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Abstract: An eco-epidemiological model involving competition regarding the predator and quaran-
tine on infected prey is studied. The prey is divided into three compartments, namely susceptible,
infected, and quarantine prey, while the predator only attacks the infected prey due to its weak condi-
tion caused by disease. To include the memory effect, the Caputo fractional derivative is employed.
The model is validated by showing the existence, uniqueness, non-negativity, and boundedness of
the solution. Three equilibrium points are obtained, namely predator-disease-free, predator-free-
endemic, and predator-endemic points, which, respectively, represent the extinction of both predator
and disease, the extinction of predator only, and the existence of all compartments. The local and
global stability properties are investigated using the Matignon condition and the Lyapunov direct
method. The numerical simulations using a predictor–corrector scheme are provided not only to
confirm the analytical findings but also to explore more the dynamical behaviors, such as the impact
of intraspecific competition, memory effect, and the occurrence of bifurcations.

Keywords: eco-epidemic; intraspecific transmission; fractional derivative; dynamics

1. Introduction

Different diseases may develop and spread among species when they interact in
nature. The existence of these diseases plays an important role in controlling the dynamics
of ecological systems. Through mathematical modeling, Anderson and May in 1986 [1]
investigated disease factors in the predator–prey, host–parasite, and competitive systems
and obtained the conclusion that the parasite’s basic reproduction number is a key factor
in determining the structure and stability of the systems. Until now, the study of the
intermingling of ecology and epidemiology, which is known as eco-epidemiology, has
become an interesting research area in mathematical biology (see, for example, [2–5]).

In recent past years, the study of the dynamics of the predator–prey system under
parasite infection has been completed by simplifying it into two cases, i.e., intraspecific
and interspecific transmissions. Intraspecific transmission refers to the condition when
the disease cannot cross over the species barrier. The disease only spreads either in the
prey [6–11] or in the predator population [12–16]. Intraspecific transmission emerges from
the interaction between two or more individuals of the same species that may occur in their
socio-sexual system through grooming, mating, or fighting behaviors to obtain access to
limited resources. These behaviors influence the transmission of parasites from individual
to group and population levels [17]. In other cases, there is a condition when one species is
susceptible to disease, and other species can also be infected. In this case, both prey and
predator populations become multiple hosts for disease transmission [18–20]. After all, the
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main objective of this existing research is to examine how disease transmission affects con-
specifics or other species when two or more species are associated. In addition, some of the
research also studies the effect of the other factors of ecology in eco-epidemiology systems,
such as prey refuge [21,22], harvesting [23,24], treatment of infected species [25,26], and the
Allee effect [27–29]. Moreover, disease transmission can be reduced by separating infected
individuals from their healthy groups through quarantine procedures. Quarantine refers
to the temporary separation of animals before they are brought into a group or territory
to stop the spread of contagious diseases among healthy populations. Some epidemic
models, such as in [30–32], show how quarantine might reduce the incidence rate of the
disease in the environment. Therefore, it is important to research how quarantine affects
predator–prey interactions with the presence of disease in the prey. As far as we know, there
is no focus investigation on the eco-epidemic model that we have previously described.

In modeling real-life problems, fractional differential equations have received much
attention from various areas of research in applied sciences and engineering; see, for
instance, [33–37]. The fractional derivatives could improve the accuracy of the model
through their properties to tackle the process of forgetting the history [38,39]. A fractional
order system leads to a good memory system that can capture all of the past events with
the freedom of reducing the order of derivatives toward zero. In contrast to the integer
order system, the process of forgetting an event takes place throughout a species’ life cycle
due to the scenario of a particular time state. Some studies in [40–42] have identified the
advantages of fractional order derivatives in modeling biological phenomena.

Motivated by the above in view, the main aim of the paper is to provide qualitative
information on a fractional order eco-epidemiological model where there are quarantine
places for the infected prey as a prophylactic strategy for the spread of the disease among
the prey population hunted by predators, which are not affected by the disease. Accord-
ingly, the structure of the paper is provided as follows. In Section 2, the mathematical
model is constructed by providing some relevant assumptions. In Section 3, the existence,
uniqueness, non-negativity, and boundedness of the solution, as well as the local and global
stability of equilibrium points, are studied. However, Section 4 presents the numerical
results to explore the most influential parameter through global sensitivity analysis and
to investigate the impact of disease transmission, quarantine rate, and order of derivative
in the dynamical behavior of the model. Finally, Section 5 contains all the mathematical
findings of this study.

2. Model Formulation

In this section, we develop a predator–prey model based on the SIQ-Epidemic model
(Susceptible-Infected-Quarantine) on prey that is hunted by a population of predator for
food. The following assumption is provided to construct the model.

1. The population of prey is divided into three compartments, namely susceptible prey,
infected prey, and quarantine prey, which, respectively, are denoted by S, I, and Q.

2. The birth rate of susceptible prey is assumed contantly symbolized by Λ.
3. The susceptible prey is infected by disease with the disease transmission provided by

a bilinear term βSI.
4. As a human effort in protecting the ecological system, the infected prey is captured

and quarantined with the quarantine rate proportional to the density of infected
prey denoted by the linear term η I. If the quarantined prey recovers, they will be
returned to their natural habitat so that there is a risk of being reinfected. We denote
the recovery rate by ζQ.

5. The natural death rate of prey is provided by µ, and, hence, we have a natural death
rate for each compartment symbolized by µS, µI, and µQ.

6. The death rates caused by disease for infected and quarantined prey are, respectively,
denoted by κ I and ϕQ.

7. The predator denoted by P only hunts the weak prey, in this case, the infected prey,
and, hence, the susceptible prey is not being chased by the predator. The quarantine
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prey is also free from predation because it is in a place with human protection. We
denote the predation rate of infected prey by ξ IP.

8. The birth rate of the predator is converted from the predation process provided by
σIP and the death rate of the predator provided by δP.

9. Since the predator can only attack the infected prey, there is limited food availability
for the predator. As an impact, there exists intraspecific competition regarding the
predator with the death rate ωP2.

