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Abstract: In this paper, a mixed-order image denoising algorithm containing fractional-order and
high-order regularization terms is proposed, which effectively suppresses the staircase effect gen-
erated by the TV model and its variants while better preserving the edges and details of the image.
Adding different regularization penalties in different regions is fundamental to improving the de-
noising performance of the model. Therefore, a weight selection function is designed using the
structure tensor to achieve a more effective selection of regularization terms in different regions.
In each iteration, the regularization parameters are adaptively adjusted according to the Morozov
discrepancy principle to promote the performance of the algorithm. Based on the primal–dual theory,
the original algorithm is improved by using the predictor–corrector scheme to obtain a more accurate
approximate solution while ensuring the convergence of the algorithm. The effectiveness of the
proposed algorithm is demonstrated through simulation experiments.

Keywords: image denoising; fractional-order; mixed-order; weight selection function; primal–dual
algorithm; adaptive regularization parameter

1. Introduction

The field of digital image processing requires high-resolution and clean images. How-
ever, in most cases, images are often degraded due to noise and other factors, resulting in
the loss of valuable image information. Therefore, it poses a significant challenge to model
the noise accurately, employ efficient algorithms to remove it from the image, and achieve
algorithm convergence.

Image denoising can be regarded as a reversible problem, but it is ill-posed, which
means that the solution to this problem does not exist or is not unique. To overcome this
problem and achieve better denoising performance, several methods have been proposed,
including regularization methods [1], wavelet transforms [2,3], non-local methods such
as NLM [4,5] and BM3D [6,7], deep learning methods such as DnCNN [8], DIVA [9],
and BM3D-net [10], and quantum-based methods such as DeQuIP [11] and QAB [12].
The role of these methods in image denoising is acknowledged, but certain limitations
are also present in them. For instance, the appearance of new unrealistic structures or
textures is prone to occur in denoised images using the wavelet transform. Non-local
methods are characterized by high computational complexity and are easily influenced
by outliers. Deep learning methods necessitate a substantial dataset for model training,
leading to longer modeling times. Quantum-based methods are still in the early stages of
research and have many technical challenges and limitations. Although there are some
limitations to regularization methods, they are supported by a solid understanding of
mathematical theory, and the logical reasoning of the computational derivation process is
also strong. Being easy to code and having a shorter modeling time, they are still widely
utilized at present.

In models associated with regularization techniques, there are two prevalent issues:
how to suppress the staircase effect caused by the total variation (TV) regularization model
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proposed by Rudin et al. [13], and how to adaptively adjust the regularization parameters
based on image features. Currently, a considerable amount of research has been conducted
on these problems. Regarding the first issue, researchers have presented using higher-order
regularizers [14–16] or fractional-order regularizers [17–19] to modify the TV regularization
term and suppress the staircase effect. However, studies have found that the higher-order
TV model (HOTV) does not smooth noise as effectively as the TV model. Although the
fractional-order TV model (FOTV) has better noise filtering and detail preservation effects,
its solving process is challenging. For the second issue, researchers have designed different
adaptive regularization parameters based on prior information about the image [20,21].
However, there are few algorithms that simultaneously address both of these problems.
Therefore, the advantages of the HOTV and FOTV models are inherited in this paper, and a
mixed-order TV (MOTV) image denoising algorithm is proposed. Moreover, adaptive
regularization parameters are designed based on image features. To efficiently solve the
model while minimizing the number of parameters, an improved primal–dual algorithm
based on the predictor–corrector scheme is proposed, and the convergence of this algorithm
is theoretically proven.

The main contributions of this paper are summarized below: Firstly, a new MOTV
image denoising algorithm is proposed to suppress the staircase artifacts while filtering
out more noise. The approximate optimal solution of the model is obtained by using
the improved primal–dual algorithm. Secondly, an edge-weighted selection function is
constructed by using the structure tensor, which preserves more edge details of the image.
Finally, an adaptive regularization parameter is designed using the Morozov discrepancy
principle to facilitate the performance of the algorithm.

The rest of this article is organized as follows: Section 2 briefly introduces the relevant
knowledge background and model. In Section 3, a new model is proposed, and the deriva-
tion process of the model solution is given. Then an adaptive regularization parameter is
set, and the convergence of the algorithm is evidenced. In Section 4, simulation experiments
are carried out to prove the effectiveness of the proposed algorithm. Section 5 provides a
simple summary.

2. Related Works
2.1. Fractional-Order Variation Model

The fractional-order derivative, as a generalization of the integer derivative, can
preserve more image details. Therefore, it has been extensively studied by a quantity of
scholars in recent decades [22,23]. Firstly, the definition of fractional-order derivatives and
their related properties are reviewed here.

The Euclidean space Rm×n of an image u with size m× n is represented as V. To facili-
tate interpretation, the image domain is discretized into a matrix grid
{(xi, yi) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, where (i, j) represents the position of the pixel in the ma-
trix. Consequently, the image u ⊂ V can be defined as ui,j = u(xi, yj). Various definitions
of fractional-order derivatives exist in the literature [24], including the Grünwald–Letnikov
(G-L) definition, the Riemann–Liouville (R-L) definition, the Caputo definition, and others.
In digital image processing, the G-L definition is the most popular. The G-L definition is
also employed in this paper, and the relevant fractional-order gradient is defined as follows:

∇αu = (∇α
1u,∇α

2u)T , α > 0, (1)

where ∇α
1u,∇α

2u ∈ V denote the derivatives of the image u in the horizontal and vertical
directions, respectively, which can be discretized and approximated as

(∇α
1u)i,j =

K−1

∑
k=0

(−1)kCα
k ui−k,j , (∇α

2u)i,j =
K−1

∑
k=0

(−1)kCα
k ui,j−k. (2)

Here K ≥ 3 is the number of adjacent pixels used to approximate the fractional-order
derivative at each pixel point. The coefficient {Cα

k }K−1
k=0 is defined as Cα

k = Γ(α+1)
Γ(k+1)Γ(α+1−k) ,
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where Γ(·) is the Gamma function, U =
{

u ∈ V : ‖u‖∞ = maxij|ui,j| ≤ 1
}

. Then the FOTV
model can be defined as

min
u

λ

2
‖Hu− f ‖2

2 + ‖∇αu‖1, (3)

where
||∇αu||1 := ∑

ij
|(∇αu)i,j| , |(∇αu)i,j| =

√
(∇α

1u)2
i,j + (∇α

2u)2
i,j, (4)

Here, H is a blur operator, u is the original image, and f is the noisy image. According
to Ref. [25], an important relation can be derived as 〈∇αu, p〉 = 〈u, (−1)αdivα p〉. Here,
∀p = (p1, p2) ∈ Z where Z = V × V, and p represents a dual variable. Utilizing the
aforementioned relationship, the adjoint divergence of the discrete gradient (1) can be
obtained as follows:

(divα p)i,j = (−1)α
K−1

∑
k=0

(−1)kCα
k (p1

i+k,j + p2
i,j+k). (5)

2.2. High-Order Variation Model

If the TV model is defined in the bounded variation (BV) function space, then the
reconstruction of discontinuous points can be achieved. Accordingly, the HOTV models,
which can better model noise, have been proposed by plenty of scholars to suppress the
staircase effect and achieve improved results [14–16,26]. The HOTV model is generally
defined as follows:

min
u
‖Hu− f ‖2

2 + βR(u), (6)

where β is a predefined parameter and R(u) is a high-order regularization term.

