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Abstract: A fully discrete space-time finite element method for the fractional Ginzburg–Landau
equation is developed, in which the discontinuous Galerkin finite element scheme is adopted in the
temporal direction and the Galerkin finite element scheme is used in the spatial orientation. By taking
advantage of the valuable properties of Radau numerical integration and Lagrange interpolation
polynomials at the Radau points of each time subinterval In, the well-posedness of the discrete
solution is proven. Moreover, the optimal order error estimate in L∞(L2) is also considered in
detail. Some numerical examples are provided to evaluate the validity and effectiveness of the
theoretical analysis.

Keywords: fractional Ginzburg–Landau equation; discontinuous Galerkin finite element method;
error estimate; numerical test

1. Introduction

In this paper, we consider the following fractional Ginzburg–Landau equation with
the Riesz fractional derivative:{

ut + (ν + iη)(−4)
α
2 u + (κ + iζ)|u|2u− γu = 0, x ∈ R, t ∈ (0, T],

u(x, 0) = u0(x), x ∈ R,
(1)

where ut =
∂u(x,t)

∂t , 1 < α ≤ 2, i2 = −1, and ν > 0, κ > 0, η, ζ, γ are real parameters. Here,
u(x, t) is a complex-valued function, and u0(x) is a given function. The Riesz fractional
derivative is defined as follows [1]:

(−4)
α
2 u = −∂αu(x, t)

∂|x|α =
1

2 cos πα
2
[−∞Dα

xu(x, t) +x Dα
∞u(x, t)], 1 < α < 2.

Here, −∞Dα
x is the left Riemann–Liouville fractional derivative [2]

−∞Dα
xu(x, t) =

1
Γ(2− α)

d2

dx2

∫ x

−∞

u(s, t)
(x− s)α−1 ds,

and xDα
+∞u(x, t) is the right Riemann–Liouville fractional derivative

xDα
+∞u(x, t) =

1
Γ(2− α)

d2

dx2

∫ ∞

x

u(s, t)
(s− x)α−1 ds,

where Γ(·) denotes the Gamma function. When α = 2, −(−4)
α
2 coincides with the

standard Laplace operator.
The fractional Ginzburg–Landau equation was suggested in [3,4]. It can be used to describe

the dynamical process in a medium with fractal dispersion [4] and media with a fractal mass
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dimension [5]. The analytical and closed solutions of the fractional Ginzburg–Landau equa-
tion cannot be obtained in general. Recently, some numerical methods for the fractional
Ginzburg–Landau equation have been proposed to analyze the behavior of the solution
of the equation. For solving this model, some efficient numerical methods, including
finite difference methods [6–16] and finite element methods [17,18], were developed. Since
the Galerkin finite element method can solve differential equations with more complex
geometries and has high-order accuracy, numerous researchers considered the finite ele-
ment method along the spacial direction to solve space fractional differential equations
(see [19,20] and the references therein).

The space-time finite element method (STFEM) is a more attractive tool for solving
partial differential equations. Its idea was first put forward by scholars such as Nickell,
Sackman, and Oden (see [21,22]), and then it was constantly developed and improved.
This method treats the time and space variables with a unified Galerkin finite-element
framework. It generalizes the finite element scheme of layer-by-layer iteration, which is
more flexible in dealing with discontinuous problems on unstructured meshes. It has been
successfully applied to solve some partial differential equations with the integer order
(see [23–31] for more details). Recently, Mustapha [32], Zheng and Zhao [33], Liu et al. [34],
Liu et al. [35], Bu et al. [36], Yue et al. [37], and Li et al. [38] developed a finite element
scheme for the fractional diffusion equation, fractional diffusion wave equation, linear
space fractional PDE, nonlinear fractional reaction diffusion system, multi-term time-space
fractional diffusion equation, multi-term time fractional advection–diffusion equations, and
fractional wave problems, for which the space-time finite element method was adopted.

To our knowledge, few papers have been published concerning the STFEM for frac-
tional equations. Therefore, this paper aims to generalize the STFEM to the fractional
Ginzburg–Landau equation (Equation (1)). The existence, uniqueness, and stability of
discrete solutions are analyzed based on the Radau numerical integration formula and the
advantage of the useful properties of Lagrange interpolating polynomials at the Radau
points of each time slab. The optimal order error estimate in L∞(L2) is provided under
weak restrictions on the space-time meshes. In the future, we will propose an adaptive
algorithm based on the present work.

The modulus of the initial value u0(x) decays to zero as the spatial variable x moves
away from the origin in general (e.g., see (57) and (58) in Section 6). Also, for the needs of the
error analysis, the infinite interval problem is usually truncated on a finite interval [17,39].
Based on this, we consider the following extended Dirichlet boundary problem: ut + (ν + iη)(−4)

α
2 u + (κ + iζ)|u|2u− γu = 0, x ∈ Ω, t ∈ (0, T],

u(x, t) = 0, x ∈ R\Ω, t ∈ (0, T],
u(x, 0) = u0(x), x ∈ Ω,

(2)

where Ω = [a, b] is a finite interval, ut =
∂u(x,t)

∂t , and u0(x) is a given function. The Riesz
fractional derivative is then given by

(−4)
α
2 u = −∂αu(x, t)

∂|x|α =
1

2 cos πα
2
[aDα

xu(x, t) + xDα
b u(x, t)],

where aDα
xu(x, t) and xDα

b u(x, t) denote the left Riemann–Liouville and right Riemann–
Liouville fractional derivatives of the order 1 < α < 2, respectively:

aDα
xu(x, t) = D2

x J2−α
a+ u(x, t), xDα

b u(x, t) = D2
x J2−α

b− u(x, t).
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Here, D2
x = ∂2/∂x2 and Jµ

a+u(x, t), Jµ
b−u(x, t) are the Riemann–Liouville fractional integrals

of the order µ of the following respective forms [1]:

Jµ
a+u(x, t) =

1
Γ(µ)

∫ x

a
(s− x)µ−1u(s, t)ds (x > a, µ > 0),

Jµ
b−u(x, t) =

1
Γ(µ)

∫ b

x
(x− s)µ−1u(s, t)ds (x < b, µ > 0).

2. Preliminaries

We begin with some notations. As usual, 〈·, ·〉 and ‖ · ‖ are the inner product and
norm in the Hilbert space L2(Ω), respectively, while 〈·, ·〉α and ‖ · ‖α will denote the
inner product and norm equipped in the fractional Sobolev space Hα(Ω), respectively. For
convenience, Hα

0 (Ω) denotes the closure of C∞
0 (Ω) with respect to ‖ · ‖α. We also introduce

the space L∞(Ω) and the L∞ norm as ‖ · ‖∞. Throughout this paper, C will denote the
constants, which may differ in different places.