According to those assumptions, we construct the food chain and compartmental
diagram as in Figure 1.

S I Q

P

Λ

µS

βSI

ζQ

η I

(κ + µ)I ξ IP

(ϕ + µ)Q

σIP δP

ωP2

Figure 1. The food chain and compartmental diagram of eco-epidemiological model.

Based on the provided assumptions and the diagram in Figure 1, we develop a
deterministic model using first-order derivative as follows.

dS
dt

= Λ− µS− βSI + ζQ,

dI
dt

= βSI − (η + κ + µ)I − ξ IP,

dQ
dt

= η I − (ϕ + ζ + µ)Q,

dP
dt

= σIP− δP−ωP2.

(1)

Biologically relevant examples for this model are found in [43], where pinniped
tuberculosis affecting Malayan tapir (Tapirus indicus) with the predator is provided by
jaguars and pumas; also, chronic wasting disease and bovine tuberculosis in wild and
captive ungulates [44] with their obvious predators come from the carnivores. Health
screening procedures while in quarantine for those animals are then provided in [45]. Now,
consider the following definition.

Definition 1. The Caputo fractional order derivative with the order-α is defined by [46]

CDα
t w(t) =

1
Γ(1− α)

∫ t

0
(t− s)−αw′(τ)dτ, (2)

where α ∈ (0, 1], t ≥ 0, f ∈ Cn([0,+∞),R), and Γ is the Gamma function.
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To include the memory effect, we then replace the operator of model (1) with the
Caputo fractional order derivative provided by Definition 1. As a result, we have the
fractional order model as follows.

CDα
t S = Λ− µS− βSI + ζQ = F1,

CDα
t I = βSI − (η + κ + µ)I − ξ IP = F2,

CDα
t Q = η I − (ϕ + ζ + µ)Q = F3,

CDα
t P = σIP− δP−ωP2 = F4.

(3)

In the next section, we study the dynamical behaviors of model (3) by providing its
analytical and numerical results as well as their biological interpretations.

3. Analytical Results

To facilitate the analytical process, we define the following feasible biological region.

R4
+ :=

{
(S, I, Q, P) ∈ R4| S ≥ 0, I ≥ 0, Q ≥ 0, P ≥ 0

}
.

Since the model describes the population dynamics, we have to ensure that the model
(3) always has a solution for each provided non-negative initial condition. Moreover, the
solution has to be unique since it is biologically impossible that two different conditions
will arise in the future with the current single state. Thus, we provide the existence and
uniqueness of the solution in Section 3.1. We also have to ensure that the solution is always
non-negative and bounded in R4

+, which confirms the biological validity of the model. We
provide these conditions in Section 3.2. Furthermore, the dynamics of model (3), including
the feasible equilibrium points and their local and global stability, will be investigated.

3.1. Existence and Uniqueness of Solutions

We define the region

M :=
{
(S, I, Q, P) ∈ R4 | max(|S|, |I|, |Q|, |P|) ≤ M

}
.

Now, denote X = (S, I, Q, P) and X̄ = (S̄, Ī, Q̄, P̄). Thus, for the mapping
F(X) = (F1(X), F2(X), F3(X), F4(X)) and for X, X̄ ∈ M, we have

|F1(X)− F1(X̄)| =
∣∣(Λ− µS− βSI + ζQ)− (Λ− µS̄− βS̄ Ī + ζQ̄)

∣∣
=
∣∣−µ(S− S̄)− βI(S− S̄)− βS̄(I − Ī) + ζ(Q− Q̄)

∣∣
≤ µ

∣∣S− S̄
∣∣+ βM

∣∣S− S̄
∣∣+ βM|I − Ī|+ ζ

∣∣Q− Q̄
∣∣

= (µ + βM)
∣∣S− S̄

∣∣+ βM|I − Ī|+ ζ
∣∣Q− Q̄

∣∣,
|F2(X)− F2(X̄)| =

∣∣(βSI − (η + κ + µ)I − ξ IP)− (βS̄ Ī − (η + κ + µ) Ī − ξ Ī P̄)
∣∣

=
∣∣βI(S− S̄) + βS̄(I − Ī)− (η + κ + µ)(I − Ī)− ξP(I − Ī)− ξ Ī(P− P̄)

∣∣
≤ βM

∣∣S− S̄
∣∣+ βM|I − Ī|+ (η + κ + µ)|I − Ī|+ ξM|I − Ī|+ ξM|P− P̄|

= βM
∣∣S− S̄

∣∣+ (η + κ + µ + (β + ξ)M)|I − Ī|+ ξM|P− P̄|,
|F3(X)− F3(X̄)| =

∣∣(η I − (ϕ + ζ + µ)Q)− (η Ī − (ϕ + ζ + µ)Q̄)
∣∣

=
∣∣η(I − Ī)− (ϕ + ζ + µ)(Q− Q̄)

∣∣
≤ η|I − Ī|+ (ϕ + ζ + µ)

∣∣Q− Q̄
∣∣,

|F4(X)− F4(X̄)| =
∣∣∣(σIP− δP−ωP2

)
−
(

σ Ī P̄− δP̄−ωP̄2
)∣∣∣

= |σP(I − Ī) + σ Ī(P− P̄)− δ(P− P̄)−ω(P + P̄)(P− P̄)|
≤ σM|I − Ī|+ σM|P− P̄|+ δ|P− P̄|+ 2ωM|P− P̄|
= σM|I − Ī|+ (δ + (σ + 2ω)M)|P− P̄|,
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and hence

‖F(X)− F(X̄)‖ = |F1(X)− F1(X̄)|+ |F2(X)− F2(X̄)|+ |F3(X)− F3(X̄)|
+ |F4(X)− F4(X̄)|

≤ (µ + βM)
∣∣S− S̄

∣∣+ βM|I − Ī|+ ζ
∣∣Q− Q̄

∣∣
+ βM

∣∣S− S̄
∣∣+ (η + κ + µ + (β + ξ)M)|I − Ī|+ ξM|P− P̄|

+ η|I − Ī|+ (ϕ + ζ + µ)
∣∣Q− Q̄

∣∣
+ σM|I − Ī|+ (δ + (σ + 2ω)M)|P− P̄|

= `1
∣∣S− S̄

∣∣+ `2|I − Ī|+ `3
∣∣Q− Q̄

∣∣+ `4|P− P̄|
= `‖X− X̄‖,

where

`1 = µ + 2βM, `2 = 2η + κ + µ + (2β + ξ + σ)M,

`3 = ϕ + 2ζ + µ, `4 = δ + (σ + 2ω + ξ)M,

` = max{`1, `2, `3, `4}.