2.3. Structural Tensor

In mathematics, the structure tensor, also known as the second moment matrix, is
a matrix derived from the gradient of a function. It can summarize the main directions
of the gradients in a specified neighborhood of a given point, as well as the degree of
coherence in those directions. As a result, the structure tensor finds extensive application in
the fields of computer vision and image processing [27,28]. In image processing, it excels at
distinguishing between edge regions, flat regions, and corner regions. The structure tensor
for the image u can be expressed as

ST =

[
u2

x uxuy
uyux u2

y

]
. (7)

Here, ux, uy denote the gradients of the image u in the x and y directions, respectively.
If SK and SH are used to represent the determinant and trace of matrix ST, respectively,
then the judgment conditions for each region are summarized as follows:

• flat regions: SH = 0;
• edge regions: SH > 0 and SK = 0;
• corner regions: SH > 0 and SK > 0.

In Figure 1, the white portions of subgraphs (a–c), respectively, represent the flat re-
gions, edge regions, and corner regions of the Lena image. However, in practice, the values
of SK and SH are not ideal, so approximate judgment is usually used.
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(a) (b) (c)

Figure 1. Region image. (a) Flat regions, (b) edge regions, (c) corner regions.

2.4. Primal–Dual Algorithm with Guaranteed Convergence

The standard Euclidean inner product and norm of the finite dimensional vector

spaces X and Y are expressed as 〈� , �〉 and || � || = 〈� , �〉 1
2 , respectively. If a continuous

linear operator A is a map on X → Y, then its induced norm can be expressed as

L = ||A|| = max{||Ax|| : x ∈ X, ||x|| ≤ 1}. (8)

According to Fenchel duality theory [29], the generalized saddle point problem can be
expressed as

min
x∈X

max
y∈Y
〈Ax, y〉+ G(x)− F∗(y), (9)

where G and F are lower semi-continuous functions, and F∗ is the conjugate function of F.
It is well known that the primal–dual problem of the following primal optimization

problem (10) corresponds to this saddle point problem (9) mentioned above. The primal
problem can be expressed as follows:

min
x∈X

F(Ax) + G(x). (10)

Then, according to the primal–dual problem, the dual problem related to the primal
problem can be calculated, which is expressed as

max
y∈Y
− (G∗(−A∗y)) + F∗(y). (11)

Chambler and Pock proposed a primal–dual algorithm for solving the saddle point
structure problem (9), and the convergence of the algorithm was proven [30]. By fixing
the primal variable x of the primal–dual problem and solving the first-order derivative
function about the dual variable y, the expression for y can be obtained:

y = (I + ∂F∗)−1(y + Ax). (12)

Similarly, it can be obtained that the expression about the primal variable x is:

x = (I + ∂G)−1(x− A∗y) (13)

where ∂F∗ and ∂G represent the subgradients of F∗ and G, respectively. The operators
(I + ∂F∗)−1 and (I + ∂G)−1 are known as resolvent operators. When the concept of
minimizing an energy functional is applied to define the resolvent operator, it can be
expressed as

x = (I + τ∂F)−1(y) = arg min
x

{
‖x− y‖2

2τ
+ F(x)

}
.

See [31] for details of the subgradient and resolvent operators. Then, the primal–dual
algorithm proposed in the literature [30] can ultimately be summarized as
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• Initialization: Choose t0, s0 > 0 with t0s0L2 ≤ 1, (x0, y0) ∈ X×Y, and x̄0 = x0.
• Iteration (n ≥ 0): update as follows

yn+1 = (I + sn∂F∗)−1(yn + sn Ax̄n),

xn+1 = (I + tn∂G)−1(xn − tn A∗yn+1),

θn = 1/
√

1 + 2γtn, tn+1 = θntn, sn+1 = sn/θn,

x̄n+1 = xn+1 + θn(xn+1 − xn).

3. Model Proposal and Solution
3.1. Proposed Model

In this study, the following image denoising problems with additive noise are considered:

f = Hu + η, (14)

where η represents the Gaussian noise. TV regularization is a classical method for restoring
high-quality images, guaranteeing the stability of the solution. Models (3) and (6) are clas-
sical FOTV and HOTV models, respectively, used for removing Gaussian noise. Building
upon the strengths of both models, a mixed-order image denoising model is proposed in
this paper, described as follows:

min
u

{
λ

2
‖Hu− f ‖2

2 + ξi‖∇αu‖1 + ξi‖∇2u‖2 + β‖u‖1

}
. (15)

Here, λ represents the regularization parameter, β is the balance parameter, and
ξi(i = 1, 2) is a weight selection parameter. The purpose of introducing this weight
selection parameter is to select different regions of the image by the structure tensor and
to process the image using different regularization terms in different regions. To achieve
this purpose, ξi is defined as a function of pixel point characteristics. In other words,
the intensity of regularization varies for pixel points in the flat regions, edge regions,
and corner regions. At present, the weight function, which is the inverse function of the
image gradient, is used by most researchers [29,32,33], but this paper takes a different
approach.

Next, a matrix related to the structure tensor is defined:

Kσ(u(x, y)) = Gσ ∗ (∇u∇uT) =

[
Gσ ∗ u2

x Gσ ∗ uxuy
Gσ ∗ uyux Gσ ∗ u2

y

]
=

[
a11 a12
a21 a22

]
,

where Gσ = (σ
√

2π)
−1

exp(−|x|2/2σ2 ) is a Gaussian filter function with standard
deviation σ.