The following lemmas are very useful for us to establish the numerical theories of the
space-time finite element method for Equation (2):

Lemma 1 ([40,41]). Let 0 < α < 1, α 6= 1
2 , and Ω = [a, b] be a finite interval, where a, b ∈ R. If

u(x), v(x) ∈ Hα
0 (Ω), and the first derivative of v(x) is integrable in the open interval (a, b), then

we have
〈 aD2α

x u, v〉 = 〈 aDα
xu, xDα

b v〉, 〈 xD2α
b u, v〉 = 〈 xDα

b u, aDα
xv〉.

Lemma 2 ([40,41]). If α > 0, u(x) ∈ Hα
0 (Ω), then

〈 aDα
xu, xDα

b u〉 = cos(απ) ‖ aDα
xu ‖2 .

Lemma 3. If 1 < α < 2, u(x), v(x) ∈ Hα
0 (Ω), then it holds that

〈D2
x aDα

xu, v〉 = 〈aD
α
2 +1
x u, xD

α
2 +1
b v〉, (3a)

〈D2
x xDα

b u, v〉 = 〈xD
α
2 +1
b u, aD

α
2 +1
x v〉. (3b)

Proof. It is obvious that 1− α
2 ∈ (0, 1) because of 1 < α < 2. From ([1], pages 74 and 92),

we have

Dx(aD
α
2
x u) = aD

α
2 +1
x u,

xD
α
2
b D2

xv = −Dx J1− α
2

b− D2
xv = −D3

x J1− α
2

b− v = −Dx(xD
α
2 +1
b v).

(4)

Using integration by parts, Lemma 1, and Equation (4), we have

〈D2
xaDα

xu, v〉 = 〈aDα
xu, D2

xv〉 = 〈aD
α
2
x u, xD

α
2
b D2

xv〉

= 〈aD
α
2
x u,−Dx(xD

α
2 +1
b v)〉 = 〈Dx(aD

α
2
x u), xD

α
2 +1
b v〉

= 〈aD
α
2 +1
x u, xD

α
2 +1
b v〉.

(5)

Therefore, the identity in Equation (3a) is verified. The identity in Equation (3b) can
be proven similarly.

Lemma 4 (Brouwder fixed-point theorem [42]). Let (H, 〈·, ·〉) be a finite dimensional Hilbert
space endowed with the norm ‖ · ‖ and f : H → H be continuous. Assume that there is δ > 0
such that

Re〈 f (z), z〉 ≥ 0, for every z ∈ H, ‖ z ‖= δ.

Then, there exists an element z∗ ∈ H such that f (z∗) = 0 and ‖ z∗ ‖≤ δ.
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Now, we introduce the formula of Radau numerical integrals, which will be used in
the following theoretical analysis of the space-time finite element scheme:

Lemma 5 ([43]). For each integer q ≥ 1, assume g(τ) ∈ C2q+1[0, 1]. Then, there exist weights
wj (j = 1, 2, · · · , q) such that

∫ 1

0
g(τ)dτ ∼=

q

∑
j=1

wjg(τj), 0 < τ1 < τ2 < · · · < τq = 1 (6)

holds. This is called the Radau quadrature rule. The Radau method is exact for all polynomials
of degrees no more than 2q− 2. The nodes τj (j = 1, 2, . . . , q) are called the Radau points over

(0, 1]. Moreover, τj =
1
2 + 1

2 xj, xj is the jth zero of
Pq(x) + Pq+1(x)

x− 1
, where Pq(x) is the Legendre

polynomial of a degree q, x ∈ [−1, 1], and wj =
1

2(1− xj)

1
[P′q(xj)]2

, j = 1, 2, . . . , q.

3. The Fully Discrete Space-Time Finite Element Scheme

Let 0 = t0 < t1 < · · · < tN = T be a partition of the time domain [0, T] and

In = (tn, tn+1], λn = tn+1 − tn, n = 0, 1, . . . , N − 1. Let Sh ⊂ H
α
2
0 (Ω) denote the space of

continuous and piecewise polynomials of a total degree r− 1 (where r is a positive integer)
concerning a partition T n

h = {K} of Ω = [a, b]. We associate a partition T n
h of Ω and a

finite element space Sn
h to each interval In; that is, we have

Sn
h = {v(x) ∈ H

α
2
0 (Ω) : v(x)|K ∈ Pr−1(K), K ∈ T n

h },

where Pr−1(K) is a set of polynomials of a degree r − 1 on a given spacial domain K.
We also associate a space S−1

h with {t0}. For simplicity, we take S−1
h = S0

h. Here, we
denote with K the element of the partition T n

h , hK the diameter of K, and hn = max
K∈T n

h

hK,

n = 0, 1, . . . , N − 1.
Now, with a given positive integer q, we introduce the space-time finite element space

over the whole region Ω× (0, T]:

Vhλ = {φ : Ω× (0, T]→ C, φ|Ω×In =
q−1

∑
j=0

tjvj(x), vj(x) ∈ Sn
h }.

The functions of Vhλ are, for fixed t ∈ In, elements of Sn
h , and for each x ∈ Ω, polynomial

functions are of a degree of at most q− 1 in t on each subinterval In. Note that the functions
in Vhλ are allowed to be discontinuous at the nodes tn, n = 0, 1, . . . , N − 1. Also, let
Vn

hλ = {φ|Ω×In : φ ∈ Vhλ}.
Let 〈Bu, v〉 = 〈(−4)

α
2 u, v〉 be a bilinear mapping. Then, from [40], there exists a

constant C such that

|〈Bu, v〉| ≤ C ‖ u ‖ α
2
‖ v ‖ α

2
, ∀ u, v ∈ L2(Ω), (7)

and
〈Bu, u〉 = ‖ aD

α
2
x u ‖2 + ‖ xD

α
2
b u ‖2≥ 0, ∀u ∈ L2(Ω) (8)

according to Lemmas 1 and 2.
Let f : C→ C be a function with the constants C1 > 0, C2 > 0 such that

| f (z)| ≤ C1|z|, ∀z ∈ C,

| f (z)− f (w)| ≤ C2|z− w|, ∀z, w ∈ C.
(9)
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We assume that Equation (2) admits a unique smooth solution on [0, T]. We define the
approximation U ∈ Vhλ to the solution u of Equation (2) as follows.

