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Abstract: The present manuscript is devoted to investigating some existence and uniqueness results
on fixed points by employing generalized contractions in the context of metric space endued with
a weak class of transitive relation. Our results improve, modify, enrich and unify several existing
fixed point theorems, The results proved in this study are utilized to find a unique solution of certain
fractional boundary value problems.
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1. Introduction

In near past, FDE (abbreviation of ‘fractional differential equations’) are discussed
owing to the impassable development and applicability of the area of fractional calculus.
For deep discussions regarding fractional calculus and FDE, we refer to the classical books
of Podlubny [1], Kilbas et al. [2] and Daftardar-Gejji [3]. Numerical solutions of FDE were
discussed by Atanackovic and Stankovic [4] and more recently by Talib and Bohner [5].
Cernea [6] investigated existence theorems for certain Hadamard-type fractional integro-
differential inclusion. Various authors have studied the solvability of certain classes of
nonlinear FDE, e.g., Xiao [7], Zhang et al. [8], Cevikel and Aksoy [9], Laoubi et al. [10],
Telli et al. [11], Dincel et al. [12], Area and Nieto [13], Jassim and Hussein [14], among
others. In order to study the BVP (abbreviation of ‘boundary value problem’) for FDE, we
refer the works of Jia et al. [15], Su et al. [16], Bouteraa and Benaicha [17], Zhang et al. [18],
Luca [19], Shah et al. [20] and references therein. Very recently, Aljethi and Kiliçman [21]
discussed the analytic properties of FDE and their applications to realistic data.

Metric fixed point theory occupies an important role in nonlinear functional analysis.
The strength of metric fixed point theory lies in its wide range of applications to various
domains such as optimization theory [22,23], variational inequalities [24,25] and FDE [26,27].
Recently, Ishtiaq et al. [28] obtained some fixed point theorems in intuitionistic fuzzy Nb
metric space and utilized the same to solve a class of nonlinear fractional differential
equations. The Banach contraction principle (BCP), being a stalwart and aesthetic tool
of the domain of metric fixed point theory, was established by Banach in 1922. Various
generalizations of BCP were established by enlarging the class of contraction mapping.
One such generalization is due to Geraghty [29]. Let B denotes the class of functions
β : [0, ∞)→ [0, ∞) verifying

β(tn)→ 1⇒ tn → 0.

Following Geraghty [29], a self-map S on a complete metric space (M, σ) verifying,
for some β ∈ B and for all r, s ∈ M,

σ(Sr,Ss) ≤ β(σ(r, s))σ(r, s),

possesses a unique fixed point.
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In 2015, Alam and Imdad [30] obtained an intense and flexible version of the BCP in a
metric space endued with a binary relation. Following this novel work, various researchers
have established a multiple of fixed point results in the framework of relational metric space
under different types of contractivity conditions, viz., Boyd–Wong type contractions [31,32],
Matkowski contractions [33,34], Meir–Keeler contractions [35], weak contractions [36,37],
F-contractions [38], θ-contractions [39], almost contractions [40], rational type contrac-
tions [41], (ψ, φ)-contractions [42], (ψ, φ, θ)-contractions [43], etc. Mapping which involves
such results verifies a weaker contraction condition relative to the usual contraction, as it
must be held for comparative elements only. This restrictive nature enables such types
of results to solve many complicated real world problems occurring in fractal spaces and
fractional differential equations which employ specific auxiliary conditions, e.g., [44,45].
Very recently, Almarri et al. [46] established the relation–theoretic analogue of Geraghty’s
fixed point theorem [29], which also remains an improvement of the results of Harandi and
Emami [47].

In short, the intention of this manuscript is two-fold:

1. To improve the results of Almarri et al. [46] by satisfying more generalized contraction
conditions and to prove the existence and uniqueness results on fixed points in the
framework of metric space endued with a locally S-transitive binary relation.

2. By means of our fixed point results, to discuss the existence of a unique solution of
the following BVP for an FDE in dependent variable u and independent variable x of
the form:

−Dηu(x) = h
(

x, u(x),Dγ1 u(x),Dγ2 u(x), . . . ,Dγn−1 u(x)
)


Dγi u(0) = 0, 1 ≤ i ≤ n− 1,
Dγn−1+1u(0) = 0,

Dγn−1 u(1) =
m−2
∑

j=1
cjDγn−1 u(ξ j)

(1)

where

• n ∈ N, n ≥ 3 and n− 1 < η ≤ n,
• 0 < γ1 < γ2 < · · · < γn−2 < γn−1 and n− 3 < γn−1 < η − 2,
• Dη is standard Riemann–Liouville derivative,
• h : [0, 1]×Rn → [0, ∞) is a continuous function,

• cj ∈ R and 0 < ξ1 < ξ2 < · · · < ξm−1 < 1 verifying 0 <
m−2
∑

j=1
cjξ

η−γn−1−1
j < 1.

