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Abstract: Due to their practicality and convenient parametrization, fractals derived from iterated
function systems (IFSs) constitute powerful tools widely used to model natural and synthetic shapes.
An IFS can generate sets other than fractals, extending its application field. Some of such sets arise
from IFS fractals by adding minimal modifications to their defining rule. In this work, we propose
two modifications to a fractal recently introduced by the authors: the so-called

√
2-ball fractal dust,

which consists of a set of balls diminishing in size along an iterative process and delimited by an
enclosing square. The proposed modifications are (a) adding a resizer parameter to introduce an
interaction between the generator and generated ball elements and (b) a new fractal embedded into the√

2-ball fractal dust, having the characteristic of filling zones not covered by the previous one. We study
some numerical properties of both modified resulting sets to gain insights into their general properties.
The resulting sets are geometrical forms with potential applications. Notably, the first modification
generates an algorithm capable of producing geometric structures similar to those in mandalas and
succulent plants; the second modification produces shapes similar to those found in nature, such as
bubbles, sponges, and soil. Then, although a direct application of our findings is beyond the scope
of this research, we discuss some clues of possible uses and extensions among which we can remark
two connections: the first one between the parametrization we propose and the mandala patterns, and
the second one between the embedded fractal and the grain size distribution of rocks, which is useful in
percolation modeling.

Keywords: fractal dust; iterated function system; self similarity; ball sets; mandalas; succulent plant
patterns; percolation modeling

1. Introduction
1.1. Background of Fractals and IFS

Since Mandelbrot’s initial works on fractals [1], there has been a growing interest in
studying these geometric objects due to their intriguing theoretical properties and numerous
applications in different fields (see, e.g., [2–9]). Some algorithms allow the construction
of fractals; the iterated function systems (IFSs) approach is among the most common and
studied of these methodologies [2]. In its deterministic form, this idea for generating fractals
was introduced by Hutchinson [10] in 1981.

In the most basic form of the IFS approach, a fractal is constructed as the union of
several copies of an initial generator set, usually a line or region in the R2 plane, each
copy being transformed by a family of mappings. Barnsley extended Hutchinson’s ideas
and formulated the Hutchinson–Barnsley theory [11] of an iterated function system to
construct fractals as invariant subsets of metric spaces. Some of the most recognizable
fractals are indeed examples of IFS-generated sets. Examples of IFS fractals are the Cantor
set, Sierpinski gasket and carpet, and von Koch curve (see, e.g., [2]).

IFS fractals have applications in different fields and circumstances, making them
worth studying and justifying the necessity for new examples and properties of such ob-
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jects. For instance, new IFS fractals have been conceived to approximate complex natural
shapes [12], design antennas [13,14], model complex networks [15], and visualize data [16].
On the other hand, some previously known IFS fractals have inspired new developments
in art [17], the design of antennas [18], the modeling of complex networks [19], and inter-
polation and approximation theory [20]. Additionally, there has been extensive research
on the theoretical properties of this family of fractals (e.g., [21]), their extension (e.g., [22]),
and their use in other fields (e.g., [23]). The references in the previous examples only
considered deterministic cases; the amount of relevant works increases dramatically if we
also consider random IFS fractals [24].

In this context, a particular type of IFS fractal arises: the so-called
√

2-ball fractal
dust [25], which was previously introduced by the authors. Such a fractal is generated
by an initial set consisting of a ball B0 of radius ρ0 that is centered and circumscribed to
a square S0; the initial set is reduced and copied in each of the corners of S0 such that
the reduced squares S1i share one corner with S0 and touch the ball B0 at only one point.
Thus, the sequence of the radius of the reduced balls in the m-th iteration is given by

rm = ρ0
2m

(
1− 1√

2

)m
. Another way of generating this fractal, which is more convenient for

our purposes, is given by considering that the initial generator set is the union of the initial
ball B0, the boundary ∂S0, and its corner copies B1i, ∂S1i in the 1-st iteration. This initial set
is then reduced and copied in the corners of the squares S1i; this process of reducing and
copying is repeated at each iteration following the IFS approach.

Here, it is important to mention that this previous fractal was designed without any
specific application, but detecting some main research areas for it. This led us to explore
some modifications to the fractal that close it more to reproduce patterns in the real world.
Two procedures to achieve that will be detailed. The first one is related to mandalas and
succulent plants, while the second one to engineered foams and other structures related to
fluid dynamics.