The matrix K contains two eigenvectors that are standard orthogonal. Different
eigenvalues λ1, λ2 describe the average contrast in the corresponding eigenvector direction.
Different regions exhibit different eigenvalue relationships. In the edge regions, λ1 �
λ2 ≈ 0; in the flat regions, λ1, λ2 ≈ 0; and in the corner regions, λ1 > λ2 � 0 [34].
Hence, the characteristics of each pixel can be measured using the difference between the
eigenvalues. The edge coherence [35] based on the eigenvalue is defined as

C(u) = (λ1 − λ2)
2 = (a11 − a22)

2 + 4a2
12. (16)

Furthermore, the weight selection function ξi can be defined as

ξi =


1− exp[− 1

(C(u)/v)2 ] , i = 1

exp[− 1

(C(u)/v)2 ] , i = 2
(17)
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where v ∈ [10−4 ∼ 10−2] is the comparison parameter. The role of v is equivalent to a
threshold, which can be used to distinguish various regions. Note that in order to prevent
the impact of abnormal values, C(u) should be normalized before calculating ξi.

Obviously, ξi depends on the edge consistency of pixel features. In the edge and
corner regions, C → 1, ξ1 → 0, ξ2 → 1, at this time, ξ2

∥∥∇2u
∥∥

2 + β‖u‖1 is selected as a
regularization term of the model, which can better preserve the edge details of the image.
In the flat regions, C → 0, ξ2 → 0, ξ1 → 1, at this time, ξ1‖∇αu‖1 + β‖u‖1 is selected as a
regularization term, which can reduce noise and artifacts in the image while also reinforcing
the regularization process for the flat regions. By designing the selection function ξi and
performing correspondence matching within the model, the image edges and fine details
can be effectively preserved, ultimately resulting in the recovery of high-quality images.
Below is the corresponding matching model:

min
u

Φ(u, λ) ≡
{

λ

2
‖Hu− f ‖2

2 + ξ1‖∇αu‖1 + ξ2‖∇2u‖2 + β‖u‖1

}
. (18)

Solving the MOTV model is equivalent to solving the saddle point of the primal–dual
problem. The iterative steps and convergence analysis of the model are introduced in
detail below.

3.2. Numerical Algorithm

The MOTV model is a variant of the TV model. The famous Euler–Lagrange method
can be utilized to solve both the TV model and its variant. However, the model contains
a non-differentiable derivative, making its calculation process complex. To overcome the
difficulties, the primal–dual algorithm is employed. The conjugate sets of all the dual
variables p, y, and w are P, Y, and W, respectively. Let δ(u) = ‖∇αu‖1, then its conjugate
function satisfies the following properties:

δ∗P(p) =

{
0, p ∈ P
+∞, p /∈ P

(19)

where P =
{

p ∈ Z : ‖p‖∞ = maxij|pi,j| ≤ 1
}

denotes the conjugate set. Similarly, let
ζ(u) = ‖∇2u‖2, ς(u) = ‖u‖1, then the associated conjugate functions ζ∗Y(y), ς∗W(w) and
conjugate sets Y, W also have the same properties.

Applying Fenchel duality theory to the primal problem (18), a general primal–dual
model of the MOTV model can be obtained, which is expressed as

min
u

max
p,y,w

λ

2
‖Hu− f ‖2

2 + ξ1〈p,∇αu〉+ ξ2〈y,∇2u〉+ β〈w, u〉

− ξ1δ∗P(p)− ξ2ζ∗Y(y)− βς∗W(w).
(20)

Of these, y, w has the same properties as p. Similarly, the corresponding dual problem
can be obtained as follows:

max
p,y,w
〈ξ1(∇α)T p + ξ2(∇2)

T
y + βw, f 〉 − λ

2
‖ξ1(∇α)T p + ξ2(∇2)

T
y + βw‖2

2

− ξ1δ∗P(p)− ξ2ζ∗Y(y)− βς∗W(w).
(21)

The discretized MTV of the image u is also the Legendre–Fenchel conjugate of δ, ζ,
and ς [36,37]. That is:

MTV(u) = max
p,y,w
{ξ1〈p,∇αu〉+ ξ2〈y,∇2u〉+ β〈w, u〉

− ξ1δ∗P(p)− ξ2ζ∗Y(y)− βς∗W(w)}
= max

p,y,w
{ξ1〈p,∇αu〉+ ξ2〈y,∇2u〉+ β〈w, u〉}.
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Legendre–Fenchel’s duality is used to represent the MTV(u) norm, (18) can be
represented as

min
u

max
p,y,w

L(u, p, y, w; λ). (22)

where L(u, p, y, w; λ) = λ
2 ‖Hu − f ‖2

2 + ξ1〈p,∇αu〉 + ξ2〈y,∇2u〉 + β〈w, u〉.
Let G(u) = λ

2 ‖Hu− f ‖2
2, then the following equality holds [38].

pk+1 = (sξ1∂δ∗ + I)−1 p̃, p̃ = pk + sξ1∇αuk (23)

yk+1 = (sξ2∂ζ∗ + I)−1ỹ, ỹ = yk + sξ2∇2uk (24)

wk+1 = (sβ∂ς∗ + I)−1w̃, w̃ = wk + sβuk (25)

uk+1 = (t∂G + I)−1ũ, ũ = uk − tξ1(∇α)T pk+1 − tξ2(∇2)
T

yk+1 − tβwk+1 (26)

Among them, four resolvent operators are involved, namely (∂δ∗ + I)−1, (∂ζ∗ + I)−1,
(∂ς∗ + I)−1, (∂G + I)−1, the solution of the resolvent operators is very difficult. Therefore,
the method of solving saddle points can be employed to equivalently solve the above equa-
tions and reduce computational complexity. According to the literature [39], the function
L(u, p, y, w; λ) has a saddle point, which can be obtained by Lemma 1 as (u∗, p∗, y∗, w∗).

Lemma 1. If (u∗, p∗, y∗, w∗) is a point of the function L(u, p, y, w; λ), and the point satisfies
the inequality

L(u∗, p, y, w; λ) ≤ L(u∗, p∗, y∗, w∗; λ) ≤ L(u, p∗, y∗, w∗; λ),

then, this point can be represented as a saddle point of the function L(u, p, y, w; λ).

In connection with the literature [40], it is clear that the solution procedure for the
maximum and minimum of (22) is interchangeable, i.e.,

min
u

max
p,y,w

L(u, p, y, w; λ) = L(u∗, p∗, y∗, w∗; λ) = max
p,y,w

min
u

L(u, p, y, w; λ).