2. Preliminaries

Throughout the text, N, N0 and R will denote, respectively, the set of natural numbers,
that of whole numbers and that of real numbers. A binary relation or simply a relation Λ
on a setM is a subset ofM2. In the following definitions,M remains a set, σ is a metric
onM, Λ remains a relation onM and S :M→M is a map.

Definition 1 ([30]). The points r, s ∈ M are called Λ-comparative, denoted by [r, s] ∈ Λ,
if (r, s) ∈ Λ or (s, r) ∈ Λ.

Definition 2 ([48]). Λ−1 := {(r, s) ∈ M2 : (s, r) ∈ Λ} is referred as transpose of Λ.

Definition 3 ([48]). Λs := Λ ∪Λ−1, often called the symmetric closure of Λ, forms a symmetric
relation.

Clearly, (r, s) ∈ Λs ⇐⇒ [r, s] ∈ Λ. (cf. [30]).

Definition 4 ([48]). Given C ⊆ M, the relation Λ|C := Λ ∩ C2 is termed as the restriction of Λ
on C.
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Definition 5 ([30]). Λ is termed as S-closed if

(Sr,Ss) ∈ Λ,

holds for each pair r, s ∈ M verifying (r, s) ∈ Λ.

Proposition 1 ([31]). Λ remains Sn-closed, whenever Λ is S-closed.

Definition 6 ([30]). A sequence {rn} ⊂ M verifying (rn, rn+1) ∈ Λ ∀ n ∈ N0 is said to be
Λ-preserving.

Definition 7 ([49]). A metric space (M, σ) is termed as Λ-complete if each Cauchy sequence in
M, which remains also Λ-preserving, is convergent.

Definition 8 ([49]). S is called Λ-continuous at r ∈ M if

S(rn)
σ−→ S(r)

for any Λ-preserving sequence {rn} ⊂ M verifying rn
σ−→ r.

Definition 9 ([49]). A function is termed as Λ-continuous if it remains Λ-continuous at all points
ofM.

Definition 10 ([30]). Λ is termed as σ-self-closed if each Λ-preserving convergent sequence in
(M, σ) has a subsequence whose terms are Λ-comparative with the convergence limit.

Definition 11 ([50]). Given r, s ∈ M, the set {ω0, ω1, . . . , ωl} ⊂M is termed as a path from r
to s if:

(i) ω0 = r and ωL = s,
(ii) (ωj, ωj+1) ∈ Λ, 0 ≤ j ≤ L− 1.

Definition 12 ([31]). A subset C ⊆ M, in which any two elements join a path, is called an
Λ-connected set.

Definition 13 ([31]). Λ is termed as locally S-transitive if for each Λ-preserving sequence
{rn} ⊂ M (with range P := {rn : n ∈ N0}), the restriction Λ|P remains transitive.

3. Main Results

Let A denotes a class of bounded functions β : [0, ∞)→ [0, ∞). Thus, ∃ β ∈ A if and
only if ∃ a constant K > 0 verifying

sup
t∈[0,∞)

β(t) ≤ K. (2)

Remark 1. B ⊂ A but not conversely, e.g., for any K > 0, β(t) = K sin t ∈ A, while β /∈ B.

Theorem 1. Let (M, σ) be a metric space, Λ a relation on M while S : M → M a map.
Additionally,

(i) (M, σ) is Λ-complete,
(ii) ∃ r0 ∈ M verifying (r0,Sr0) ∈ Λ,
(iii) Λ remains S-closed and locally S-transitive,
(iv) S is Λ-continuous or Λ remains σ-self-closed,
(v) ∃ β ∈ A with upper bound K > 0 and ∃ λ ∈ (0, 1/K) verifying

σ(Sr,Ss) ≤ λβ(λσ(r, s))σ(r, s), ∀ r, s ∈ M with (r, s) ∈ Λ.
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Then S possesses a fixed point.