This confirms that F(X) satisfies the Lipschitz condition [47]. Obeying Theorem 3.4
in [48], if model (3) has initial value in R4

+, then the solution exists and is unique in the
regionM. Therefore, the following theorem has been confirmed.

Theorem 1. For any initial condition in R4
+, the solution of model (3) always exists and is unique

in the regionM.

3.2. Non-Negativity and Boundedness of Solutions

To show that S(t) ≥ 0, I(t) ≥ 0, Q(t) ≥ 0, and P(t) ≥ 0 as t → ∞ for any initial
condition in R4

+, we employ Theorem 6 provided by Cresson et al. [49]. Let α = 1 (first-
order derivative given by model (1)). Thus, we can write the second and fourth equations
in model (1) into the following equations.

dI
dt

= (βS− (η + κ + µ)− ξP)I,

dP
dt

= (σI − δ−ωP)P.
(4)

Hence, we obtain

I(t) = I(0)e
∫ t

0 (βS(τ)−(η+κ+µ)−ξP(τ)) dτ ≥ 0,

P(t) = P(0)e
∫ t

0 (σI(τ)−δ−ωP(τ)) dτ ≥ 0.

Since I(t) ≥ 0, we can write the third equation in model (1) into the following equation.

dQ
dt

= η I − (ϕ + ζ + µ)Q

≥ − (ϕ + ζ + µ)Q,

Thus, we also have
Q(t) ≥ Q(0)e−

∫ t
0 (ϕ+ζ+µ) dτ ≥ 0.

Next, from first equation in model (1) and the non-negativity of Q(t), we have

dS
dt

= Λ + ζQ− (µ + βI)S

≥ − (µ + βI)S,
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which has solution
S(t) ≥ S(0)e−

∫ t
0 (µ+βI) dτ ≥ 0.

Since S(t), I(t), Q(t), and P(t) are non-negative for α = 1 and the solution of model
(3) satisfies the Lipschitz condition (see the proof of Theorem 1), Theorem 6 in [49] says
that the model with Caputo fractional order provided by Equation (3) has non-negative
solutions for all non-negative initial values. Therefore, we provide the following theorem
as its results.

Theorem 2. The solutions of model (3) with initial values in R4
+ are non-negative.

Now, we will show the boundedness of solutions of model (3). From Theorem 2, we
construct a positive function as follows.

N = S + I + Q +
ξ

σ
P. (5)

The Caputo fractional order derivative of Equation (5) is

CDα
tN = CDα

t S + CDα
t I + CDα

t Q +
ξ

σ
CDα

t P.

By continuing the calculation, we obtain the following inequality.

CDα
tN = CDα

t S + CDα
t I + CDα

t Q +
ξ

σ
CDα

t P

= (Λ− µS− βSI + ζQ) + (βSI − (η + κ + µ)I − ξ IP)

+ (η I − (ϕ + ζ + µ)Q) +
ξ

σ

(
σIP− δP−ωP2

)
= Λ− µS− µI − µQ− µξP

σ
− κ I − ϕQ− δξP

σ
− ξω

σ

(
P2 − µ

ω
P
)

=

(
Λ +

µ2ξ

4σω

)
− µN − κ I − ϕQ− δξP

σ
− ξω

σ

(
P− µ

2ω

)2

≤
(

Λ +
µ2ξ

4σω

)
− µN .

Following Lemma 2.5 in [50], we obtain

N (t) ≤
(
N (0)−

(
Λ
µ
+

µξ

4σω

))
Eα[−µtα] +

(
Λ
µ
+

µξ

4σω

)
,

where Eα is the one-parameter Mittag–Leffler function. Following Lemma 5 in [51], we

have Eα[−µtα] → 0 as t → ∞. This means N (t) → Λ
µ
+

µξ

4σω
as t → ∞. Therefore, all

solutions of model (3) enter to the region

K :=
{
(S, I, Q, P) ∈ R4 | N ≤ Λ

µ
+

µξ

4σω
+ ε, ε > 0

}
. (6)

Finally, the following theorem holds.

Theorem 3. The solutions of model (3) with initial values in R4
+ are uniformly bounded.

In the next subsections, we investigate the dynamical behaviors of model (3), such as
the feasible equilibria, the basic reproduction number, local behaviors, and global dynamics.
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To identify the existence of equilibria, we solve F1 = F2 = F3 = F4 = 0, which has four
possible equations as follows. 

Λ− µS− βSI + ζQ = 0,

I = 0,

η I − (ϕ + ζ + µ)Q = 0,

P = 0.

(7)


Λ− µS− βSI + ζQ = 0,

I = 0,

η I − (ϕ + ζ + µ)Q = 0,

σI − δ−ωP = 0.

(8)


Λ− µS− βSI + ζQ = 0,

βS− (η + κ + µ)− ξP = 0,

η I − (ϕ + ζ + µ)Q = 0,

P = 0.

(9)


Λ− µS− βSI + ζQ = 0,

βS− (η + κ + µ)− ξP = 0,

η I − (ϕ + ζ + µ)Q = 0,

σI − δ−ωP = 0.