Find U ∈ Vhλ such that it satisfies∫
In
〈Ut, Φ〉dt + (ν + iη)

∫
In
〈BU, Φ〉dt + (κ + iζ)

∫
In
〈 f (U), Φ〉dt

− γ
∫
In
〈U, Φ〉dt + 〈[Un], Φn

+〉 = 0, ∀Φ ∈ Vn
hλ, n = 0, 1, . . . , N − 1.

(10)

Here, [Un] = Un
+−Un

−, Un
± = lim

t→t±n
U(x, t), and Φn

+ = lim
t→t+n

Φ(x, t). We have set U0
− = u0(x).

The inner product 〈[Un], Φn
+〉 denotes the data transport process during different time-space

slabs, and it reflects the discontinuity of the scheme.
By applying the partial integration, we have∫

In
〈Ut, Φ〉dt + 〈[Un], Φn

+〉 = 〈Un+1, Φn+1〉 −
∫
In
〈U, Φt〉dt− 〈Un, Φn

+〉,

where Un+1 = Un+1
− , Un = Un

−, and Φn+1 = Φn+1
− . Then, the scheme in Equation (10)

can be modified as follows:

〈Un+1, Φn+1〉 −
∫
In
〈U, Φt〉dt + (ν + iη)

∫
In
〈BU, Φ〉dt + (κ + iζ)

∫
In
〈 f (U), Φ〉dt

− γ
∫
In
〈U, Φ〉dt = 〈Un, Φn

+〉, ∀Φ ∈ Vn
hλ, n = 0, 1, . . . , N − 1,

(11)

where U0 = u0(x) and f is endowed with the properties of Equation (9).
Next, we prove the well-posedness of the numerical scheme in Equation (11).

4. Well-Posedness

For a fixed value q ≥ 1, we recall the Lagrange polynomials with the set of Radau
points τ1, τ2, · · · , τq on (0, 1]; that is, we have

lk(τ) =
q

∏
j=1,j 6=k

(τ − τj)

(τk − τj)
, k = 1, 2, . . . , q.

It is obvious that lk(τ) has the degree q − 1, lk(τm) = 0 for m 6= k, and lk(τm) = 1
for m = k. By setting t(τ) = tn + τλn, τ ∈ [0, 1], the interval [0, 1] is mapped to
In = [tn, tn+1], n = 0, 1, · · · , N − 1. Then, the quadrature rule in Equation (6) is adapted
to the interval In with its abscissae and weights as follows:

tn,k = tn + τkλn, k = 1, 2, · · · , q (tn,q = tn+1),

ln,k(t) = lk(τ), (t = tn + τλn),

ωn,k =
∫ tn+1

tn
ln,k(t)dt = λn

∫ 1

0
lk(τ)dτ = λnωk, k = 1, 2, . . . , q.

Therefore, U|In is uniquely determined by the function Un,k = Un,k(x) = U(x, tn,k) ∈
Sn

h (k = 1, 2, · · · , q) such that

U(x, t) =
q

∑
k=1

ln,k(t)Un,k(x), (x, t) ∈ Ω× In. (12)

Now, if Ψ = Ψ(x) ∈ Sn
h , then the function Φ = ln,kΨ is an element of Vn

hλ. By applying
Lemma 5, we obtain that Equation (11) is equivalent to
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δq,k〈Un,q, Ψ〉 −
q
∑

j=1
wn,jl′n,k(tn,j)〈Un,j, Ψ〉+ (ν + iη)wn,k〈BUn,k, Ψ〉

+ (κ + iζ)
∫
In

ln,k(t)〈 f (U), Ψ〉dt− γwn,k〈Un,k, Ψ〉 = ln,k(tn)〈Un, Ψ〉,
Ψ ∈ Sn

h , k = 1, 2, . . . , q,

(13)

where δq,k is the Kronecker delta function which satisfies δq,k = 0 if q 6= k and δq,k = 1 if
q = k. Here, l′n,k(tn,k) denotes the derivative of ln,k(t) with respect to t at point tn,k.

We introduce q× q matrices N and M, defined by

Njk = wn,kl′n,j(tn,k) = ωkl′j(τk), M = eqeT
q − N,

where eq = (0, 0, · · · , 0, 1)T ∈ Rq. It is clear that N and M are independent of λn, and if
Y = (yn,1, yn,2, · · · , yn,q)T ∈ Rq, then

YT MY =
q

∑
j=1

δq,jyn,qyn,j −
q

∑
j,k=1

wn,kl′n,j(tn,k)yn,jyn,k.

Lemma 6 ([25]). Let M̂ = D−1/2MD1/2 with D = diag{τ1, τ2, · · · , τq}. Then, the following
holds:

XT M̂X ≥ µ(
q

∑
k=1

xk
2), ∀X = (x1, x2, · · · , xq)

T ∈ Rq,

where µ = 1
2 min{ω1

τ1
, ω2

τ2
, · · · ,

ωq−1
τq−1

, 1 + ωq} > 0.

In order to take advantage of the positivity of M̂, we choose Φ = τ
− 1

2
k ln,k(t)Ψ(x) ∈ Vn

hλ

and take Ũn,j = τ
− 1

2
j Un,j(x) ∈ Sn

h into the scheme in Equation (13). Then, we obtain

δq,k〈Ũn,q, Ψ〉 −
q
∑

j=1
wn,jτ

1
2

j τ
− 1

2
k l′n,k(tn,j)〈Ũn,j, Ψ〉+ (ν + iη)wn,k〈BŨn,k, Ψ〉

+ (κ + iζ)
∫
In

τ
− 1

2
k ln,k(t)〈 f (U), Ψ〉dt− γwn,k〈Ũn,k, Ψ〉 − τ

− 1
2

k ln,k(tn)〈Un, Ψ〉 = 0,
Ψ ∈ Sn

h , k = 1, 2, . . . , q.

(14)

Now, we are ready to prove the following result:

Theorem 1. Let Un be given in Sn−1
h . Then, for sufficiently small values of λn, there exists

{Ũn,j}q
j=1 in (Sn

h )
q, satisfying Equation (14). Therefore, Equation (11) has a solution U ∈ Vn

hλ.
Furthermore, U is unique.