Proof. Define a sequence {rn} ⊂ M verifying

rn = Sn(r0) = S(rn−1), ∀ n ∈ N. (3)

Employing hypotheses (ii), (iii) and Proposition 1, one finds

(Snr0,Sn+1r0) ∈ Λ.

Making use of (3), the above becomes

(rn, rn+1) ∈ Λ, ∀ n ∈ N0 (4)

so that {rn} is Λ-preserving.
If ∃ n0 ∈ N0 satisfying σ(rn0 , rn0+1) = 0, then by (3), one concludes that rn0 is a fixed

point of S . Otherwise, in the case of σn := σ(rn, rn+1) > 0, ∀ n ∈ N0, we use hypothesis (v)
to obtain

σn = σ(rn, rn+1) = σ(Srn−1,Srn) ≤ λβ(λσ(rn−1, rn))σ(rn−1, rn)

≤ Kλσ(rn−1, rn) = Kλσn−1

which by induction gives rise to

σn ≤ Kλσn−1 ≤ (Kλ)2σn−2 ≤ · · · ≤ (Kλ)nσ0 −→ 0, as n −→ ∞

so that
lim

n→∞
σn = 0. (5)

Now, one will have to show that {rn} is Cauchy. As {rn} is Λ-preserving (owing to
(4)) and {rn} ⊂ S(M) (owing to (3)), therefore, due to the locally S-transitivity of Λ, one
has (rn, rm) ∈ Λ, for n < m. Hence, applying condition (v), one obtains

σ(rn+1, rm+1) ≤ λβ(λσ(rn, rm))σ(rn, rm) ≤ λKσ(rn, rm). (6)

Using triangle inequality and (6), one has

σ(rn, rm) ≤ σ(rn, rn+1) + σ(rn+1, rm+1) + σ(rm+1, rm)

≤ σn + λKσ(rn, rm) + σm

thereby yielding
σ(rn, rm) ≤ (1− Kλ)−1[σn + σm]. (7)

Letting m, n −→ ∞ in inequality (7) and using (5), one obtains

σ(rn, rm) −→ 0.

It follows that {rn} is a Cauchy sequence, which also remains Λ-preserving. Therefore,
by Λ-completeness of the metric space (M, σ), ∃ an element p ∈ M verifying lim

n→∞
rn = p.

Finally, one will have to use hypothesis (iii). Firstly, assume that S is Λ-continuous.
As {rn} is Λ-preserving and rn

σ−→ p, due to Λ-continuity of S and (3), one obtains

p = lim
n→∞

rn+1 = lim
n→∞

S(rn) = S( lim
n→∞

rn) = S(p).

Hence, we have finished. Otherwise, if Λ remains $-self closed, then ∃ is a subsequence
{rnk} of {rn} verifying [rnk , r] ∈ Λ, ∀ k ∈ N0. Consequently, for all k ∈ N0, we have either
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(rnk , r) ∈ Λ or (r, rnk ) ∈ Λ. In the case of (rnk , r) ∈ Λ, making use of triangular inequality,

assumption (v) and rnk

$−→ r, one obtains

σ(rnk+1,S p) = σ(Srnk ,S p)) ≤ λKσ(rnk , p)→ 0, as k→ ∞

implying thereby
lim
k→∞

rnk = S(p).

In case (r, rnk ) ∈ Λ, one obtains the same conclusion by using symmetry of σ. Finally,
owing to uniqueness of limit, one has S(p) = p.

Theorem 2. Under the hypothesis of Theorem 1, if S(M) remains Λs-connected, then S possesses
a unique fixed point.

Proof. By Theorem 1, let r and s be two fixed points of S ; then

Sn(r) = r and Sn(s) = s, ∀ n ∈ N0.

Naturally, one has r, s ∈ S(M). The Λs-connectedness property of S(M) guarantees
the existence of a path {ω0, ω1, . . . , ωL} between r to s, such that

ω0 = r, ωL = s and [ωj, ωj+1] ∈ Λ, ∀ j = 0, 1, . . . , L− 1. (8)

Since Λ is S-closed; therefore, one obtains

[Snωj,Snωj+1] ∈ Λ, ∀ n ∈ N0 and ∀ j = 0, 1, . . . , L− 1. (9)

Denote

δ
j
n := σ(Snωj,Snωj+1), ∀ n ∈ N0 and ∀ j = 0, 1, . . . , L− 1.

