order problem given in [27].

(b) When α = β = 1 then{
Φ(θ, t) = sin(θ) + sin(θ)t+ sin(θ)

2! t2 + . . . ,

Ψ(θ, t) = −sin(θ)− sin(θ)t− sin(θ)
2! t2 − . . . ,
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the exact solutions are {
Φ(θ, t) = etsin(θ),
Ψ(θ, t) = −etsin(θ),

which is the closed-form solution of Equation (20) in integer order.
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Figure 1. Simulations of the solution of Equation (12) for various sets of α and β. u(x, t) denotes the
Φ(θ, ζ, t) in the above figures.
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(c) 3D graph when α varies (d) 3D graph when β varies

Figure 2. Simulations of the solution v(x, y, t) of Equation (12) for various sets of α and β. Here, v(x, y,
t) represents Ψ(θ, ζ, t) in the above figures.
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Figure 3. Simulation of the absolute error.

Table 1. Absolute error between the approximate versus exact solution for α = 1, k = 1, a = 1,
β = 1 and ζ = 0.18.

(θ, t) Φ Exact | Exact−Φ | (θ,t) Ψ Exact | Exact−Ψ|
(−1, 0.01) 9.0218 9.0218 4.3609e−06 (−1, 0.01) −11.2022 −11.2022 4.0448e−05

(−0.8, 0.01) 9.2178 9.2178 3.5687e−06 (−0.8, 0.01) −11.0022 −11.0022 4.0440e−05
(−0.6, 0.01) 9.4139 9.4139 2.7766e−06 (−0.6, 0.01) −10.8021 −10.8021 4.0432e−05
(−0.4, 0.01) 9.6099 9.6099 1.9844e−06 (−0.4, 0.01) −10.6021 −10.6021 4.0424e−05
(−0.2, 0.01) 9.8060 9.8060 1.1922e−06 (−0.2, 0.01) −10.4020 −10.4020 4.0416e−05

(0, 0.01) 10.0020 10.0020 4.0008e−07 (0, 0.01) −10.2020 −10.2020 4.0408e−05
(0.2, 0.01) 10.1980 10.1980 3.9208e−07 (0.2, 0.01) −10.0020 −10.0020 4.0400e−05
(0.4, 0.01) 10.3941 10.3941 1.1842e−06 (0.4, 0.01) −9.8019 −9.8020 4.0392e−05
(0.6, 0.01) 10.5901 10.5901 1.9764e−06 (0.6, 0.01) −9.6019 −9.6019 4.0384e−05
(0.8, 0.01) 10.7862 10.7862 2.7686e−06 (0.8, 0.01) −9.4018 −9.4019 4.0376e−05
(1, 0.01) 10.9822 10.9822 3.5607e−06 (1, 0.01) −9.2018 −9.2018 4.0368e−05

6.2. Simulations and Discussion of Solution of Example 2

In this section, we examine the achieved numerical outcomes for a selection of α and
β. The numerical simulations are graphically represented in Figures 4 and 5, allowing a
rigorous and comparative investigation. Figure 4a showcases the two-dimensional behavior
of the solution for β = 0.9 while varying α between 0.7, 0.8, and 0.9. This plot portrays a
detailed investigation of the solution’s evolution under different α values while keeping
β constant. To further investigate the effect of the fractal dimension β, we take α = 0.7
and explore varying β values. Figure 4b provides a comprehensive two-dimensional
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simulation of the solution for β = 0.6, 0.75, and 0.95, with α fixed at 0.7. These plots help
a thorough analysis of how the solution behaves as β is adjusted. For a more detailed
analysis of the system evolutions, Figure 4c,d display the three-dimensional wave behavior
of the obtained outcomes for two specific sets of α and β. These plots allow valuable
insights into the dynamics of the solution in 3D space, enabling a deeper investigation of
its behavior. Moreover, Figure 5 gives the 2D and 3D behavior of the variable Ψ across
various combinations of α and β. These graphs represent a comparative assessment of
the variations in Ψ and how they are affected by the choice of α and β. Based on the
graphical evaluation presented in Figures 4 and 5, it is noticed that both α and β have a
great impact on the behavior of the obtained results. Even small variations in α or β lead
to substantial changes in the solution’s behavior, showing the sensitivity of the system to
these parameters. To rigorously analyze the accuracy of our approach, we compare the
obtained outcomes with the exact solution. Figure 6 elucidates the absolute error between
the acquired series solution and the exact solution, providing a visual representation of the
deviation between the two. In addition to that, Table 2 gives the numerical values of the
absolute error for various parameter combinations, facilitating a quantitative evaluation of
the deviation between the achieved outcomes and the exact solution. These comparisons
rigorously show the efficiency and validity of our propose method in approximating
the exact solution. To sum up, the achieved numerical outcomes presented in this part,
as shown in Figures 4 and 5, offer a detailed and comparative study of the solutions
obtained by employing the FF Caputo operator in the study of the nonlinear Burgers
equations. The graphical representations give insights into the effect of α and β on the
solution’s evolution, highlighting their significant effect. The analysis of the absolute error
portrayed in Figure 6 and Table 2 further proves the efficiency and validity of our technique
in approximating the exact solution.
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Figure 4. Simulations of the solution of Equation (20) for various sets of α and β.
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Figure 5. Simulations of the solution of the Equation (20) for various sets of α and β.
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Figure 6. Simulation of the absolute error.