Proof. Note that (Sn
h )

q is a Hilbert space with the inner product

〈〈V, Z〉〉 =
q

∑
k=1
〈vk, zk〉

for every V = (v1, v2, · · · , vq)T ∈ (Sn
h )

q, Z = (z1, z2, · · · , zq)T ∈ (Sn
h )

q. And we denote

the corresponding norm (
q
∑

k=1
‖ vk ‖2)1/2 with |||V|||.
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Next, we shall use Lemma 4 to show that the map G : (Sn
h )

q → (Sn
h )

q, which is
defined by

〈G(V)k, Ψ〉 = δq,k〈vq, Ψ〉 −
q
∑

j=1
wn,jτ

1
2

j τ
− 1

2
k l′n,k(tn,j)〈vj, Ψ〉

+ (ν + iη)wn,k〈Bvk, ψ〉+ (κ + iζ)
∫
In

τ
− 1

2
k ln,k(t)〈 f (

q
∑

j=1
τ

1
2

j ln,jvj), Ψ〉dt

− γwn,k〈vk, Ψ〉 − τ
− 1

2
k ln,k(tn)〈Un, Ψ〉, ∀Ψ ∈ Sn

h , k = 1, 2, . . . , q,

(15)

has a zero point in (Sn
h )

q (i.e., Equation (14) has a solution).
Note that if f : C→ C is continuous, then G is continuous on (Sn

h )
q. We take Ψ = vk

in Equation (15) and sum it from k = 1 to q to obtain

Re〈〈G(V), V〉〉 ≥ Re

{
q

∑
k=1

δq,k〈vq, vk〉 −
q

∑
k,j=1

wn,jτ
1
2

j τ
− 1

2
k l′n,k(tn,j)〈vj, vk〉

}

−
√

κ2 + ζ2
∫
In

q

∑
k=1
|τ−

1
2

k ln,k(t)〈 f (
q

∑
j=1

τ
1
2

j ln,jvj), vk〉|dt

− |γ|
q

∑
k=1

wn,k〈vk, vk〉 −
q

∑
k=1
|τ−

1
2

k ln,k(tn)〈Un, vk〉|.

(16)

From Lemma 6, we have

Re

{
q

∑
k=1

δq,k〈vq, vk〉 −
q

∑
k,j=1

wn,jτ
1
2

j τ
− 1

2
k l′n,k(tn,j)〈vj, vk〉

}

= VT M̂V ≥ µ(
q

∑
j=1

vj
2) = µ|||V|||2.

(17)

By using the Cauchy–Schwarz inequality and the properties of Equation (9), we obtain√
κ2 + ζ2

∫
In

q

∑
k=1
|τ−

1
2

k ln,k(t)〈 f (
q

∑
j=1

τ
1
2

j ln,jvj), vk〉|dt

≤
√

κ2 + ζ2
q

∑
k=1

∫
In

τ
− 1

2
k ln,k(t) ‖ f (

q

∑
j=1

τ
1
2

j ln,jvj) ‖ ‖ vk ‖ dt

≤ C1

√
κ2 + ζ2

q

∑
k,j=1

∫
In

τ
− 1

2
k τ

1
2

j ln,k(t)ln,j(t) ‖ vj ‖ ‖ vs ‖ dt

≤ C1

√
κ2 + ζ2

q

∑
i,j,k=1

wn,kτ
− 1

2
i τ

1
2

j ln,i(tn,k)ln,j(tn,k) ‖ vj ‖ ‖ vi ‖

≤ C1

√
κ2 + ζ2λn

q

∑
k=1

wk ‖ vk ‖2≤ Ĉ1λn|||V|||2,

(18)

where Ĉ1 = C1
√

κ2 + ζ2, C1 > 0. There also exists a constant Ĉ2 > 0 such that

|γ|
q

∑
k=1

wn,k〈vk, vk〉 ≤ Ĉ2λn|||V|||2. (19)
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Additionally, we can find C3 > 0 such that

q

∑
k=1
|τ−

1
2

k ln,k(tn)〈Un, vk〉| ≤
q

∑
k=1
|τ−

1
2

k ln,k(tn) ‖ Un ‖ ‖ vk ‖≤ C3 ‖ Un ‖ |||V|||. (20)

Let λn be sufficiently small and satisfy µ − (Ĉ1 + Ĉ2)λn > 0. By combining
Equations (16–20) and setting δ = 2C3

µ−(Ĉ1+Ĉ2)λn
‖ Un ‖, and in the case where |||V||| = δ,

we obtain
Re〈〈G(V), V〉〉 ≥ δC3 ‖ Un ‖> 0.

Under Lemma 4, there exists at least one fixed point V ∈ (Sn
h)

q such that G(V) = 0,
and existence is now proven.

Let V = (v1, v2, · · · , vq)T and V∗ = (v∗1 , v∗2 , · · · , v∗q)T be the solutions of Equation (15).
Setting Ψ = vk − v∗k and summing from k = 1 to q yields that

0 ≤ 〈〈G(V −V∗), V −V∗〉〉

=
q

∑
k=1

δq,k〈vq − v∗q , vk − v∗k 〉 −
q

∑
k,j=1

wn,jτ
1
2

j τ
− 1

2
k l′n,k(tn,j)〈vj − v∗j , vk − v∗k 〉

+ (ν + iη)
q

∑
k=1

wn,k〈B(vk − v∗k ), vk − v∗k 〉 − γ
q

∑
k=1

wn,k〈vk − v∗k , vk − v∗k 〉.

+ (κ + iζ)
q

∑
k=1

∫
In

τ
− 1

2
k ln,k(t)〈 f (

q

∑
j=1

τ
1
2

j ln,j(vj − v∗j )), vj − v∗j 〉dt.

(21)

Through similar analysis of the right of Equation (21), we can obtain that

(µ− Cλn)|||V −V∗|||2 ≤ 0.

If λn is small enough, then V = V∗ is obtained. The uniqueness is proven.

In the following, C will denote any constant independent of hn and λn. It may be
different in different places. Next, we analyze the stability of the scheme in Equation (11).

Theorem 2. For sufficiently small λn values, the discontinuous Galerkin finite element scheme
(Equation (11)) is stable. Then, there exists C > 0 such that

max
In
‖ U ‖≤ C ‖ U0 ‖ . (22)

Proof. By using Ψ = Ũn,k in Equation (14) and summing it from 1 to q, the following result
is derived:

q
∑

k=1
δq,k〈Ũn,q, Ũn,k〉 −

q
∑

k,j=1
wn,jτ

1
2

j τ
− 1

2
k l′n,k(tn,j)〈Ũn,j, Ũn,k〉

+ (ν + iη)
q
∑

k=1
wn,k〈BŨn,k, Ũn,k〉+ (κ + iζ)

∫
In

q
∑

k=1
τ
− 1

2
k ln,k(t)〈 f (U), Ũn,k〉dt

=
q
∑

k=1
τ
− 1

2
k ln,k(tn)〈Un, Ũn,k〉+ γ

q
∑

k=1
wn,k〈Ũn,k, Ũn,k〉.