Making use of (9) and hypothesis (v), one obtains

δ
j
n = σ(Snωj,Snωj+1)

= σ(S(Sn−1ωj),S(Sn−1ωj+1))

≤ Kλσ(Sn−1ωj,Sn−1ωj+1)

= Kλδ
j
n−1

yielding thereby

δ
j
n ≤ (Kλ)nδ

j
0 → 0, as n→ ∞

so that

lim
n→∞

δ
j
n = 0. (10)

Using triangle inequality, one obtains

σ(r, s) = σ(Snω0,SnωL)

≤ δ0
n + δ1

n + · · ·+ δL−1
n

→ 0 as n→ ∞

so that r = s. Thus, S possesses a unique fixed point.

In particular, for universal relation (i.e., Λ =M2), Theorem 2 produces the following
result:



Fractal Fract. 2023, 7, 565 6 of 13

Corollary 1. Let (M, σ) be a complete metric space while S :M→M a function. If ∃ β ∈ A
with upper bound K > 0 and ∃ a constant λ ∈ (0, 1/K), satisfying

σ(Sr,Ss) ≤ λβ(λσ(r, s))σ(r, s), ∀ r, s ∈ M,

then S admits a unique fixed point.

Obviously, Corollary 1 improves and sharpens Geraghty’s fixed point theorem [29].

4. An Application to Fractional Differential Equations

This section is devoted to finding a unique positive solution for the BVP (1) using our
newly proved results.

Definition 14 ([1]). Let u : (0, ∞)→ R be a function. Then

Iηu(x) =
1

Γ(η)

∫ x

0
(x− ξ)η−1u(ξ)dξ

provided R.H.S. exists pointwise on (0, ∞), this is called the Riemann–Liouville fractional integral
of order η > 0 of u. Additionally,

Dη
x u(x) =

1
Γ(n− η)

(
d

dx

)n ∫ x

0
(x− ξ)n−η−1u(ξ)dξ

where n = [η] + 1; provided R.H.S. exists pointwise on (0, ∞), this is called the Riemann–Liouville
fractional derivative of order η > 0 of u.

Proposition 2 ([1]). We have the following:

(i) For u ∈ L1(0, 1), ρ > γ > 0,

Iρ Iγu(x) = Iρ+γu(x), Dγ
x Iρu(x) = Iρ−γu(x), Dγ

x Iγu(x) = u(x).

(ii) For ρ > 0, γ > 0,

Dρ
xxγ−1 =

Γ(γ)
Γ(γ− ρ)

xγ−ρ−1

Proposition 3 ([1]). If η > 0 and f (u) remains integrable then

IηDη
x u(x) = f (u) + a1uη−1 + a2uη−2 + · · ·+ anxη−n

where ai ∈ R, i = 1, 2, . . . , n ; n = [η].

Lemma 1 ([8]). If u(x) = Iγn−1 z(x), then BVP (1) is the equivalent to the following BVP:

−Dη−γn−1 z(x) = h
(

x, Iγn−1 z(x), Iγn−1−γ1 z(x), . . . , Iγn−1−γn−2 z(x), z(x)
)

,

z(0) = z′(0) = 0, z(1) =
m−2

∑
j=1

ajz(ξ j). (11)

Moreover, if z ∈ C
(
[0, 1]; [0, ∞)

)
forms a solution of Problem (11), then u(x) = Iγn−1 z(x) forms a

positive solution of Problem (1).

Given a constant K > 0, let us introduce the class Φ of monotonic increasing functions
ϕ : [0, ∞)→ [0, ∞) verifying

ϕ(t) ≤ Kt, ∀ t > 0.
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Typical examples of functions ϕ ∈ Φ are ϕ(t) = Kt, ϕ(t) = Kt2/(1 + t) and ϕ(t) =
(2K/π)t arctan t.

Theorem 3. Let h(x, u, u2, . . . , un) be increasing in arguments of ui on [0, ∞]. Assume that ∃ n
constants εi > 0, i = 1, 2 . . . , n verifying

max{ε1, ε2, . . . , εn} ≤ (nα)−1 (12)

and ∃ a function ϕ ∈ Φ and constants 0 < λ1 < Γ(γn−1)/K, 0 < λn < 1/K, 0 < λi <
Γ(γn−1 − γi)/K, i = 1, 2,≤, n− 2 verifying

|h(x, u1, u2, . . . , un)− h(x, v1, v2, . . . , vn)| ≤
n

∑
i=1

εi ϕ(λi(ui − vi)) (13)

∀ ui, vi ∈ [0, ∞), i = 1, 2, . . . , n with ui ≥ vi and x ∈ [0, 1]. Then, Problem (1) admits a unique
nonnegative solution.