This further reflects that the minimalized primal problem can be solved by finding the
saddle point of the primal–dual problem, where the dual variable is updated alternately
with the primal variable [41,42]. If u∗, p∗, y∗, w∗ is the optimal solution of (22), then
(u∗, p∗, y∗, w∗) is a saddle point of (22) [39], i.e.,

u∗ = arg min
u

L(u, p∗, y∗, w∗; λ), (27)

p∗ = arg min
p

L(u∗, p, y∗, w∗; λ), (28)

y∗ = arg min
y

L(u∗, p∗, y, w∗; λ), (29)

w∗ = arg min
w

L(u∗, p∗, y∗, w; λ). (30)

Combining (22) and (27) yields

λHT(Hu∗ − f ) + ξ1(∇α)T p∗ + ξ2(∇2)
T

y∗ + βw∗ = 0. (31)

According to the Karush–Kuhn–Tucker (KKT) necessary conditions of the dual opti-
mality, the Lagrange multipliers µ1

i,j, µ2
i,j, µ3

i,j ≥ 0 can be yielded, such that
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(∇αu∗)i,j + µ1

i,j p
∗
i,j = 0,

(∇2u∗)i,j + µ2
i,jy
∗
i,j = 0,

u∗i,j + µ3
i,jw
∗
i,j = 0.

where either µ1
i,j > 0 with |pi,j| = 1 or µ1

i,j = 0 with |pi,j| < 1. At this time,
µ1

i,j = |(∇αu∗)i,j|. Similarly, the other two formulas can be obtained. Thus, if the so-
lutions of (28)–(30) are p∗, y∗, w∗, respectively, then

(∇αu∗)i,j + |(∇αu∗)i,j|p∗i,j = 0,

(∇2u∗)i,j + |(∇2u∗)i,j|y∗i,j = 0,

u∗i,j + |u∗i,j|w∗i,j = 0.

(32)

Therefore, the following lemma can be obtained:

Lemma 2. Suppose p, y, w are dual variables, and if a saddle point of the function L(u, p, y, w; λ)
is (u∗, p∗, y∗, w∗), then (31) and (32) hold.

There exist plenty of methods available for computing saddle points through maxi-
mization and minimization techniques [37,43,44]. However, the hybrid gradient primal–
dual algorithm is utilized by this paper to solve saddle points, which improves the original
primal–dual algorithm. By employing this method to calculate the primal and dual vari-
ables alternately, a solution can be obtained as follows:

pk+1 = arg max
p

{
L(u, p, y, w; λ)− 1

2s
‖p− pk‖2

2

}
, (33)

yk+1 = arg max
y

{
L(u, p, y, w; λ)− 1

2s
‖y− yk‖2

2

}
, (34)

wk+1 = arg max
w

{
L(u, p, y, w; λ)− 1

2s
‖w− wk‖2

2

}
, (35)

uk+1 = arg min
u

{
L(u, p, y, w; λ) +

1
2t
‖u− uk‖2

2

}
. (36)

Here, s, t > 0 represent the update steps for the dual and primal variables, respec-
tively, which satisfies s · t ≤ 1/16. Note that the regularization parameter λ is not in-
volved in the solution of the dual variables p, y, w. Before discussing the solution of the
subproblem (33)–(36), the projection of q on P is first defined as follows:

ρP(q) = arg min
p∈P

‖p− q‖2
2. (37)

The Lagrange method can be used to solve (37). The corresponding Lagrangian
function is expressed as

‖p− q‖2
2 + ∑

i,j
γi,j(‖pi,j‖2 − 1).

Under the constraint |pi,j|2 ≤ 1, the Lagrange multiplier γi,j ≥ 0 can be obtained. It
follows from the complementarity condition that either γi,j = 0 with |pi,j| < 1 and |qi,j| < 1
or γi,j > 0 with |pi,j| = 1 and |qi,j| ≥ 1. In the first case, pi,j = qi,j. In the other case, the KKT
condition yields

pi,j − qi,j + γi,j pi,j = 0, ∀i, j.
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Furthermore, γi,j = |qi,j| − 1. Thus, pi,j = qi,j/|qi,j| . Then, the expression of ρP(q) is:

(ρP(q)) =
q

max(1, |q|) . (38)

In what follows, the solution to each subproblem is discussed in detail. For the
p-subproblem in (33), the solution of

pk+1 = arg max
p

ξ1〈p− pk,∇αu〉 − 1
2s
‖p− pk‖2

2

= arg max
p

1
2s
{2〈p− pk, sξ1∇αu〉 − ‖p− pk‖2

2}

= arg min
p
‖p− (pk + sξ1∇αu)‖2

2.

(39)

The minimization problem is equivalent to computing the projection of (pk + sξ1∇αu)
onto P set. Therefore

pk+1 = ρP(pk + sξ1∇αu). (40)

Similarly, yk+1 in (34) and wk+1 in (35) can be computed by

yk+1 = ρY(
ky + sξ2∇2u), (41)

wk+1 = ρW(wk + sβu). (42)

For the u-subproblem in (36), the subproblem (36) is a quadratic function of image u,
which has a closed-form solution. The solution process can be expressed as follows:

uk+1 = arg min
u

ξ1〈p,∇α(u− uk)〉+ λ

2
‖Hu− f ‖2

2 + ξ2〈y,∇2(u− uk)〉

+ β〈w, u− uk〉+ 1
2t
‖u− uk‖2

2,
(43)

hence, uk+1 can be easily computed by

uk+1 = (tλHT H + I)
−1

(tλHT f + ũ). (44)

Here, ũ = (uk− tξ(∇α)T p− tξ(∇2)
Ty− tβw). Then, the solutions to each subproblem

are summarized as follows:

pk+1 = (sξ1∂δ∗ + I)−1 p̃⇔ pk+1 =
pk + sξ1∇αuk

max(1, |pk + sξ1∇αuk|) , (45)

yk+1 = (sξ2∂ζ∗ + I)−1ỹ⇔ yk+1 =
yk + sξ2∇2uk

max(1, |yk + sξ2∇2uk|) , (46)

wk+1 = (sβ∂ς∗ + I)−1w̃⇔ wk+1 =
wk + sβuk

max(1, |wk + sβuk|) , (47)

uk+1 = (t∂E + I)−1ũ⇔ uk+1 = (tλHT H + I)
−1

(tλHT f + ũ). (48)

To obtain more accurate computational results, the primal–dual algorithm can be
further enhanced using the predictive correction method [43]. This method also facilitates
the convergence analysis of the algorithm.

In summary, the solution process can be summarized as the following Algorithm 1.
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Algorithm 1: Primal–Dual Algorithm for MOTV Image Restoration
Require: f , H, β.

1: Initialize u, p, y and w. Set the size of s and t.
2: while stopping criterion is not satisfied do
3: C(u) = (λ1 − λ2)

2 = (a11 − a22)
2 + 4a2

12;
4: ξ1(u) = 1− exp[− 1

(C(u)/γ)2 ];

5: ξ2(u) = exp[− 1
(C(u)/γ)2 ];

6: pk+ 1
2 = pk+sξ1∇αuk

max(1,|pk+sξ1∇αuk |) ;

7: yk+ 1
2 = yk+sξ2∇2uk

max(1,|yk+sξ2∇2uk |) ;

8: wk+ 1
2 = wk+sβuk

max(1,|wk+sβuk |) ;

9: ũ = uk − tξ1(∇α)T pk+ 1
2 − tξ2(∇2)

Tyk+ 1
2 − tβwk+ 1

2 ;
10: uk+1 = (tλHT H + I)−1

(tλHT f + ũ);

11: pk+1 = pk+ 1
2 +sξ1∇αuk+1

max(1,|pk+ 1
2 +sξ1∇αuk+1|)

;

12: yk+1 = yk+ 1
2 +sξ2∇2uk+1

max(1,|yk+ 1
2 +sξ2∇2uk+1|)

;

13: wk+1 = wk+ 1
2 +sβuk+1

max(1,|wk+ 1
2 +sβuk+1|)

;

14: end while
15: return u = uk+1.