(23)

Let Ũ = (Ũn,1, Ũn,2, · · · , Ũn,q)T . It follows from Lemma 6 that

Re

{
q

∑
k=1

δq,k〈Ũn,q, Ũn,k〉 −
q

∑
k,j=1

wn,jτ
1
2

j τ
− 1

2
k l′n,k(tn,j)〈Ũn,j, Ũn,k〉

}
≥ µ|||Ũ|||2. (24)
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From Equation (9), we can obtain∣∣∣∣∣(κ + iζ)
∫
In

q

∑
k=1

τ
− 1

2
k ln,k(t)〈 f (U), Ũn,k〉dt

∣∣∣∣∣ ≤ Cλn|||Ũ|||2. (25)

This is similar to Equation (20) in that∣∣∣∣∣ q

∑
k=1

τ
− 1

2
k ln,k(tn)(Un, Ũn,k)

∣∣∣∣∣ ≤ C ‖ Un ‖ |||Ũ||| ≤ C ‖ Un ‖2 +
µ

4
|||Ũ|||2. (26)

Also, we have ∣∣∣∣∣γ q

∑
k=1

wn,k(Ũn,k, Ũn,k)

∣∣∣∣∣ ≤ Cλn|||Ũ|||2. (27)

By taking the real part of Equation (23) and using Equations (24–27), and for sufficiently
small λn values, we can find

|||Ũ|||2 ≤ C ‖ Un ‖2 . (28)

We define the space-time norm ||| · |||n as

|||U|||n =

(∫
In
〈U, U〉dt

) 1
2
.

From Equation (12), we have

|||U|||2n =
q

∑
k,j=1

∫
In

τ
1
2

k τ
1
2

j ln,k(t)ln,j(t)〈Ũn,k, Ũn,j〉dt

= λn

q

∑
k=1

wkτk ‖ Ũn,k ‖2≤ Cλn|||Ũ|||2.

(29)

Moreover, through Equation (28), we have

|||U|||2n ≤ Cλn ‖ Un ‖2 . (30)

In the same way, by using Φ = U in Equation (11), we can find that

‖ Un+1 ‖2 ≤ ‖ Un ‖2 +C|||U|||2n.

After substituting Equation (30) into the above formula, we obtain

‖ Un+1 ‖2 ≤ C(1 + λn) ‖ Un ‖2 . (31)

By iterating Equation (31) from n to 1, there exists C0 > 0 such that

‖ Un+1 ‖2 ≤ C0 ‖ U0 ‖2 .

Therefore, we have

|||U|||n ≤ Cλ
1
2
n ‖ U0 ‖ . (32)

By applying the L∞–L2 space inverse inequality ([44], page 29)

max
In
|g(t)| ≤ Cλ

− 1
2

n

(∫
In
|g(t)|2dt

) 1
2
, ∀ g(t) ∈ Pq−1(In) (33)
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to Equation (32), the desired result (Equation (22)) is proven completely.

5. Error Estimate

This section will analyze the error of the fully discrete space-time finite element
scheme in Equation (11). To accomplish this, we define the elliptic projection operator

PE
h : H

α
2
0 (Ω)→ Sn

h with the property that

〈(−4)
α
2 (u− PE

h u), v〉 = 0, ∀v ∈ Sn
h .

According to Nitsche’s method ([44], page 29), we can obtain the following L2 norm
error estimate for the elliptic projection of u:

Lemma 7 ([41]). If u ∈ H
α
2
0 (Ω) ∩ Hβ(Ω), then there exists C > 0 such that

‖u− PE
h u‖ ≤ Chβ

n‖u‖β,
α

2
≤ β ≤ r, α 6= 3

2
;

‖u− PE
h u‖ ≤ Chβ−ε

n ‖u‖β, α =
3
2

, 0 < ε <
1
2

,
(34)

where r− 1 is the degree of the space Sn
h which is introduced in Section 3.

For the points tn,k of In = (tn, tn+1], we introduce the usual Lagrange interpolation
operator Îq−1

n : C(In)→ Pq−1(In) such that

Îq−1
n g(tn,k) = g(tn,k), ∀g(t) ∈ C(In), k = 1, 2, . . . , q,

where q ≥ 1, q− 1 is the degree of the polynomial with respect to t in the finite element
space Vhλ. Let W(x, t) = Îq−1

n PE
h u(x, t), (x, t) ∈ Ω× In, and |||u|||n,β = (

∫
In
‖ u ‖2

β dt)
1
2

denote the norm for a space L2(In; Hβ(Ω)). According to Lemma 7 and [41], the following
estimations hold:

max
In
‖ u−W ‖≤ Cλ

q
n max
In
‖ u(q) ‖ +Chβ

n max
In
‖ u ‖β,

α

2
≤ β ≤ r, α 6= 3

2
;

|||u−W|||n ≤ Cλ
q
n|||u(q)|||n + Chβ

n|||u|||n,β,
α

2
≤ β ≤ r, α 6= 3

2
.

(35)

Suppose that the exact solution of Equation (2) satisfies the following regularity
conditions:

u, ut ∈ L∞((0, T]; Hr+1(Ω)), u(q+1) ∈ L∞((0, T]; L2(Ω)).

Now, we present our error analysis result for the scheme in Equation (11).

Theorem 3. Let u and U be the solutions of Equations (2) and (11), respectively. Then, we have

max
t∈[0,T]

‖u(x, t)−U(x, t)‖

≤ C
{

max
n

λ
q
n max
In

(‖u(q+1)‖+ ‖u(q)‖+ ‖(Bu)(q)‖) + NC(n)max
n
‖[Γn]‖

}
+ C max

n
hβ

n max
In

(||u||β + ||ut||β),
α

2
≤ β ≤ r, α 6= 3

2
,

(36)
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max
t∈[0,T]

‖u(x, t)−U(x, t)‖

≤ C
{

max
n

λ
q
n max
In

(‖u(q+1)‖+ ‖u(q)‖+ ‖(Bu)(q)‖) + NC(n)max
n
‖[Γn]‖

}
+ C max

n
hβ−ε

n max
In

(‖u‖β + ‖ut‖β),
α

2
≤ β ≤ r, α =

3
2

, 0 < ε <
1
2

,

(37)

where NC(n) denotes the number of time slabs in which Sn−1
h 6= Sn

h , [Γn] = Γn
+ − Γn

−, Γn
± =

lim
t→t±n

Γ(x, t), and Γ(x, t) = (u− PE
h u)(x, t), n = 1, 2, . . . , N − 1.

Proof. The error eu between the finite element solution U and exact solution u is rewritten as

eu = U − u = (U −W) + (W − u) = Θ + Λ.