Proof. Define

k(x, ξ) =


(x(1−ξ))η−γn−1−1−(x−ξ)η−γn−1−1

Γ(η−γn−1)
, 0 ≤ ξ ≤ x ≤ 1,

(x(1−ξ))η−γn−1−1

Γ(η−γn−1)
, 0 ≤ x ≤ ξ ≤ 1.

As verified in [8], the Green function of (11) is

G(x, ξ) = k(x, ξ) +
xη−γn−1−1

1−
m−2
∑

j=1
cjξ

η−γn−1−1
j

m−2

∑
j=1

cjk(ξ j, ξ)

Additionally, it verifies the following property:

0 ≤ G(x, ξ) ≤ 1
Γ(η − γn−1)

1 +

m−2
∑

j=1
cj

1−
m−2
∑

j=1
cjξ

η−γn−1−1
j

 = α. (14)

Clearly, the BVP (11) is equivalent to

z(x) =
∫ x

0
G(x, ξ)h(ξ, Iγn−1 z(ξ), Iγn−1−γ1 z(ξ), . . . , Iγn−1−γn−2 z(ξ), z(ξ))dξ.

Denote
M := {z ∈ C([0, 1] : z(x) ≥ 0, x ∈ [0, 1]}.

OnM, define the metric σ and the relation Λ by

σ(u, v) = sup
0≤x≤1

|u(x)− v(x)|

and
Λ = {(u, v) ∈ M2 : u(x) ≥ v(x), ∀ x ∈ [0, 1]}.

Define the operator S :M→ C[0, 1] by

(Sz)(x) =
∫ 1

0
G(x, ξ)h(ξ, Iγn−1 z(ξ), Iγn−1γ1 z(ξ), . . . , Iγn−1γn−2 z(ξ), z(ξ))dξ, z ∈ M. (15)
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Then from the assumption on h and (14), one has

S(M) ⊂M.

It follows that S forms a self-mapping onM.
Now, one will verify all the hypotheses of Theorems 1 and 2.

(i) M, being cone in C[0, 1], is a closed set of C[0, 1]. Again, as C[0, 1] is complete,
(M, σ) forms a complete metric space. Consequently, the metric space (M, σ) is also
Γ-complete.

(ii) The zero function 0 verifies (0,S0) ∈ Λ.
(iii) Take z, w ∈ M verifying (z, w) ∈ Λ, which thereby implies z(x) ≥ w(x), ∀ x ∈ C[0, 1].

One has

(Sz)(x) =
∫ 1

0
G(x, ξ)h

(
ξ, Iγn−1 z(ξ), Iγn−1−γ1 z(ξ), . . . , Iγn−1−γn−2 z(ξ), z(ξ))dξ

≥
∫ 1

0
G(x, ξ)h

(
ξ, Iγn−1 w(ξ), Iγn−1−γ1 w(ξ), . . . , Iγn−1−γn−2 w(ξ), w(ξ))dξ

= (Sw)(x)

so that (Sz,Sw) ∈ Λ, which yields that Λ is S-closed. Further, the relation Λ being
transitive is also locally S-transitive.

(iv) As proved in [47], Λ is σ-self-closed.
(v) Obviously,

z(ξ)− w(ξ) ≤ σ(z, w).

Therefore, one has

Iγn−1 z(ξ)− Iγn−1 w(ξ) ≤
∫ x

0

(x− ξ)γn−1−1|z(ξ)− w(ξ)|
Γ(γn−1)

dξ ≤ σ(z, w)

Γ(γn−1)
. (16)

Iγn−1−γi z(ξ)− Iγn−1−γi w(ξ) ≤
∫ x

0

(x− ξ)γn−1−γi−1|z(ξ)− w(ξ)|
Γ(γn−1 − γi)

dξ

≤ σ(z, w)

Γ(γn−1 − γi)
, i = 1, 2, . . . , n− 2. (17)

Take z, w ∈ M verifying (z, w) ∈ Λ implying thereby z(x) ≥ w(x), ∀ x ∈ C[0, 1].
Using (13) and (15)–(17), one obtains

σ(Sz,Sw) = max
x∈[0,1]

|Sz(x)− Sw(x)|

≤ η
∫ 1

0
|h(ξ, Iγn−1 z(ξ), Iγn−1−γ1 z(ξ), . . . , Iγn−1γn−2z(ξ), z(ξ))