(10)

The solution of Equations (7), (9), and (10) will be studied in Sections 3.3–3.5. Especially

for Equation (8), when I = 0, we have P = − δ

ω
< 0, and, hence, the solution not in R4

+,
which states that the feasible equilibrium point does not exist for this condition. Moreover,
to simplify the statement of the dynamical behavior, the locally and globally asymptotically
stables are abbreviated by LAS and GAS. The LAS properties are obtained by applying
linearization and obeying Matignon’s condition [52]. On the contrary, the GAS holds by
constructing the Lyapunov function and investigating the sufficient condition; thus, the
generalized LaSalle’s invariant principle provided by Huo et al. [53] is satisfied.

3.3. The Predator-Disease-Free Point and Basic Reproduction Number

The predator-disease-free point (PDFP) is obtained by solving Equation (7). We have
PDFP as follows.

E1 =

(
Λ
µ

, 0, 0, 0
)

.

Furthermore, the basic reproduction number (R0) will be computed. The basic
reproduction number (R0) is a parameter that is defined by the secondary infections caused
by the primary infections in an uninfected population, which becomes the significant key
in disease modeling since it can determine the spread of the disease in a population [54–56].
The next generation method is used to establishR0 [57]. Since the infectious compartments
are I and Q, we can construct a Jacobian matrix of the new infection terms (F) and the
remaining transfer terms (V) as follows.

F =

[
βS 0
η 0

]
and V =

[
(η + κ + µ) + ξP 0

0 ϕ + ζ + µ

]
(11)
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The basic reproduction number R0 is obtained by identifying the largest positive
eigenvalue of FV−1 [58,59]. We have

FV−1 =

 βS
(η + κ + µ) + ξP

0
η

(η + κ + µ) + ξP
0

, (12)

which provides eigenvalues λ1 = 0 and λ2 =
βS

(η + κ + µ) + ξP
, and, hence, by substituting

E1, we have the followingR0.

R0 =
βΛ

(η + κ + µ)µ
. (13)

Furthermore, the local and global dynamics around E1 are provided by the following
theorem.

Theorem 4. Let Ra
0 =

βΛ
βΛ + µη

. The PDFP E1 =

(
Λ
µ

, 0, 0, 0
)

is a saddle point if R0 > 1,

LAS ifR0 < 1, and GAS ifR0 < Ra
0.

Proof. We first identify the local dynamics of model (3) around E1. By linearization, the
Jacobian matrix evaluated at E1 is

J (S, I, Q, P)|E1 =


−µ − βΛ

µ
ζ 0

0 (R0 − 1)(η + κ + µ) 0 0
0 η −(ϕ + ζ + µ) 0
0 0 0 −δ

. (14)

The eigenvalues of the Jacobian matrix (14) are λ1 = −µ, λ2 = (R0 − 1)(η + κ + µ),

λ3 = −(ϕ + ζ + µ), and λ4 = −δ. We confirm that |arg(λi)| = π >
απ

2
for i = 1, 3, 4.

Therefore, the sign of λ2 affects the local dynamics. WhenR0 < 1, we obtain |arg(λ2)| =
π >

απ

2
, and, hence, the Matignon condition [52] ensures that E1 is locally asymptotically

stable. Moreover, whenR0 > 1, it impacts |arg(λ2)| = 0 <
απ

2
and the PDFP becomes a

saddle point.
Now, we study the sufficient condition so that GAS holds. To facilitate our work, the

model (3) can be rewritten as

CDα
t S = − µ

(
S− Λ

µ

)
− βSI + ζQ,

CDα
t I = βSI − βΛI

µR0
− ξ IP,

CDα
t Q = η I − (ϕ + ζ + µ)Q,

CDα
t P = σIP− δP−ωP2.

(15)

Next, we define a definite positive Volterra Linear Lyapunov function as follows.

Φ1(S, I, Q, P) =
(

S− Λ
µ
− Λ

µ
ln

µS
Λ

)
+ I + Q +

ξP
σ

. (16)
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Based on Lemma 3.1 in Vargas-De-León [60] along with system (15), the Caputo
fractional order derivative of the Lyapunov function (16) is

CDα
t Φ1(S, I, Q, P) ≤

(
S−Λ/µ

S

)
CDα

t S + CDα
t I + CDα

t Q +
ξ

σ
CDα

t P

=

(
S−Λ/µ

S

)(
−µ

(
S− Λ

µ

)
− βSI + ζQ

)
+

(
βSI − βΛI

µR0
− ξ IP

)
+ (η I − (ϕ + ζ + µ)Q) +

ξ

σ

(
σIP− δP−ωP2

)
= − µ

S

(
S− Λ

µ

)2
−
(

βΛ
βΛ + µη

−R0

)
(βΛ + µη)I

µR0
− (ϕ + µ)Q

− δξP
σ
− ΛζQ

µS
− ξωP2

σ

≤ − µ

S

(
S− Λ

µ

)2
−
(

βΛ
βΛ + µη

−R0

)
(βΛ + µη)I

µR0
− (ϕ + µ)Q− δξP

σ

= − µ

S

(
S− Λ

µ

)2
− (Ra

0 −R0)
(βΛ + µη)I

µR0
− (ϕ + µ)Q− δξP

σ
.

As consequence, we have CDα
t Φ1(S, I, Q, P) ≤ 0 for all (S, I, Q, P) ∈ R4

+ when
R0 < Ra

0. On the other hand, we confirm that CDα
t Φ1(S, I, Q, P) = 0 only if (S, I, Q, P) =(

Λ
µ

, 0, 0, 0
)

. This emphasize that the singleton {E1} is the only largest invariant set

on which CDα
t Φ1(S, I, Q, P) = 0. Thus, the generalized LaSalle’s invariant principle

(Lemma 4.6 in [53]) guarantees that each solution in R4
+ tends to E1 for t→ +∞. This ends

the proof.

Remark 1. When conditions in Theorem 4 are satisfied, all populations will be extinct except the
susceptible prey. More specifically, (i) if the LAS property is satisfied, this condition can happen
when the initial condition is close enough to the value of the predator-disease-free point, and (ii) if
the GAS property is satisfied, this condition can happen for all initial conditions.