The estimation of Λ is described in Equation (35), and we only need to estimate Θ.
We first have the basic error equation from Equation (11):

〈Θn+1, Φn+1〉 −
∫
In
〈Θ, Φt〉dt + (ν + iη)

∫
In
〈BΘ, Φ〉dt− γ

∫
In
〈Θ, Φ〉dt

= (κ + iζ)
∫
In
〈 f (W)− f (U), Φ〉dt + 〈Θn, Φn

+〉 − (κ + iζ)
∫
In
〈 f (W), Φ〉dt

+
∫
In
〈W, Φt〉dt +

∫
In
[γ〈Θ, Φ〉 − (ν + iη)〈BW, Φ〉]dt

− 〈Wn+1, Φn+1〉+ 〈Wn, Φn
+〉, ∀Φ ∈ Vn

h .

(38)

We put Φ = ln,k(t)Ψ(x), where Ψ(x) ∈ Sn
h and t ∈ (tn, tn+1]. By taking the decom-

positions W =
q
∑

j=1
ln,j(t)PE

h u(x, tn,j) and Θ =
q
∑

j=1
ln,j(t)Θn,j, where Θn,j = Un,j(x, tn,j) −

PE
h u(x, tn,j), Equation (38) is transferred to

δq,k〈Θn,q, Ψ〉 −
q

∑
j=1

wn,jl′n,k(tn,j)〈Θn,j, Ψ〉+ (ν + iη)wn,k〈BΘn,k, Ψ〉

= γwn,k〈Θn,k, Ψ〉+ (κ + iζ)
∫
In
〈 f (W)− f (U), ln,kΨ〉dt + ln,k(tn)〈Θn, Ψ〉

− (κ + iζ)
∫
In
〈 f (W), ln,kΨ〉dt +

q

∑
j=1

wn,jl′n,k(tn,j)〈PE
h u(x, tn,j), Ψ〉

+ γwn,k〈PE
h u(x, tn,j), Ψ〉 − (ν + iη)wn,k〈BPE

h u(x, tn,j), Ψ〉
− δq,k〈PE

h u(x, tn,q), Ψ〉+ ln,k(tn)〈Wn, Ψ〉, ∀Ψ ∈ Sn
h , k = 1, 2, . . . , q.

(39)

Since the exact solution u satisfies Equation (11), and by the definition of PE
h , we have

the following error equation:

δq,k〈Θn,q, Ψ〉 −
q

∑
j=1

wn,jl′n,k(tn,j)〈Θn,j, Ψ〉+ (ν + iη)wn,k〈BΘn,k, Ψ〉

= γwn,k〈Θn,k, Ψ〉+ (κ + iζ)
∫
In
〈 f (W)− f (U), ln,kΨ〉dt + ln,k(tn)〈Θn, Ψ〉

+ (κ + iζ)
∫
In
〈 f (u)− f (W), ln,kΨ〉dt + 〈Σ1 + Σ2 + Σ3 + Σ4, Ψ〉

+ 〈[Γn], ln,k(tn)Ψ〉, k = 1, 2, . . . , q, ∀ Ψ ∈ Sn
h ,

(40)
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where

Σ1 = δq,kΓn,q −
q

∑
j=1

wn,jl′n,kΓn,j − ln,k(tn)Γn
+,

Σ2 =
q

∑
j=1

wn,jl′n,k(tn,j)un,j −
∫
In

l′n,k(t)udt,

Σ3 = −(ν + iη)wn,kBun,k + (ν + iη)
∫
In

ln,kBudt,

Σ4 = −γwn,kun,k + γ
∫
In

ln,kudt,

[Γn] = Γn
+ − Γn

− = un
+ − PE

h un
+ − (un

− − PE
h un
−),

where un
± = lim

t→t±n
u(x, t) and un

+ = un
−.

If Sn−1
h = Sn

h , then ‖[Γn]‖ = 0; otherwise, ‖[Γn]‖ 6= 0. However, according to Lemma 7
and [41], we have

‖[Γn]‖ ≤ ‖un
+ − PE

h un
+‖+ ‖un

− − PE
h un
−‖ ≤ Chβ

n‖u‖β + Chβ
n−1‖u‖β,

α

2
≤ β ≤ r, α 6= 3

2
.

Here, we set h0 = h1 for simplicity’s sake.
Next, we consider the bounds of the norms of Σj(j = 1, 2, 3, 4). Since

δq,k −
q

∑
j=1

wn,jl′n,k(tn,j)− ln,k(tn) = δq,k −
∫
In

l′n,k(t)dt− ln,k(tn) = 0,

then there exist constants Cj,k and C such that

‖Σ1‖ = ‖
q

∑
j=1

Cj,k

∫ tn,j

tn,j−1

Γt(ξ)dξ‖

≤ C
∫
In
‖ut − PE

h ut‖dξ ≤ Cλ
1
2
n hβ

n|||ut|||n,β,
α

2
≤ β ≤ r, α 6= 3

2
.

(41)

Let Îq
n : C(In) → Pq(In) (In = [tn, tn+1]) be the Lagrange interpolation operator

on the points tn,k such that Îq
ng(tn,k) = g(tn,k), k = 1, 2, . . . , q, and Îq

ng(tn) = g(t+n ) :=
lim

ε→0+
g(tn + ε), where g(t) ∈ C(In). For every x ∈ Ω, l′n,k(t) Îq

nu is a polynomial with the

degree 2q− 2. Moreover, we have

‖Σ2‖ = ‖
q

∑
j=1

wn,jl′n,k(tn,j)un,j −
∫
In

l′n,k(tn,j)udt‖

= ‖
∫
In

l′n,k(t)( Îq
n − I)udt‖ ≤ C|||( Îq

n − I)u|||n
(∫
In
|l′n,k(t)|

2dt
) 1

2

≤ C
(

λ−1
n

∫ 1

0
|l′(τ)|2dτ

) 1
2

· λq+1
n |||u(q+1)|||n ≤ Cλ

q+ 1
2

n |||u(q+1)|||n.

(42)

In the same way, we have

‖Σ3‖ ≤ Cλ
q+ 1

2
n |||(Bu)(q)|||n, ‖Σ4‖ ≤ Cλ

q+ 1
2

n |||u(q)|||n. (43)
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By letting Ψ = Θn,k in the error equation (Equation (40)) and summing it from 1 to q,
we obtain

1
2
(‖Θn+1‖2 + ‖Θn

+‖2) + (ν + iη)
∫
In
〈BΘ, Θ〉dt− γ

∫
In
〈Θ, Θ〉dt

= (κ + iζ)
∫
In
〈 f (W)− f (U) + f (u)− f (W), Θ〉dt + 〈Θn, Θn

+〉

+
q

∑
k=1
〈Σ1 + Σ2 + Σ3 + Σ4, Θn,k〉+ 〈[Γn], Θn

+〉.