3.3. Adaptive Regularization Parameter

Algorithm 1 involves an important regularization parameter λ when solving the
subproblem u. In fact, λ has a tremendous influence on the denoising performance of the
algorithm. In general, a multitude of researchers have manually set the regularization
parameter λ, and several researchers have adaptively selected the parameter λ according
to the prior information of the image [45,46]. In order to simplify the solution process, this
paper designs an adaptive parameter λ by using the structural features of the data fidelity
term while combining the Morozov deviation principle [40], so that the denoised image is
always in the feasible set D. The feasible set D is defined as

D =
{

u : ‖Hu− f ‖2
2 ≤ c2

}
. (49)

Here c is the positive number that depends on the noise variance σ2 [17,40]. If the
noise variance σ2 is known, then the upper bound of the feasible set D can be expressed as
c2 = τmnσ2. If the noise variance σ2 is unknown, then σ2 can be estimated by referring to
Reference [47]. τ is a predefined parameter, and τ = 1 is chosen empirically.

For the denoised image to retain more image detail, an error associated with the
parameter λ is set, which in turn allows the algorithm to adaptively select the parameter λ.
The error is defined as

ek+1 = Huk+1(λk+1)− f = (λk+1tHT H + I)
−1

(Hũ− f ). (50)

Whether HT H is a singular matrix or not, (λk+1tHT H + I) is always invertible. Ac-
cording to the Lemma 3, the updated rules for λ in the iterative process are as follows:

λk =

{
0 , i f ‖Hũ− f ‖2

2 ≤ c2

the root o f ‖ek+1(λ)‖2
2 = c2 , i f ‖Hũ− f ‖2

2 > c2 (51)



Fractal Fract. 2023, 7, 566 11 of 21

Lemma 3. Let
φ(u, λ) = ‖e‖2

2. (52)

Then φ(u, λ) is a convex function and strictly monotone decreasing. This function makes the
following equation have a unique solution.

φ(u, λ) = c2

Proof. The first-order derivative of the function φ(u, λ) is ∂φ(u,λ)
∂λ = −2t(Hũ− f )2

(tλ+I)3 ≤ 0.

From this, it can be seen that the function φ(u, λ) is a monotonically decreasing function
concerning the regularization parameter λ. The second-order derivative of the function

φ(u, λ) is ∂2φ(u,λ)
∂λ2 = 6t2(Hũ− f )2

(tλ+I)4 ≥ 0. It is evident that the function φ(u, λ) is a strictly posi-

tive convex function about the regularization parameter λ. Therefore, the above equation
has a unique solution.

Contacting Algorithm 1, a new MOTV denoising algorithm can be obtained, see
Algorithm 2.

Algorithm 2: Primal–Dual Algorithm for New MOTV Image Restoration

Require: f , H, β, c2.
1: Initialize u, p, y and w. Set the size of s and t.
2: while stopping criterion is not satisfied do
3: C(u) = (λ1 − λ2)

2 = (k11 − k22)
2 + 4k2

12;
4: ξ1(u) = 1− exp[− 1

(C(u)/γ)2 ];

5: ξ2(u) = exp[− 1
(C(u)/γ)2 ];

6: pk+ 1
2 = pk+sξ1∇αuk

max(1,|pk+sξ1∇αuk |) ;

7: yk+ 1
2 = yk+sξ2∇2uk

max(1,|yk+sξ2∇2uk |) ;

8: wk+ 1
2 = wk+sβuk

max(1,|wk+sβuk |) ;

9: ũ = uk − tξ1(∇α)T pk+ 1
2 − tξ2(∇2)

Tyk+ 1
2 − tβwk+ 1

2 ;
10: if ‖Hũ− f ‖2

2 < c2; then
11: λk+1 = 0;
12: else
13: λk+1 is set to the root of φ(λk+1, uk) = c2;
14: end if
15: uk+1 = (tλHT H + I)−1

(tλHT f + ũ);

16: pk+1 = pk+ 1
2 +sξ1∇αuk+1

max(1,|pk+ 1
2 +sξ1∇αuk+1|)

;

17: yk+1 = yk+ 1
2 +sξ2∇2uk+1

max(1,|yk+ 1
2 +sξ2∇2uk+1|)

;

18: wk+1 = wk+ 1
2 +sβuk+1

max(1,|wk+ 1
2 +sβuk+1|)

;

19: end while
20: return u = uk+1.

3.4. Convergence Analysis

The sequence uk+1 generated by Algorithm 2 converges to the minimum u∗ of MTV(u).
When u belongs to the feasible set D, the sequence λk converges to the Lagrange multiplier
λ∗. Through the primal problem (18) and the dual problem (22),
Φ(u; λ∗) = maxp∈P,y∈Y,w∈W L(u, p, y, w; λ∗) can be obtained. Therefore, when the dual
variables satisfy the constraints p ∈ P, y ∈ Y, w ∈W, it is only necessary to prove that the
sequence (uk, pk, yk, wk) generated by Algorithm 2 converges to a saddle point of the func-
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tion L(u, p, y, w; λ∗). Firstly, two lemmas are introduced to aid in proving the convergence
of the algorithm.

Lemma 4. Let the sequence generated by Algorithm 2 be (uk, pk, yk, wk, λk), then

‖uk+1 − uk‖2
2 ≥ max(

1
2sξ1k(v2

0 + v2
1 + · · ·+ v2

k−1)
〈uk+1 − uk, (−1)αdivα(pk+1 − pk+ 1

2 )〉,

1
24sξ2

〈uk+1 − uk, div2(yk+1 − yk+ 1
2 )〉, 1

sβ
〈uk+1 − uk, wk+1 − wk+ 1

2 〉).
(53)

Proof. Let q1 = pk + sξ1∇αuk+1, q2 = pk + sξ1∇αuk. According to the properties of div
and ∇, the following can be obtained:

sξ1〈uk+1 − uk, (−1)αdivα(pk+1 − pk+ 1
2 )〉

= sξ1〈∇α(uk+1 − uk), ρp(q1)− ρp(q2)〉
= 〈q1 − q2, ρp(q1)− ρp(q2)〉.