− h(ξ, Iγn−1 w(ξ), Iγn−1−γ1 w(ξ), . . . , Iγn−1−γn−2 w(ξ), w(ξ))|dξ

≤ η
∫ 1

0

[
ε1 ϕ
(
λ1(Iγn−1 z(ξ)− Iγn−1 w(ξ))

)
+ ε2 ϕ

(
λ2(Iγn−1−γ1 z(ξ)− Iγn−1−γ1 w(ξ))

)
+ · · ·+ εn−1 ϕ

(
λn−1(Iγn−1γn−2 z(ξ)− Iγn−1−γn−2 w(ξ))

)
+ εn ϕ

(
λn(z(ξ)− w(ξ))

)]
dξ. (18)

Set

λ := max
{

λ1

Γ(γn−1)
,

λ2

Γ(γn−1 − γ1)
, · · · ,

λn−1

Γ(γn−1 − γn−2)
, λn

}
.

Then the inequality (18) reduces to

σ(Sz,Sw) ≤ nη max{ε1, ε2, . . . , εn}ϕ(λσ(z, w))
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which in view of (12) becomes

σ(Sz,Sw) ≤ ϕ(λσ(z, w)). (19)

Define an auxiliary function β : [0, ∞)→ [0, ∞) by

β(t) =

{
0, if t = 0
ϕ(t)/t, if t > 0.

As ϕ ∈ Φ, then β(t) ∈ A. Now, we claim that

σ(Sz,Sw) ≤ β(λσ(z, w))λσ(z, w). (20)

In case z = w, the inequality (20) is obviously satisfied. For z 6= w, from (19),
one obtains

σ(Sz,Sw) ≤ ϕ(λσ(z, w))

λσ(z, w)
λσ(z, w) = β(λσ(z, w))λσ(z, w). (21)

Thus, in both the cases, the contractivity condition (20) holds for (z, w) ∈ Λ.

Hence, the hypotheses (i)–(v) of Theorem 1 are satisfied. Let u, v ∈ M be arbitrary.
Denote ϑ := max{Su,Sv} ∈ M. Then, S(M) is Λs-connected as (Su, ϑ) ∈ Λ and
(Sv, ϑ) ∈ Λ, {Su, ϑ,Sv} admit a path in Λs between S(u) and S(v). Consequently, by
Theorem 2, S possesses a unique fixed point, say z ∈ M, which remains a unique solution
of Problem (11). Therefore, by Lemma 1, u ∈ C[0, 1] (whereas u(x) = Iγn−1 z(x)) forms the
unique nonnegative solution of the BVP (1).

Theorem 4. Under the hypotheses of Theorem 3, if ∃ x0 ∈ [0, 1] such that h(x0, 0, . . . , 0) 6= 0,
then the unique solution of BVP (1) remains positive.

Proof. In lieu of Theorem 3, the BVP (1) admits a unique nonnegative solution u ∈ C[0, 1].
One has to prove the nonnegative solution is also positive, i.e., u(x) > 0 for each x ∈ (0, 1).
By contrast, assume that 0 < x∗ < 1 verifying u(x∗) = 0 and

u(x∗) =
∫ 1

0
G(x∗, ξ)h

(
ξ, Iγn−1 z(ξ), Iγn−1−γ1 , . . . , Iγn−1−γn−2 z(ξ), z(ξ)

)
dξ = 0.

Then, one has

0 = u(x∗) =
∫ x

0
G(x∗, ξ)h

(
ξ, Iγn−1 z(ξ), Iγn−1−γ1 z(ξ), . . . , Iγn−1−γn−2 z(ξ), z(ξ)

)
dξ

≥
∫ 1

0
G(x∗, ξ)h(ξ, 0, . . . , 0)dξ ≥ 0

yielding thereby ∫ 1

0
G(x∗, ξ)h(ξ, 0, . . . , 0)dξ = 0

so that
G(x∗, ξ)h(ξ, 0, . . . , 0) = 0, a.e. ξ ∈ [0, 1].

However, G(x∗, ξ) > 0, ξ ∈ (0, 1). Therefore, one has

h(ξ, 0, . . . , 0) = 0, a.e. ξ ∈ [0, 1]. (22)

On the other hand, as h(x0, 0, . . . , 0) 6= 0, x0 ∈ [0, 1], one has h(x0, 0, . . . , 0) > 0. Owing
to the continuity of h, ∃ a set Ω verifying x0 ∈ Ω and the Lebesgue measure µ(Ω) > 0
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such that h(x, 0, . . . , 0) > 0 for any x ∈ Ω contradicts (22). Consequently, one has u(x) > 0,
i.e., u(x) forms a positive solution of (1).