(44)

According to Equation (9) and the Cauchy–Schwarz and Young inequalities, we have∣∣∣∣(κ + iζ)
∫
In
〈 f (W)− f (U) + f (u)− f (W), Θ〉dt

∣∣∣∣
≤ |(κ + iζ)|

∫
In
|〈 f (W)− f (U), Θ〉|dt + |(κ + iζ)|

∫
In
|〈 f (u)− f (W), Θ〉|dt

≤ C(|||Θ|||2n + |||W − u|||2n).

(45)

It follows from Equations (41–43) that∣∣∣∣∣ q

∑
k=1
〈Σ1 + Σ2 + Σ3 + Σ4, Θn,k〉

∣∣∣∣∣
≤

q

∑
k=1

(‖Σ1‖+ ‖Σ2‖+ ‖Σ3‖+ ‖Σ4‖)‖Θn,k‖

≤ C
[

hβ
n|||ut|||n,β + λ

q
n|||u(q+1)|||n + |||(Bu)(q)|||n + |||u(q)|||n

]
+ |||Θ|||2n,

α

2
≤ β ≤ r, α 6= 3

2
.

(46)

In addition, we have

|〈Θn, Θn
+〉| ≤ ‖Θn‖2 +

‖Θn
+‖2

4
,

|〈[Γn], Θn
+〉| ≤ ‖[Γn]‖2 +

‖Θn
+‖2

4
.

(47)

By taking the real part of Equation (44) and combining Equations (45–47), we obtain

‖Θn+1‖2 ≤ C
{
|||Θ|||2n + ‖Θn‖2 + ‖[Γn]‖2 + L2(hn, λn)

}
, (48)

where

L(hn, λn) = λ
q
n

(
|||u(q+1)|||n + |||u(q)|||n + |||(Bu)(q)|||n

)
+ hβ

n
(
|||ut|||n,β + |||u|||n,β

)
,

α

2
≤ β ≤ r, α 6= 3

2
.
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In order to obtain the estimation of |||Θ|||n, we take Θ =
q
∑

j=1
τ

1
2

j ln,jΘ̂n,j, where

Θ̂n,j = τ
− 1

2
j Θn,j and Ψ = Θ̂n,k in Equation (40). After multiplying both sides of the equation

by τ
− 1

2
k and then summing k from 1 to q, we have

q

∑
k=1

δq,k〈Θ̂n,q, Θ̂n,k〉 −
q

∑
k,j=1

wn,jl′n,k(tn,j)τ
1
2

j τ
− 1

2
k 〈Θ̂

n,j, Θ̂n,k〉

+ (ν + iη)
q

∑
k=1

wn,k〈BΘ̂n,k, Θ̂n,k〉 − γ
q

∑
k=1

wn,k〈Θ̂n,k, Θ̂n,k〉

= (κ + iζ)
q

∑
k=1

∫
In

τ
− 1

2
k 〈 f (W)− f (U) + f (u)− f (W), ln,kΘ̂n,k〉dt

+
q

∑
k=1

{
〈Θn, ln,k(tn)Θ̂n,k〉+ 〈

4

∑
j=1

Σj, Θ̂n,k〉+ 〈[Γn], ln,k(tn)Θ̂n,k〉
}

.

(49)

Let Θ̂n = (Θ̂n,1, Θ̂n,2, · · · , Θ̂n,q)T . Similarly, it holds that

µ|||Θ̂n||| ≤ C(‖Θn‖+ ‖[Γn]‖) + Cλ
1
2
n (|||Θ|||n + L(hn, λn)) (50)

From Equation (29), and for sufficiently small λn values, we obtain

|||Θ|||n ≤ Cλ
1
2
n (‖Θn‖+ ‖[Γn]‖) + CλnL(hn, λn). (51)

By observing Equations (48) and (51), the following inequality is obtained:

‖Θn+1‖2 ≤ C{(1 + λn)(‖Θn‖2 + ‖[Γn]‖2) + (1 + λ2
n)L

2(hn, λn)}. (52)

Iterating Equation (52) n times implies

‖Θn+1‖2 ≤ C‖Θ0‖2 + C
n

∑
j=0

(‖[Γj]‖2 + L2(hj, λj)). (53)

By substituting Equation (53) into Equation (51), we find

|||Θ|||n ≤ Cλ
1
2
n

(
‖Θ0‖2 +

n

∑
j=0
‖[Γj]‖2 +

n

∑
j=0

L2(hj, λj)

) 1
2

. (54)

By using the inverse inequality in Equation (33), we obtain

max
In
‖Θ‖ ≤ Chβ

0‖u
0‖β + C

(
n

∑
j=0
‖[Γj]‖2

) 1
2

+ C

(
n

∑
j=0

(
λ

2q
j (|||u(q+1)|||2j + |||u(q)|||2j + |||(Bu)(q)|||2j ) + h2β

j (|||ut|||2j,β + |||u|||2j,β)
)) 1

2

.

(55)

From Equation (35) for the estimation of Λ = W − u, the desired result (Equation (36))
follows. Equation (37) can be found through a similar process.
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6. Numerical Tests

In this section, some numerical results are provided to evaluate the effectiveness
of the fully discrete space-time finite element scheme in Equation (11) for the fractional
Ginzburg–Landau equation.

First, we consider the numerical accuracy of the proposed scheme for the integer-order
Ginzburg–Landau equation (α = 2). In this case, the exact solution of the equation exists,
and it is precisely given by [45]

u(x, t) = a(x) exp(i(d ln a(x))− iωt),

where

d =

√
1 + 4ν2 − 1

2ν
, ω = −d(1 + 4ν2)

2ν
, F =

√
d
√

1 + 4ν2

−2κ
, a(x) = Fsech(x).

We take

ν = 0.1, η = 1, κ = −ν(3
√

1 + 4ν2 − 1)
2(2 + 9ν2)

, ζ = 1, γ = 0, (56)

and Ω = [−16, 16], T = 1 here. We can see that the modulus of the initial value

u(x, 0) = 1.01233 sech(x) exp(0.0990195i ln a(x)) (57)

asymptotically equals zero as |x| ≥ 10. Thus, u(x, t) can be negligible outside Ω, and we
can set u(x, t) = 0 for x ∈ R \Ω and t ∈ (0, 1]. The finite element space is composed of
linear piecewise polynomials in both the temporal and spatial directions. We make the
space step size hn = 0.01 sufficiently small, and then the error is defined by

E(λn) = max
1≤n≤ T

λn

‖u(x, tn)−U(x, tn)‖.