Using the classical inequality for any vector: 2aTb ≤ ‖a‖2
2 + ‖b‖2

2, it can be obtained that

〈q1 − q2, ρp(q1)− ρp(q2)〉

≤ 1
2
(‖q1 − q2‖2

2 +
∥∥ρp(q1)− ρp(q2)

∥∥2
2)

≤ ‖q1 − q2‖2
2 = (sξ1)

2‖∇α(uk+1 − uk)‖2
2.

Let vi = (−1)iCα
i , it can be obtained that

‖∇αu‖2 = ∑
ij
[(∇αu1)2

i,j + (∇αu2)2
i,j]

= ∑
ij
[(v0u1

i,j + · · ·+ vk−1u1
i+k−1,j)

2
+ (v0u2

i,j + · · ·+ vk−1u2
i,j+k−1)

2
]

≤ 2k ∑
ij
[(v0u1

i,j)
2
+ (v0u2

i,j)
2
+ · · ·+ (vk−1u1

i+k−1,j)
2
+ (vk−1u2

i,j+k−1)
2
]

≤ 2k(v2
0 + v2

1 + · · ·+ v2
k−1)‖u‖2.

Consequently,

‖uk+1 − uk‖2
2 ≥

1
2sξ1k(v2

0 + v2
1 + · · ·+ v2

k−1)
〈uk+1 − uk, (−1)αdivα(pk+1 − pk+ 1

2 )〉,

where ξ1 6= 0. Similarly, it follows that

‖uk+1 − uk‖2
2 ≥

1
24sξ2

〈uk+1 − uk, div2(yk+1 − yk+ 1
2 )〉, ξ2 6= 0,

‖uk+1 − uk‖2
2 ≥

1
sβ
〈uk+1 − uk, (wk+1 − wk+ 1

2 )〉.

The ‖∇2u‖2
2 appearing in the solution process is expressed as
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‖∇2u‖2
2 = ∑

ij
(∇2

1ui,j)
2
+ (∇2

2ui,j)
2

= ∑
ij
(ui+1,j − 2ui,j + ui−1,j)

2 + (ui,j+1 − 2ui,j + ui,j−1)
2

≤ 2 ∑
ij
(u2

i+1,j + u2
i−1,j + 8u2

i,j + u2
i,j+1 + u2

i,j−1)

≤ 24‖u‖2
2.

In summary,

‖uk+1 − uk‖2
2 ≥ max(

1
2sξ1k(v2

0 + v2
1 + · · ·+ v2

k−1)
〈uk+1 − uk, (−1)αdivα(pk+1 − pk+ 1

2 )〉,

1
24sξ2

〈uk+1 − uk, div2(yk+1 − yk+ 1
2 )〉, 1

sβ
〈uk+1 − uk, wk+1 − wk+ 1

2 〉),

which is proved.

Lemma 5. Let the sequence generated by Algorithm 2 be (uk, pk, yk, wk, λk), then

1
t
‖u∗ − uk‖2

2 +
1
s
‖p∗ − pk‖2

2 +
1
s
‖y∗ − yk‖2

2 +
1
s
‖w∗ − wk‖2

2

≥ 1
t
‖u∗ − uk+1‖2

2 +
1
s
‖p∗ − pk+1‖2

2 +
1
s
‖y∗ − yk+1‖2

2 +
1
s
‖w∗ − wk+1‖2

2.
(54)

In particular, the sequence (uk, pk, yk, wk, λk) converges to the limit point (u?, p?, y?, w?, λ?),
at which point there are two cases, if u? belongs to the feasible set D, then λ? = 0. Conversely, λ?

takes the solution of the equation ‖Hu?(λ)− f ‖2
2 = c2.

See [40] for a related proof.
Next, prove that a saddle point of L(u, p, y, w; λ?) is (u?, p?, y?, w?), when p? ∈ P, y? ∈

Y, w? ∈ W, it follows from Algorithm 2 that (u?, p?, y?, w?) satisfies the
following equation:

u? = (tλ?HT H + I)
−1

(tλ?HT f + u? − tξ1(∇α)T p? − tξ2(∇2)
T

y? − tβw?). (55)

Further collation yields,

λ?HT(Hu? − f ) + ξ1(∇α)T p? + ξ2(∇2)
T

y? + βw? = 0. (56)

This process is also the process of replacing λ with λ?. Starting from Algorithm 2, it is
known that (u?, p?, y?, w?) also satisfies the following equation system:

p? = ρP(p? + sξ1∇αu?),
y? = ρY(y? + sξ2∇2u?),
w? = ρW(w? + sβu?).

(57)
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The solution of the projection operator is shown in (38), which thus yields

p?i,j =
p?i,j + sξ1(∇αu?)i,j

max(1, |p?i,j + sξ1(∇αu?)i,j|)
,

y?i,j =
y?i,j + sξ2(∇2u?)i,j

max(1, |y?i,j + sξ2(∇2u?)i,j|)
,

w?
i,j =

w?
i,j + sβu?

i,j

max(1, |w?
i,j + sβu?

i,j|)
.

(58)

If |p?i,j + sξ1(∇αu?)i,j| ≤ 1, then (∇αu?)i,j = 0 and |p?i,j| ≤ 1. If |p?i,j + sξ1(∇αu?)i,j| > 1,
then |p?i,j| = 1 and sξ1(∇αu?)i,j = (1− |p?i,j + sξ1(∇αu?)i,j|)p?i,j. Similarly, y?i,j, w?

i,j has a
similar property. Therefore, the p? ∈ P, y? ∈ Y, w? ∈W and the KKT optimality condition
of (32) hold.

Thus, the following theorem can be obtained.

Theorem 1. When λ∗ is the Lagrange multiplier on the constraint u ∈ D, assuming that the
saddle point of L(u, p, y, w; λ∗) is (u∗, p∗, y∗, w∗), then the sequence (uk, pk, yk, wk; λk) generated
by Algorithm 2 converges to (u∗, p∗, y∗, w∗; λ∗). At this time, s · t ≤ 1/16. In particular, uk

converges to the minimum, λk converges to the Lagrange multiplier satisfying the constraint u ∈ D.