Example 1. Consider the following fractional BVP:

D5/2u(x) = ex +
1
10

u(x) + sin2 (D1/8u(x)
)
+

1
3

cos2 (D1/4u(x)
)
, 0 < x < 1,

D1/4u(0) = D5/4u(0),D1/4u(1) =
1
4

u(1) =
1
4
D1/4u

(
1
4

)
+

1
2
D1/4u

(
3
4

)
. (23)

Here , one has

m−2

∑
j=1

cjξ
η−γn−1−1
j =

1
4

(
1
4

)5/4
+

1
2

(
3
4

)5/4
= 0.39316 < 1

and

α =
1

Γ(η − γn−1)

1 +

m−2
∑

j=1
cj

1−
m−2
∑

j=1
cjξ

η−γn−1−1
j

 = 0.10964

which give rise to
(nα)−1 = 3.0405.

Consider K = 15 and ϕ(t) = 15t. Take

h(x, u2, u2, u3) = ex +
1
10

u1 +
1
2

sin2 u2 +
1
3

cos2 u3, (x, u1, u2, u3) ∈ [0, 1]× [0, ∞)3.

Then, for all u1 ≥ v1, u2 ≥ v2, u3 ≥ v3, one has

|h(x, u1, u2, u3)− h(x, u1, u2, u3))| =
∣∣∣∣∣u1 − v1

10
+

sin2 u2 − sin2 v2

2
+

cos2 u3 − cos2 v3

3

∣∣∣∣∣
≤ u1 − v1

10
+

u2 − v2

2
+

u3 − v3

3

=
2
75
× 15× 1

4
× (u1 − v1) +

1
10
× 15× 1

3
(u2 − v3)

+
4
9
× 15× 1

20
(u3 − v3)

=
2
75

ϕ

(
1
4
(u1 − v1)

)
+

1
10

ϕ

(
1
3
(u3 − v3)

)
+

4
9

ϕ

(
1
20

(u3 − v3)

)
=

3

∑
i=1

εi ϕ(λi(ui − vi)),

where
ε1 =

2
75

, ε2 =
1
10

, ε3 =
4
9

, λ1 =
1
4

, λ2 =
1
3

, λ3 =
1

20
.

Therefore , one has ϕ ∈ Φ. Hence, all the hypotheses of Theorem 3 hold. Moreover, h(0, 0, . . . , 0) =
4/3 6= 0. By Theorems 3 and 4, the BVP (23) has a unique positive solution.
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5. Conclusions

In particular for universal relation, Theorem 2 deduces an enriched version of Ger-
aghty’s fixed point theorem [29]. Under the restriction Λ =�, the partial order,
Theorems 1 and 2 deduce the corresponding results of Zhou et al. [26]. Furthermore,
Theorems 1 and 2 also improve the fixed point results contained in Almarri et al. [46]
and Harandi and Emami [47].

In Example 1, we have β(t) = ϕ(t)/t = K = 15. This implies that β ∈ B. Therefore,
the unique positive solution of BVP (23) cannot be determined by using the fixed point
theorem of Almarri et al. [46]. However, one can obtain the unique positive solution of
BVP (23) via Theorem 2. This substantiates the utility of Theorem 2 over the result of
Almarri et al. [46].
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28. Ishtiaq, U.; Kattan, D.A.; Ahmad, K.; Lazăr, T.A.; Lazăr, V.L.; Guran, L. On intuitionistic fuzzy Nb metric space and related fixed

point results with application to nonlinear fractional differential equations. Fractal Fract. 2023, 7, 529. [CrossRef]
29. Geraghty, M. On contractive mappings. Proc. Am. Math. Soc. 1973, 40, 604–608. [CrossRef]
30. Alam, A.; Imdad, M. Relation-theoretic contraction principle. J. Fixed Point Theory Appl. 2015, 17, 693–702. [CrossRef]
31. Alam, A.; Imdad, M. Nonlinear contractions in metric spaces under locally T-transitive binary relations. Fixed Point Theory 2018,

19, 13–24. [CrossRef]
32. Alam, A.; Arif, M.; Imdad, M. Metrical fixed point theorems via locally finitely T-transitive binary relations under certain control

functions. Miskolc Math. Notes 2019, 20, 59–73. [CrossRef]
33. Arif, M.; Imdad, M.; Alam, A. Fixed point theorems under locally T-transitive binary relations employing Matkowski contractions.