For a fixed hn value, let λ1
n and λ2

n stand for two different time steps. Then, we have
the convergence rate in time

Rt ≈ log λ1
n

λ2
n

E(λ1
n)

E(λ2
n)

.

To find the accuracy for the space, we fix the time step size to λn = 0.001. Then, the
error is defined by

E(hn) = max
1≤n≤ T

λn

‖u(x, tn)−U(x, tn)‖.

If h1
n and h2

n are the different space steps, then the convergence rate in space is

Rs ≈ log h1
n

h2
n

E(h1
n)

E(h2
n)

.

The results are all listed in Table 1. This table shows that the scheme has almost second-
order accuracy in the temporal and spatial directions. The presented numerical results
support the validity of the fully discrete space-time finite element scheme (Equation (11)).
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Table 1. The errors and convergent orders in L∞(L2(Ω)) norm when α = 2.

hn = 0.01 λn = 0.001

λn E(λn) Rt hn E(hn) Rs

0.5000 3.4264× 10−1 — 0.5000 1.9121× 10−1 —
0.2500 1.0346× 10−1 1.7276 0.2500 5.9959× 10−2 1.6731
0.1250 2.8578× 10−2 1.8561 0.1250 1.5311× 10−2 1.9694
0.0625 8.1853× 10−3 1.8038 0.0625 3.6402× 10−3 2.0724

When 1 < α < 2, it is difficult to obtain the exact solution explicitly, so we use the

numerical solution ˜̃U obtained with a smaller step size hn = 0.01 and λn = 0.001 instead of
the exact solution for different values of α to check the accuracy of the scheme. We consider
the fractional Ginzburg–Landau equation with the following initial condition:

u(x, 0) =
exp(−2x2)

exp(−x) + exp(x)
. (58)

It is evident that u(x, 0) decays to zero with the spatial variable x away from the origin.
By setting ν = 1/8, η = 1, κ = 1, ζ = 2, and γ = 1, the error in both the temporal and
spatial directions is as follows:

E(λn, hn) = max
1≤n≤ T

λn

‖ ˜̃U(x, tn)−U(x, tn)‖.

Here, we always use λn = 0.1hn. By denoting p = h1
n

h2
n
= λ1

n
λ2

n
, then the convergence rate

is

Rts ≈ logp
E(λ1

n, h1
n)

E(λ2
n, h2

n)
.

The numerical results are listed in Table 2. It shows that the scheme has second-order
accuracy in space and time, further indicating our proposed scheme’s effectiveness and
reliability.

Table 2. The errors and convergent orders in the L∞(L2(Ω)) norm with λn = 0.1hn.

α = 1.3 α = 1.6 α = 1.9

λn E(λn, hn) Rts E(λn, hn) Rts E(λn, hn) Rts

0.10000 3.6931× 10−1 — 6.4859× 10−1 — 5.4731× 10−1 —
0.05000 1.5184× 10−1 1.2823 2.6499× 10−1 1.2914 1.8383× 10−1 1.5740
0.02500 5.3618× 10−2 1.5018 8.9322× 10−2 1.5689 5.9724× 10−2 1.6221
0.01250 1.5466× 10−2 1.7936 2.7021× 10−2 1.7249 1.5153× 10−2 1.9787
0.00625 3.8906× 10−3 1.9910 7.1296× 10−3 1.9221 4.0874× 10−3 1.8903

Secondly, there is the dissipative mechanism of the fractional Laplacian. We take the
initial condition to be u(x, 0) as in Equation (58) and set Ω = [−15, 15], ν = 0.1, η = κ =
ζ = γ = 1. The profiles of the numerical solutions at t = 1 with different values for α
are given in Figure 1. We can see that the wave shape changed with the values of α. The
changing trend is consistent with that in [7].
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Figure 1. The profiles of |U| at t = 1 for different fractional orders α.

Thirdly, we focus on the influence of the parameter γ for wave shape evolution in
fractional cases. We choose α = 1.5, Ω = [−10, 10], hn = 0.2, and λn = 0.025 and then set
γ = −3, −1, 0, 1, 3 to compute the numerical solution to T = 1. In this case, we choose
ν = η = κ = ζ = 1. Figures 2–4 present the numerical solutions. The figures show that the
parameter γ affects the wave shape of the solutions dramatically. If γ ≤ 0, then the solution
|U| decays and it increases when γ > 0. These results are promising and in agreement with
the results in [7,17,46].
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Figure 2. The numerical solutions of |U| with γ = −3 and γ = −1 .
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Figure 3. The numerical solutions of |U| with γ = 0 .
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Figure 4. The numerical solution of |U| with γ = 1 and γ = 3.

Fourth, we pay attention to the inviscid limit behavior of the discrete solution. Ac-
cording to [47], we know that the solution of the equation converges to the solution of the
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fractional Schrödinger equation (i.e., ν = κ = 0). Here we choose η = 1, ζ = −2, γ = 0
and then make ν and κ smaller and smaller to observe the asymptotics for different values
of α. From Figure 5, we see that the results are in accordance with the results in [7,47].
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Figure 5. The profiles of |U| at t = 1 with diminishing ν and κ for different α.

Finally, we construct two experiments to show that the fully discrete space-time
finite element solutions may be discontinuous at different time nodes. We use the same
parameters as those in Equation (56) (α = 2 and ν = η = κ = ζ = 1 for α = 1.6). By setting
λn = 0.05 and hn = 0.1 for the two cases, the modules of the jump [U]n of the discrete
solution at time nodes tn are shown in Figure 6. From this, we can see that the discrete
solutions are discontinuous at some time nodes.
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Figure 6. The figures of |[Un]| when α = 2 and α = 1.6.

7. Conclusions

This paper extends the space-time finite element method to the fractional Ginzurg–Landau
equation. The presented method is a fully discrete Galerkin finite element method that
solves the equation with the unified finite-element framework in both the temporal and
spatial directions. This is more flexible for dealing with discontinuous problems because
our finite element scheme permits discontinuity in time. The well-posedness and error
estimate of the discrete solution are proven under weak restriction on the space-time mesh,
which only demands that the time step λn be small enough. The numerical examples
illustrate the effectiveness of the space-time finite element method for the equation.

When the equation admits solutions that form singularities in finite time, appropriate
adaptive methods seem to be a good choice. One reason for considering the discontinuous
space-time finite element method is the need for flexible schemes suitable for computation
on unstructured meshes. In this work, we have illustrated the availability of the discon-
tinuous Galerkin method to the fractional Ginzurg–Landau equation. This provides a
guarantee for our forthcoming work to design adaptive algorithms.
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