3.4. The Predator-Free-Endemic Point

The predator-free-endemic point (PFEP) is acquired for the condition when the preda-
tor does not exist while each compartment of prey exists. The PFEP is obtained by solving
Equation (9), which provides

E2 =
(
Ŝ, Î, Q̂, 0

)
,

where

Ŝ =
Λ

µR0
, Î =

(ϕ + ζ + µ)Q̂
η

, and Q̂ =
(R0 − 1)ηΛ

((ϕ + µ)η + (ϕ + ζ + µ)(κ + µ))R0
.

Remark 2. We ensure that the PFEP exists only ifR0 > 1. We also confirm from Theorem 4 that,
when PFEP exists, the PDFP is a saddle point (unstable).

Theorem 5. The PFEP E2 =
(
Ŝ, Î, Q̂, 0

)
is LAS ifR0 > 1, Î <

δ

σ
, and (i) ∆a > 0 and a1a2 > a3,

or (ii) ∆a < 0 and α < 2/3 or a1a2 = a3, where

∆a = 18a1a2a3 + a2
1a2

2 − 4a3
1a3 − 4a3

2 − 27a2
3

a1 = (β Î + µ) + (ϕ + ζ + µ)

a2 =
β2Λ Î
µR0

+
(

β Î + µ
)
(ϕ + ζ + µ)

a3 = ((µ + ϕ)η + (κ + µ)(ϕ + ζ + µ))β Î
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Proof. The Jacobian matrix for E2 is provided by

J (S, I, Q, P)|E2 =


−
(

β Î + µ
)
− βΛ

µR0
ζ 0

β Î 0 0 −ξ Î
0 η −(ϕ + ζ + µ) 0
0 0 0 σ Î − δ

,

which provides an eigenvalue λ1 = σ Î − δ, and three other eigenvalues are solutions of the
following polynomial characteristic.

P(λ) = λ3 + a1λ2 + a2λ + a3. (17)

Since Î <
δ

σ
, we have |arg(λ1)| = π >

απ

2
. For λi, i = 2, 3, 4, by obeying the

Routh–Hurwitz theorem for a model with Caputo fractional order derivative proposed by
Ahmed et al. [61], we have ∆a, which is the discriminant of polynomial (17) and Proposition
1 on [61], which completes the rest of the proof.

Next, the global stability of PFEP E2 =
(
Ŝ, Î, Q̂, 0

)
will be determined. We first rewrite

model (3) into the following system.

CDα
t S = − (µ + βI)

(
S− Ŝ

)
− βŜ

(
I − Î

)
+ ζ
(
Q− Q̂

)
,

CDα
t I = βI

(
S− Ŝ

)
− ξP

(
I − Î

)
− ξ ÎP,

CDα
t Q = η

(
I − Î

)
− (ϕ + ζ + µ)

(
Q− Q̂

)
,

CDα
t P = σIP− δP−ωP2.

(18)

Next, we construct a Quadratic Volterra Linear Lyapunov function as follows [60,62].

Φ2(S, I, Q, P) =
(
S− Ŝ

)2

2Ŝ
+

(
I − Î − Î ln

I
Î

)
+

(
Q− Q̂

)2

2Q̂
+

ξP
σ

. (19)

Applying Lemma 3.1 in [60], Lemma 2.3 in [62], and Equation (18), the Lyapunov
function (16) has the Caputo fractional order derivative as follows.

CDα
t Φ2(S, I, Q, P) ≤

(
S− Ŝ

Ŝ

)
CDα

t S +

(
I − Î

I

)
CDα

t I +

(
Q− Q̂

Q̂

)
CDα

t Q +
ξ

σ
CDα

t P

=

(
S− Ŝ

Ŝ

)(
−(µ + βI)

(
S− Ŝ

)
− βŜ

(
I − Î

)
+ ζ
(
Q− Q̂

))
+

(
I − Î

I

)(
βI
(
S− Ŝ

)
− ξP

(
I − Î

)
− ξ ÎP

)
+

(
Q− Q̂

Q̂

)(
η
(

I − Î
)
− (ϕ + ζ + µ)

(
Q− Q̂

))
+

ξ

σ

(
σIP− δP−ωP2

)
= − (µ + βI)

Ŝ

(
S− Ŝ

)2
+

ζ

Ŝ

(
S− Ŝ

)(
Q− Q̂

)
−
(

δ

σ
− Î
)

ξP− η ÎQ
Q̂

+
η IQ

Q̂
− η I + η Î

− (ϕ + ζ + µ)

Q̂

(
Q− Q̂

)2 − ξωP2

σ

≤ − µ

Ŝ

(
S− Ŝ

)2
+

ζ

2Ŝ

(
S− Ŝ

)2
+

ζ

2Ŝ

(
Q− Q̂

)2
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−
(

δ

σ
− Î
)

ξP−
(

1− I
Î

)(
Q
Q̂
− 1
)

η Î

− (ϕ + ζ + µ)

Q̂

(
Q− Q̂

)2

Thus, in the region,

Ψ̂1 :=
{
(S, I, Q, P) | min

{
Î
I

,
Q
Q̂

}
> 1, or max

{
Î
I

,
Q
Q̂

}
< 1

}
,

we have

CDα
t Φ2(S, I, Q, P) ≤ − µ

Ŝ

(
S− Ŝ

)2
+

ζ

2Ŝ

(
S− Ŝ

)2
+

ζ

2Ŝ

(
Q− Q̂

)2

−
(

δ

σ
− Î
)

ξP− (ϕ + ζ + µ)

Q̂

(
Q− Q̂

)2

= −
(

µ− ζ

2

)(
S− Ŝ

)2

Ŝ
−
(
(ϕ + ζ + µ)

Q̂
− ζ

2Ŝ

)(
Q− Q̂

)2

−
(

δ

σ
− Î
)

ξP.