4. Simulation Results
4.1. Quantitative Evaluation Index Description

In this paper, the peak signal-to-noise ratio (PSNR) and structural self-similarity (SSIM)
are used to assess the quality of denoised images. PSNR is used to evaluate the quality
similarity between two images, while SSIM measures the structural similarity between two
images. Here, the PSNR is defined as

PSNR = 10log10(
b2

MSE
). (59)

where b = max(m, n) and m, n denotes the size of the image. MSE denotes the mean square
error between the two images, which is defined as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

([u0(i, j)− u(i, j)]2). (60)

Here, u0, u represents the original image and the denoised image, respectively. The
definition of SSIM is as follows:

SSIM(u0, u) =
(2Au0Au + d1)(2 cov(u0, u) + d2)

(A2
u0

+A2
u + d1)(B2

u0
+ B2

u + d2)
. (61)

where A denotes the mean, cov(u0, u) denotes the covariance, B denotes the standard
deviation, and d1 and d2 are two constants, and it is commonly recommended based on
experience to set d1 = 0.01 and d1 = 0.03. To verify the feasibility of the algorithm, a set of
images is first introduced as test images, as depicted in Figure 2.

(a) (b) (c) (d)

Figure 2. Cont.
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(e) (f) (g) (h)

Figure 2. Original images. (a) Lena, (b) Parrots, (c) Pepper, (d) Barbara, (e) Boats, (f) Cameraman,
(g) Foot, (h) Head.

4.2. The Influence of Fractional-Order α

The regularization parameter λ and the fractional-order α are both indefinite parame-
ters in image denoising algorithms, but they both play a significant role. The effect of the
fractional-order α on the performance of the algorithm is investigated by adding Gaussian
noise with the noise standard deviation of σ = 10, 20 to the test images Lena, Boats, and Pep-
per. From Figure 3, it can be observed that when σ = 10, with the increase of α, PSNR
shows a decreasing trend. When σ = 20, with the increase of α, PSNR shows an increasing
trend. The value near α = 1.5 can be considered to ensure that the changing trend of PSNR
has certain adaptability to different noise standard deviations. From Figure 4, it can be
observed that if α is small, the image is prone to a blocky effect, and if α is large, the image
is not well denoised. To effectively suppress the phenomenon observed in Figure 4, it is
also possible to consider selecting values around α = 1.5. In conclusion, it is preferable to
select α from the range of α ∈ [1.4, 1.6].
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Figure 3. (a–c) represent the PSNR curves of Boats, Lena, and Pepper under different α when σ = 10,
respectively. (d–f) represent the PSNR curves of Boats, Lena, and Pepper under different α when
σ = 20, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 4. The denoising effect of Boats at different fractional-orders α.

4.3. The Influence of λ on Algorithm Performance

The regularization parameter λ is also known to affect the denoising performance of
the algorithm. Hence, Gaussian noise with σ = 30, 40 is added to the Lena, Boats, and Pep-
per images to verify the impact of the regularization parameter λ on the performance of the
algorithm. From Figure 5, it can be observed that when manually selecting the parameter
λ, the PSNR and SSIM of each algorithm are not satisfactory. However, when using the
adaptive parameter λ selection method proposed in Section 3.3, the algorithms achieve
higher PSNR and SSIM. Therefore, it can be concluded that the adaptive parameter λ
proposed can improve the performance of the algorithm to a certain extent.
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Figure 5. (a–c) represent the PSNR change curves of Pepper, Lena, and Boats under λ adaptive and
non-adaptive conditions when σ = 30, 40, respectively.

4.4. Comparison with Other Methods

To further prove the denoising performance of the new algorithm, a first set of com-
parative experiments was conducted using test images Parrots, Lena, Barbara, Cameraman,
Pepper, Foot, and Head, in comparison with some state-of-the-art methods [48–50]. Gaus-
sian noise with σ = 5, 10, 20, 30 was added to the images, and the PSNR and SSIM of each
algorithm after denoising are shown in Table 1. Figures 6 and 7 demonstrate the denoising
effects of the Pepper and Foot images with σ = 30. Overall, the algorithm proposed can
achieve better results.

Next, a second set of comparative experiments [51–53] was conducted by adding
Gaussian noise with σ = 10, 20, 30 to Cameraman, Boats, Barbara, and Pepper. The experi-
mental results are shown in Table 2. Based on the experimental results, it can be observed
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that the results obtained in this study are slightly higher than those of other algorithms.
In conclusion, the algorithm proposed is effective in a certain sense.
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that the results obtained in this study are slightly higher than those of other algorithms.
In conclusion, the algorithm proposed is effective in a certain sense.
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(a)
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Figure 6. (a) Noise image of σ = 30, (b) Pepper denoising effect image of [48], (c) Pepper denoising
effect image of [49], (d) Pepper denoising effect image of [50], (e) Pepper denoising effect image of
the proposed algorithm.

Figure 6. (a) Noise image of σ = 30, (b) Pepper denoising effect image of [48], (c) Pepper denoising
effect image of [49], (d) Pepper denoising effect image of [50], (e) Pepper denoising effect image of
the proposed algorithm.

Table 1. The PSNR and SSIM of each algorithm under the first set of comparative experiments.

Image σ PSNR/SSIM [48] PSNR/SSIM [49] PSNR/SSIM [50] PSNR/SSIM
Proposed

Parrots
5 32.8362/0.9071 32.3292/0.9050 34.3292/0.9058 34.8288/0.9080
10 27.7650/0.9085 31.4979/0.9005 33.4346/0.9089 33.6375/0.9101
20 23.9519/0.9146 28.2574/0.9162 28.5716/0.9218 28.5996/0.9241
30 22.7536/0.92018 23.1230/0.9204 24.2050/0.9277 26.3916/0.9279

Lena
5 33.1229/0.9023 32.2596/0.8938 33.1639/0.8992 33.4520/0.9000
10 27.7962/0.8963 31.4268/0.8974 32.4873/0.9023 32.5379/0.9011
20 24.0047/0.9144 28.0919/0.9050 28.1660/0.9141 28.4511/0.9153
30 23.0918/0.8942 23.9741/0.8973 24.2123/0.9075 25.8134/0.8896

Barbara
5 33.1016/0.8908 29.2736/0.8904 31.0013/0.8909 31.0157/0.8924
10 27.7793/0.8954 28.8140/0.8973 30.0985/0.8974 30.1247/0.8978
20 23.9799/0.9024 26.7437/0.9033 26.5292/0.9051 26.5692/0.9133
30 22.1423/0.8937 22.9751/0.9102 22.6868/0.9188 22.9827/0.9124

Cameraman
5 33.1716/0.9021 29.8097/0.8991 31.8976/0.9000 32.2383/0.9006
10 27.8417/0.9056 29.3846/0.9015 30.3292/0.9034 31.4454/0.9059
20 23.9418/0.9140 27.0952/0.9084 27.6781/0.9082 27.7247/0.9144
30 22.8149/0.8902 23.1143/0.8907 23.5803/0.8905 24.6137/0.8911

Pepper
5 34.6851/0.8698 32.6693/0.8620 34.5614/0.8713 34.7247/0.8729
10 28.8834/0.8764 32.0109/0.8689 32.9939/0.8786 33.8284/0.8767
20 24.2617/0.8853 28.6892/0.8808 29.1745/0.8902 29.3960/0.8913
30 22.5738/0.8937 24.4121/0.8938 25.4702/0.8950 29.0906/0.9016

Foot
5 37.5861/0.8536 37.4102/0.8524 35.4676/0.8713 35.7180/0.8561
10 33.8384/0.8340 33.9815/0.8312 34.0148/0.8311 34.6360/0.8350
20 27.1051/0.8286 28.2964/0.8279 28.7614/0.8253 29.8339/0.8272
30 25.4720/0.8050 25.6541/0.8144 25.9459/0.8193 27.5594/0.8074
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Table 1. Cont.