Table 2. Absolute error between the approximate versus exact solution for α = 1, k = 1, a = 1, β = 1.

(θ, t) Φ Exact | Exact−Φ | (θ, t) Ψ Exact | Exact−Ψ|
(−0.1, 0.01) −0.0999 −0.0903 9.6e−03 (−0.1, 0.01) 0.0999 0.0903 9.6e−03

(−0.08, 0.01) −0.0800 −0.0738 6.2e−03 (−0.08, 0.01) 0.0800 0.0738 6.2e−03
(−0.06, 0.01) −0.0600 −0.0565 3.6e−03 (−0.06, 0.01) 0.0600 0.0565 3.6e−03
(−0.04, 0.01) −0.0400 −0.0384 1.6e−03 (−0.04, 0.01) 0.0400 0.0384 1.6e−03
(−0.02, 0.01) −0.0200 −0.0196 4.1601e−04 (−0.02, 0.01) 0.0200 0.0196 4.1601e−04

(0, 0.01) 0 0 0 (0, 0.01) 0 0 0
(0.02, 0.01) 0.0200 0.0204 3.8399e−04 (0.02, 0.01) −0.0200 −0.0204 3.8399e−04
(0.04, 0.01) 0.0400 0.0416 1.6e−03 (0.04, 0.01) −0.0400 −0.0416 1.6e−03
(0.06, 0.01) 0.0600 0.0637 3.6e−03 (0.06, 0.01) −0.0600 −0.0637 3.6e−03
(0.08, 0.01) 0.0800 0.0866 6.6e−03 (0.08, 0.01) −0.0800 −0.0866 6.6e−03
(0.1, 0.01) 0.0999 0.1103 1.4e−03 (0.1, 0.01) −0.0999 −0.1103 1.4e−03
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7. Conclusions

The utilization of the FF Caputo operator has been employed to analyze the inter-
connected nonlinear Burgers equations in a comprehensive manner. In the analysis of
differential equations, particularly when nonlocal operators are employed, the theory of
existence becomes a pivotal aspect. Consequently, the establishment of existence results,
particularly those pertaining to the uniqueness of solutions, has been demonstrated through
the aid of functional analysis techniques. Natural transform (NT) offers a generalization
of both the Laplace and Sumudu transforms, as can be inferred from the definition of NT
itself. Hence, by incorporating NT with Adomian decomposition, the desired solution
for the given partial differential equation (PDE) has been derived. The applicability and
remarkable accuracy of the applied method have been validated through the examination
of Figures 3 and 6 as well as Tables 1 and 2. Additionally, Figure 7 serves as a visual
representation comparing the proposed method with the LADM technique. It is evident
from the figure that the proposed method surpasses LADM in terms of efficiency. More-
over, the simulation of the obtained solution effectively illustrates the impact of both the
fractional orders α and β on the solution of the proposed PDEs. The outcomes of this
manuscript offer a more generalized result, as highlighted in Remarks 1 and 2. In the case
where β equals 1, the solution reduces to the fractional-order case cited in [27]. Furthermore,
when both α and β assume unity, the solution corresponds to the integer-order case. Thus,
the utilization of FF operators for the examination of various equations and models holds
significant importance for enhanced analysis.
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Figure 7. Comparison of the proposed approach with Laplace Adomian decomposition
method (LADM).
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