Substituting the value of Ŝ, we acquire

CDα
t Φ2(S, I, Q, P) ≤ −

(
µ− ζ

2

)(
S− Ŝ

)2

Ŝ
−
(
(ϕ + ζ + µ)

Q̂
− µζR0

2Λ

)(
Q− Q̂

)2

−
(

δ

σ
− Î
)

ξP

Therefore, CDα
t Φ2(S, I, Q, P) ≤ 0 if ζ < 2µ,R0 <

2(ϕ + ζ + µ)Λ
µζQ̂

, and Î <
δ

σ
. Obeying

Lemma 4.6 in [53] along with the existence condition of PFEP, the following theorem is
provided as a result.

Theorem 6. The PFEP E2 =
(
Ŝ, Î, Q̂, 0

)
is GAS in the region Ψ̂1 if 1 < R0 < Rb

0, ζ < 2µ, and

Î <
δ

σ
, whereRb

0 =
2(ϕ + ζ + µ)Λ

µζQ̂
.

Remark 3. When conditions in Theorem 5 are satisfied, only the predator will be extinct. Further-
more, (i) if the LAS properties are satisfied, this condition can happen when the initial condition
is close enough to the value of the predator-free-endemic point, and (ii) if the GAS properties are
satisfied, this circumstance may happen for all initial conditions.

3.5. The Predator-Endemic Point

The predator-endemic point (PEP) is obtained by solving Equation (10). This equilib-
rium point is provided by

E3 =
(
S̃, Ĩ, Q̃, P̃

)
,

where S̃ =
Λ

µR0
+

(σ Ĩ − δ)ξ

βω
, Q̃ =

η Ĩ
ϕ + ζ + µ

, P̃ =
σ Ĩ − δ

ω
, and Ĩ is the positive root of the

quadratic equation
I2 + c1 I + c2 = 0, (20)

where

c1 =
µ

β
+

βσξωΛ
µR0

−
(

δ

σ
+

ηζω

(ϕ + ζ + µ)σξ

)
,



Fractal Fract. 2023, 7, 610 12 of 21

c2 =
(1−R0)ωΛ

σξR0
− δµ

βσ
.

The PEP E3 ∈ R4
+ if S̃ > 0, Ĩ > 0, Q̃ > 0, and P̃ > 0. This condition is satisfied if

Ĩ >
δ

σ
and the root of Equation (20) is positive. Therefore, obeying Descartes rule’s of

sign, we have (i) a unique PEP if c2 < 0, and (ii) a pair of PEP if c1 < 0 and c2 > 0. When

R0 >
βωΛ

δµξ + βωΛ
, we obtain c2 < 0, and, when R0 <

βωΛ
δµξ + βωΛ

, we have c2 > 0. As a

result, we have the following theorem.

Theorem 7. Ĩ >
δ

σ
. The PEP is

(i) unique ifR0 >
βωΛ

δµξ + βωΛ
.

(ii) a pair ifR0 <
βωΛ

δµξ + βωΛ
and c1 < 0.

Since the Jacobian matrix of model (3) evaluated at E3 has 4th-degrees of polynomial
characteristics, the Routh–Hurwitz criterion on [61] is limited to explain the Matignon
condition. Therefore, the dynamics around E3 will be determined by using the Lyapunov
function. We start by rewriting model (3) to the following equations.

CDα
t S = −

(
µ + β Ĩ

)(
S− S̃

)
− βS

(
I − Ĩ

)
+ ζ
(
Q− Q̃

)
,

CDα
t I =

(
β
(
S− S̃

)
+ ξ
(

P̃− P
))

I,
CDα

t Q = η
(

I − Ĩ
)
− (ϕ + ζ + µ)

(
Q− Q̃

)
,

CDα
t P =

(
σ
(

I − Ĩ
)
−ω

(
P− P̃

))
P.

(21)

We construct a Quadratic Volterra Lyapunov function [60,62] as follows.

Φ3(S, I, Q, P) =
(

S− S̃− S̃ ln
S
S̃

)
+

(
I − Ĩ − Ĩ ln

I
Ĩ

)
+

(
Q− Q̂

)2

2Q̂

+
ξ

σ

(
P− P̃− P̃ ln

S
S̃

)
.

(22)

Applying Lemma 3.1 in [60], Lemma 2.3 in [62], and Equation (21), we have the Caputo
fractional order derivative of the Lyapunov function (22) as follows.

CDα
t Φ3(S, I, Q, P) ≤

(
S− S̃

S

)
CDα

t S +

(
I − Ĩ

I

)
CDα

t I

+

(
Q− Q̃

Q̃

)
CDα

t Q +
ξ

σ

(
P− P̃

P

)
CDα

t P

=

(
S− S̃

S

)(
−
(
µ + β Ĩ

)(
S− S̃

)
− βS

(
I − Ĩ

)
+ ζ
(
Q− Q̃

))
+

(
I − Ĩ

I

)(
β
(
S− S̃

)
+ ξ
(

P̃− P
))

I

+

(
Q− Q̃

Q̃

)(
η
(

I − Ĩ
)
− (ϕ + ζ + µ)

(
Q− Q̃

))
+

ξ

σ

(
P− P̃

P

)(
σ
(

I − Ĩ
)
−ω

(
P− P̃

))
P

= −
(
µ + β Ĩ

)
S

(
S− S̃

)2
+

ζ

S
(
S− S̃

)(
Q− Q̃

)
+

η

Q̃

(
I − Ĩ

)(
Q− Q̃

)
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− (ϕ + ζ + µ)

Q̃

(
Q− Q̃

)2 − ξω

σ

(
P− P̃

)2

≤ −
(
µ + β Ĩ

)
S

(
S− S̃

)2
+

ζ

2S
(
S− S̃

)2
+

ζ

2S
(
Q− Q̃

)2
+

η

2Q̃

(
I − Ĩ

)2

+
η

2Q̃

(
Q− Q̃

)2 − (ϕ + ζ + µ)

Q̃

(
Q− Q̃

)2 − ξω

σ

(
P− P̃

)2

= −
(
2
(
µ + β Ĩ

)
− ζ
) (S− S̃

)2

2S
+

η

2Q̃

(
I − Ĩ

)2

+

(
ζ

2S
+

η

2Q̃
− (ϕ + ζ + µ)

Q̃

)(
Q− Q̃

)2 − ξω

σ

(
P− P̃

)2.