Image σ PSNR/SSIM [48] PSNR/SSIM [49] PSNR/SSIM [50] PSNR/SSIM
Proposed

Head
5 33.5699/0.8953 33.4973/0.8874 34.6343/0.9030 33.6142/0.8423
10 32.3203/0.8470 31.0355/0.8309 32.1153/0.8576 32.3258/0.8310
20 22.9786/0.7933 22.8761/0.78237 27.6259/0.8117 28.1583/0.7446
30 19.4785/0.7403 19.4509/0.7371 23.3897/0.7649 24.5390/0.6468
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Noise image

(a)
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Figure 7. (a) Noise image of σ = 30, (b)Foot denoising effect image of [48], (c)Foot denoising effect
image of [49], (d)Foot denoising effect image of [50], (e)Foot denoising effect image of the proposed
algorithm.

Table 2. The PSNR and SSIM of each algorithm under the second set of comparative experiments.

Image σ PSNR/SSIM [51] PSNR/SSIM [52] PSNR/SSIM [53] PSNR/SSIM
proposed

Cameraman
10 31.3925/0.8948 33.1347/0.9049 25.0623/0.9089 33.637533.637533.6375/0.91010.91010.9101
20 28.2944/0.8272 28.5723/0.8309 24.9803/0.9218 28.599628.599628.5996/0.92410.92410.9241
30 27.1039/0.7700 27.270527.270527.2705/0.7315 24.8771/0.9277 26.3916/0.92790.92790.9279

Boats
10 32.3014/0.9017 32.3438/0.9065 25.6609/0.90320.90320.9032 32.405832.405832.4058/0.8889
20 28.6036/0.8802 28.704228.704228.7042/0.8840 25.5432/0.9019 28.3939/0.90110.90110.9011
30 27.5687/0.8204 27.581627.581627.5816/0.8253 25.3779/0.9087 26.0102/0.91120.91120.9112

Barbara
10 30.0487/0.91860.91860.9186 31.8501/0.9340 22.0302/0.8974 30.124730.124730.1247/0.8978
20 26.1845/0.9259 26.4952/0.9247 21.9840/0.9051 26.5692/0.91330.91330.9133
30 25.7061/0.8790 25.738425.738425.7384/0.8790 21.9057/0.91880.91880.9188 22.9827/0.9124

Pepper
10 33.3949/0.8950 33.9108/0.9032 28.8618/0.90340.90340.9034 34.724734.724734.7247/0.8729
20 29.2765/0.8593 29.5572/0.8897 28.6174/0.8596 29.396029.396029.3960/0.89130.89130.8913
30 28.2187/0.8746 28.2854/0.8731 28.4424/0.8905 29.090629.090629.0906/0.90160.90160.9016

5. Conclusions

In summary, the achievements obtained in this article are as follows:
∗ The proposed MOTV model plays a significant role in improving the staircase effect

and eliminating residual noise.
∗ The appropriate fractional order α and the selection of λ based on the deviation

principle have a certain effect on the performance of the algorithm.
∗ According to the results of two groups of comparative experiments, it can be con-

cluded that the algorithm proposed outperforms other algorithms and is effective.
In fact, the algorithm proposed also has certain limitations. Specifically, when the noise

variance increases, the noise suppression effect of the algorithm may decrease. In future
research, it will be considered by the authors to incorporate the ideas of this paper into
other methods mentioned in the introduction section. Additionally, the application of
regularizers will also be considered to achieve better results. Furthermore, efforts will be
made to reduce the computational time.

Figure 7. (a) Noise image of σ = 30, (b) Foot denoising effect image of [48], (c) Foot denoising effect
image of [49], (d) Foot denoising effect image of [50], (e) Foot denoising effect image of the proposed
algorithm.

Table 2. The PSNR and SSIM of each algorithm under the second set of comparative experiments.

Image σ PSNR/SSIM [51] PSNR/SSIM [52] PSNR/SSIM [53] PSNR/SSIM
Proposed

Cameraman
10 31.3925/0.8948 33.1347/0.9049 25.0623/0.9089 33.6375/0.9101
20 28.2944/0.8272 28.5723/0.8309 24.9803/0.9218 28.5996/0.9241
30 27.1039/0.7700 27.2705/0.7315 24.8771/0.9277 26.3916/0.9279

Boats
10 32.3014/0.9017 32.3438/0.9065 25.6609/0.9032 32.4058/0.8889
20 28.6036/0.8802 28.7042/0.8840 25.5432/0.9019 28.3939/0.9011
30 27.5687/0.8204 27.5816/0.8253 25.3779/0.9087 26.0102/0.9112

Barbara
10 30.0487/0.9186 31.8501/0.9340 22.0302/0.8974 30.1247/0.8978
20 26.1845/0.9259 26.4952/0.9247 21.9840/0.9051 26.5692/0.9133
30 25.7061/0.8790 25.7384/0.8790 21.9057/0.9188 22.9827/0.9124

Pepper
10 33.3949/0.8950 33.9108/0.9032 28.8618/0.9034 34.7247/0.8729
20 29.2765/0.8593 29.5572/0.8897 28.6174/0.8596 29.3960/0.8913
30 28.2187/0.8746 28.2854/0.8731 28.4424/0.8905 29.0906/0.9016

5. Conclusions

In summary, the achievements obtained in this article are as follows:

∗ The proposed MOTV model plays a significant role in improving the staircase effect
and eliminating residual noise.
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∗ The appropriate fractional-order α and the selection of λ based on the deviation
principle have a certain effect on the performance of the algorithm.

∗ According to the results of two groups of comparative experiments, it can be concluded
that the algorithm proposed outperforms other algorithms and is effective.

In fact, the algorithm proposed also has certain limitations. Specifically, when the noise
variance increases, the noise suppression effect of the algorithm may decrease. In future
research, it will be considered by the authors to incorporate the ideas of this paper into
other methods mentioned in the introduction section. Additionally, the application of
regularizers will be considered to achieve better results. Furthermore, efforts will be made
to reduce the computation time.
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