Miskolc Math. Notes 2022, 23, 71–83. [CrossRef]
34. Algehyne, E.A.; Aldhabani, M.S.; Khan, F.A. Relational contractions involving (c)-comparison functions with applications to

boundary value problems. Mathematics 2023, 11, 1277. [CrossRef]
35. Khan, F.A.; Sk, F.; Alshehri, M.G.; Khan, Q.H.; Alam, A. Relational Meir-Keeler contractions and common fixed point theorems.

J. Funct. Spaces 2022, 9, 3550923. [CrossRef]
36. Shukla, S.; Dubey, N. Some fixed point results for relation theoretic weak ϕ-contractions in cone metric spaces equipped with a

binary relation and application to the system of Volterra type equation. Positivity 2020, 24, 1041–1059. [CrossRef]
37. Hossain, A.; Alam, A.; Sessa, S.; Khan, Q.H. Relation-theoretic weak contractions and applications. Mathematics 2023, 11, 1976.

[CrossRef]
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tion to fractal spaces. Fractal Fract. 2022, 6, 711. [CrossRef]
45. Saleh, S.M.; Alfaqih, W.M.; Sessa, S.; Di Martino, F. New relation-theoretic fixed point theorems in fuzzy metric spaces with an

application to fractional differential equations. Axioms 2022, 11, 117. [CrossRef]
46. Almarri, B.; Mujahid, S.; Uddin, I. New fixed point results for Geraghty contractions and their applications. J. Appl. Anal. Comp.

2023. [CrossRef]
47. Harandi, A.A.; Emami, H. A fixed point theorem for contraction type maps in partially ordered metric spaces and application to

ordinary differential equations. Nonlinear Anal. 2010, 72, 2238–2242. [CrossRef]

http://dx.doi.org/10.1007/s12190-022-01834-8
http://dx.doi.org/10.3390/fractalfract7050406
http://dx.doi.org/10.1186/s13661-023-01728-z
http://dx.doi.org/10.1016/j.chaos.2023.113446
http://dx.doi.org/10.1080/00036811.2021.2021187
http://dx.doi.org/10.1080/27690911.2023.2167990
http://dx.doi.org/10.1155/2012/856302
http://dx.doi.org/10.1016/j.na.2011.10.048
http://dx.doi.org/10.3390/fractalfract7070529
http://dx.doi.org/10.1090/S0002-9939-1973-0334176-5
http://dx.doi.org/10.1007/s11784-015-0247-y
http://dx.doi.org/10.24193/fpt-ro.2018.1.02
http://dx.doi.org/10.18514/MMN.2019.2468
http://dx.doi.org/10.18514/MMN.2022.3220
http://dx.doi.org/10.3390/math11061277
http://dx.doi.org/10.1155/2022/3550923
http://dx.doi.org/10.1007/s11117-019-00719-8
http://dx.doi.org/10.3390/math11091976
http://dx.doi.org/10.1007/s11784-016-0306-z
http://dx.doi.org/10.3390/sym10120767
http://dx.doi.org/10.3390/axioms11090441
http://dx.doi.org/10.3390/axioms10040316
http://dx.doi.org/10.3390/sym14102111
http://dx.doi.org/10.3390/sym14122614
http://dx.doi.org/10.3390/fractalfract6120711
http://dx.doi.org/10.3390/axioms11030117
http://dx.doi.org/10.11948/20230004
http://dx.doi.org/10.1016/j.na.2009.10.023


Fractal Fract. 2023, 7, 565 13 of 13

48. Lipschutz, S. Schaum’s Outlines of Theory and Problems of Set Theory and Related Topics; McGraw-Hill: New York, NY, USA, 1964.
49. Alam, A.; Imdad, M. Relation-theoretic metrical coincidence theorems. Filomat 2017, 31, 4421–4439. [CrossRef]
50. Kolman, B.; Busby, R.C.; Ross, S. Discrete Mathematical Structures, 6th ed.; Pearson/Prentice Hall: Hoboken, NJ, USA, 2009.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2298/FIL1714421A

	Introduction
	Preliminaries
	Main Results
	An Application to Fractional Differential Equations
	Conclusions
	References