Let

Ψ̂2 :=
{
(S, I, Q, P) | I

Ĩ
≤ 1,

ζQ̃
S
≤ 2(ϕ + ζ + µ)− η

}
.

In region Ψ̂2, we have

CDα
t Φ3(S, I, Q, P) ≤ −

(
2
(
µ + β Ĩ

)
− ζ
) (S− S̃

)2

2S
− ξω

σ

(
P− P̃

)2.

Hence, CDα
t Φ3(S, I, Q, P) ≤ 0 if ζ < 2

(
µ + β Ĩ

)
. Following Lemma 4.6 in [53], E3 is

globally asymptotically stable in region Ψ̂2. Finally, we provide the following theorem.

Theorem 8. The PEP E3 =
(
S̃, Ĩ, Q̃, P̃

)
is GAS in the region Ψ̂2 if ζ < 2

(
µ + β Ĩ

)
.

Remark 4. From Theorem 8, we hold that all populations maintain their existence when the intial
value in Ψ̂2 and the recovery rate (ζ) are less than a threshold level.

4. Numerical Results

In this section, two numerical ways are provided to study global sensitivity analysis
and dynamical behaviors. Global sensitivity analysis is completed to study the most
influential parameter and the dynamical behaviors are studied by showing the occurrence
of bifurcations along with the time series of model (3). All numerical solutions are obtained
using the predictor–corrector approach developed by Diethelm et al. [63]. For global
sensitivity analysis, we employ the Partial Rank Correlation Coefficient (PRCC) [64]. For
generating random data, which are used in PRCC, we use Saltelli sampling [65,66], which
is included in an open-source SALib Python library developed by Herman and Usher [67].

4.1. Global Sensitivity Analysis

We first investigate the most influential parameters to the dynamics of model (3). Since
we do not study specific ecological cases, we use probability intervals for the experimental
data used in Saltelli sampling. All parameters are involved for PRCC, with the objective
functions being the basic reproduction number (R0) and the density of all compartments
for some time interval.

For PRCC with respect toR0, the result is provided by Figure 2. We can see that µ, κ,
and η have negative relationships withR0 while Λ and β have positive relationships with
R0. This means that the value ofR0 decreases when µ, κ, and η increase, and the value of
R0 increases when Λ and β increase. Furthermore, we find that the natural death rate (µ)
becomes the first influential parameter with PRCC of µ = −0.599. The second influential
parameter is provided by the birth rate of susceptible prey (Λ) and the intraspecific disease
transmission rate on prey (β) with PRCC of Λ = β = 0.479. Since the birth and natural
death rates are biologically fixed in nature, we conclude that β is the most influential
parameter with respect toR0.
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For investigating the most influential parameter regarding the density for each com-
partment, we also ignore the values of Λ, µ, δ, κ, and ϕ for the similar reason as above,
where birth and death rate are fixed. We also simulate the PRCC for 0 ≤ t ≤ 50 and take the
PRCC value at t = 50 by considering the convergence of all PRCC values. Now, we study
the most influential parameter regarding the density of susceptible prey S(t). Figure 3
shows that the transmission rate (β) becomes the first influential parameter with PRCC
values provided by β = −0.115, which means that, if β increases, then the density of S
decreases. The second place is provided by the quarantine rate (η) with the PRCC value
provided by η = 0.064. For infected prey (I(t)), we find that η and β still become the most
influential parameters with PRCC values η = −0.333 and β = 0.309; see Figure 4. Next,
Figure 5 shows that the recovery rate (ζ) and the intraspecific disease transmission rate on
prey (β) become the most influential parameters to the density of quarantine prey (Q(t)),
where the PRCC values are provided by ζ = −0.248 and β = 0.229. These also confirm that
β is directly and η is inversely proportional to the density of Q(t).

From all numerical simulations for global sensitivity analysis, Table 1 is provided to
describe the most influential parameters and their impact on the model. Since the birth rate
and death rate are naturally possessed by every population, we assume these parameters
are fixed in nature and focus on investigating the other parameters.

−0.7 −0.5 −0.3 −0.1 0.0 0.1 0.3 0.5

PRCC respect to R0
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Figure 2. PRCC of parameters of model (3) with respect to the basic reproduction numberR0.
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Figure 3. PRCC of parameters of model (3) with respect to the susceptible prey S(t).
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Figure 4. PRCC of parameters of model (3) with respect to the infected prey I(t).
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Figure 5. PRCC of parameters of model (3) with respect to the quarantine prey Q(t).

Table 1. Interpretation of global sensitivity analysis.

Objective Most Influential Biological InterpretationFunctions Parameter

R0 β The disease transmission rate has the greatest influence on in-
creasing or decreasing the basic reproduction number. The dis-
ease transmission rate is directly proportional to basic reproduc-
tion number.

S(t) β The disease transmission rate has the greatest influence on in-
creasing or decreasing the density of the susceptible prey. The
disease transmission rate is inversely proportional to the density
of the susceptible prey.

I(t) η The quarantine rate has the greatest influence on increasing or
decreasing the density of the infected prey. The quarantine rate
is inversely proportional to the density of the infected prey.

Q(t) ζ The recovery rate has the greatest influence on increasing or
decreasing the density of the quarantine prey. The recovery rate
is inversely proportional to the density of the quarantine prey.

4.2. Dynamical Behaviors

In this subsection, we explore more the dynamical behaviors of model (3) by pro-
viding some numerical simulations based on a predictor–corrector approach developed
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by Diethelm et al. [63]. Three important biological parameters are investigated, namely
the intraspecific disease transmission rate on prey (β), quarantine rate on prey (η), and
the memory effect (α). Since we do not study a specific ecological case, all parameter
values are experimentally determined. All simulations are provided based on the following
parameter values.

Λ = 0.6, µ = 0.1, β = 0.1, ζ = 0.3, η = 0.2, κ = 0.2,
ξ = 0.3, ϕ = 0.1, σ = 0.2, δ = 0.1, ω = 0.1, α = 0.9.

(23)

Now, to study the influence of the intraspecific disease transmission rate on prey, we
vary β in interval [0, 0.3]. The stability and the occurrence of each equilibrium point are
provided in Figure 6. For 0 ≤ β < β∗1 ≈ 0.083 (R0 ≈ 1), only an asymptotically stable
PDFP E1 occurs. The stability of E1 is lost and an asymptotically stable PFEP E2 occurs when
β crosses β∗1 via forward bifurcation. The PDFP is still unstable until β = 0.3. When we do
continue to the other branch, the stability of E2 holds for β∗1 < β < β∗2 (R0 ≈ 1.463). When
β crosses β∗2 ≈ 1.463, the PFEP E2 also losses its stability via forward bifurcation marked by
the appearance of an asymptotically stable PEP E3 simultaneously. This condition holds
for β∗2 < β ≤ 0.3. To provide more description about these conditions, the time series
is provided in Figure 7. We choose values of β based on the three intervals above. For
β = 0.05, only susceptible prey (S) could maintain its existence while others are going
to the extinction point. For β = 0.1, the predator still goes to the extinction point, while
the infected (I) and quarantine Q exist. This means that the disease will become endemic
without the existence of a predator. When we set β = 0.2, all compartments of prey and
predator become existent. If we consider the dynamics according to basic reproduction
number (R0), the prey not only becomes free from disease but also free from the predator
whenR0 < 1. When 1 < R0 / 1.463, the disease becomes endemic but the predator will be
extinct. The density of all compartments exists and is balanced in nature whenR0 > 1.463.

Furthermore, by still using parameter values as in Equation (23), we now study the
influence of the quarantine rate on prey (η) on the population dynamics. The parameter
η is varied in inteval [0, 0.5]. As a result, we have Figure 8 as the bifurcation diagram.
For 0 ≤ η < η∗2 ≈ 0.125 (R0 ≈ 1.412), all equilibrium points exist but only PEP E3 is
asymptotically stable. The PEP E3 merges with unstable PFEP E2 when η = η∗2 . When
η passes through η∗2 , E3 vanishes and E2 becomes asymptotically stable via forward bi-
furcation. In a similar manner, PEFP E2 also merges with an unstable PDFP E1 when
η = η∗1 ≈ 0.3 (R0 ≈ 1) and dissapears when η > η∗1 . The PDFP E1 becomes asymptotically
stable via forward bifurcation when η crosses η∗1 . Generally, if 0 < η < η∗2 (R0 > 1.412),
then all compartments exist; if η∗2 < η < η∗1 (1 < R0 < 1.412), then disease becomes
endemic and the predator extinct, and, if η > η∗1 (R0 < 1), then disease disappears from
prey and the predator becomes extinct. In Figure 9, we provide the time series of model
(3) using parameter values (23) and η = 0.08, 0.2, 0.4, which represent the dynamics for
each interval.

0.0 0.1 0.2 0.3
β

0.0

0.4

0.8

1.2

I
(t

)

β∗1 ≈ 0.083 (R0 ≈ 1)

β∗2 ≈ 0.122 (R0 ≈ 1.463)

E1−stable

E1−unstable

E2−stable

E2−unstable

E3−stable

Figure 6. Bifurcation diagram of model (3) driven by β with parameter values provided by
Equation (23).
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Figure 7. Time series of model (3) for β = 0.05, 0.1, and 0.2 with parameter values provided by
Equation (23).
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Figure 9. Time series of model (3) for η = 0.08, 0.2, and 0.4 with parameter values provided by
Equation (23).

Finally, we investigate the impact of the memory effect on the dynamics of model (3).
By using the parameter values from Equation (23), we vary the order of the derivative (α)
as the memory index. We set α = 0.6, 0.7, 0.8, 0.9, 1 and portray them in the time series
provided by Figure 10. We confirm that, when α is varied, all solutions seem to converge to
the same equilibrium point. The difference lies in the convergence rate, where, for smaller
α, the convergence rate is also lower. This means that the memory affects the convergence
rate of all compartments. These conditions are provided by Figure 10a. Furthermore, in
Figure 10b, we find that α = 1 has the highest peak for S(t), I(t), and Q(t) and lowest
density for P(t). This means that the memory has an impact to the maximum density of
all compartments.
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Figure 10. Time series of model (3) with experimental parameter values as follows: Λ = 0.6, µ = 0.1,
β = 0.1, ζ = 0.3, η = 0.2, κ = 0.2, ξ = 0.3, ϕ = 0.1, σ = 0.2, δ = 0.1, and ω = 0.1.

5. Conclusions

The dynamics of a fractional order eco-epidemiological model with quarantine have
been investigated. The validity of the model has been proven by showing that the solution
always exists and is unique as well as always non-negative and bounded when the initial
condition is non-negative. Three feasible equilibrium points have been founded, namely
the predator-disease-free, the predator-free-endemic, and the predator-endemic points. The
basic reproduction number has been obtained after investigating the condition when the
prey population is free from disease and predator hunting. The local and global dynamics
of each equilibrium point have been identified using Matignon’s condition, Lyapunov
direct method, and LaSallee invariant principle. Some numerical simulations have been
demonstrated. A PRCC has been utilized to identify the most influential parameter to
the value of the basic reproduction number and the density of each compartment. A
pair of forward bifurcations occur when some parameters are varied, including their
time series. All analytical and numerical simulations show that intraspecific disease
transmission and the quarantine rate provide the most contribution to the density of the
infected prey population. This means that we have to increase the intraspecific disease
transmission and increase the quarantine rate to suppress the disease as well as maintain
the ecological balance.
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