1.2. Related Work

There are some previous works with digital methodologies to generate patterns related
to our first procedure. For mandalas, which are geometric configurations of symbols, usually
arranged circularly [26], several works have been reported. In [27,28], the authors propose
parametrized models of the main figures used as components in the interior of mandalas
and place such figures in a hierarchical structure of concentric circles to generate mandala
patterns. In [29], a framework is introduced to automatically design mandala patterns, and a
color-transfer-based method to colorize them. In [30], the authors use complex polynomials
to create mandala patterns. Besides, there are several works about the computer-based
generation of traditional art patterns found in religions such as Hinduism and Buddhism.
Examples of few references in this direction are the following: Refs. [31–34] generate Islamic
geometric patterns, Refs. [35–37] Indian Kolam patterns, and Refs. [38–40] painting artworks.
To the knowledge of the authors, there are no works that report the design of mandalas from
a fractal construction, although there is one work relating fractals to Hindu temples and
cosmology patterns [41].

Regarding succulents, which are a kind of plant with thickened parts to retain water
in dry environments [42], we are not aware of literature dealing with the modeling and
generation of succulent plants explicitly. However, some previous references have dealt
with plant modeling and digital generation. For example, ref. [43] identifies a geometrical
equation, “the Superformula”, capable of modeling various shapes, including those of
plants. Following this work, the authors in ref. [44] use the Superformula for modeling in
botany, focusing on flowers and floral organs. In ref. [45], the authors use deep learning to
generate synthetic images of plant leaves to generate synthetic observations to train image
recognition algorithms.

The second procedure generates a configuration similar to 2D foams, such as bubbles
and sponges. Numerous studies have focused on diverse aspects of the structure of foams
due to their importance in microfluids and other topics. That is, ref. [46] studied the dy-
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namic forces acting on a bubble. Some related references for modeling the structure of
bubbles include [47], which introduces a bubble scale model known as “the bubble model”
that successfully replicates features of foam rheology, while [48] expands this work to
include other aspects into the model. Ref. [49] presents a 2D model for contacting bubbles
that can be extended to simulate 2D foams. Aqueous foams’ physical and physicochem-
ical properties, together with some models for these phenomena, are discussed in [50].
In particular, it presents models for the structure of bubble monolayers (quasi-2D foams).
The book [50] is also a good reference for modeling foams. Specialized foam models, such
as the Kelvin foam, have shown a potential use in high-performance cushion materials [51].

The forms induced by the second proposal could also help to model percolation through
some porous media and filters consisting of grain/rock elements covering a wide range of
sizes. In this regard, ref. [52] presents a model based on the arrangement of elastic spherical
particles for retention curves. In turn, ref. [53] implemented a Universal Distinct Element
Code (UDEC) model, which includes a Voronoi tessellation, to simulate the distribution of
granite rocks and measure crack initiation under stress.

1.3. Problem Description and Objectives

Motivated by the circular pattern of the
√

2-ball fractal dust (
√

2-BFD), its simplicity
and malleability in construction, and the shape of structures described in Section 1.2, this
work aims to establish new frameworks and mathematical models to describe structures
and phenomena in the real world. Specifically, our proposal consists of two main procedures
derived from

√
2-BFD, with their respective particular objectives:

• In the first one, we consider a sequence of sets with the same structure as the initial
generator set (one large ball and four smaller balls), but with a dynamical interaction
between the radii of the balls depending on the previous value of the sequence through
a specific formula. In this case, the k-th iteration of this set is given by the union of the
k first elements in the sequence. This construction breaks the original fractal nature
but maintains the properties of an IFS. With the purpose of explaining the properties
of the new IFS and delimiting the conditions for which the nature patterns arise, we
categorize the resulting modifications regarding a parameter α, which denotes the
interaction level (Section 2.1). Then, in Section 3, for a group of radii regimes, we
study these sets’ asymptotic behavior, compute their Hausdorff dimension and the
area they cover, and graphically illustrate the resulting sets. We also study the ratio
between the sizes of the generator balls of each iteration.

• In the second one, we add new balls to the sets B0, B1,i, following a set of rules in such
a way that the generated IFS approaches to the boundary of B0. That is, in our analysis,
we avoid including and depicting balls and squares belonging to m ≥ 2, while filling
spaces between B0 and B1,i. The way of construction allows for conserving a fractal
shape that resembles nontouching fluid dynamic structures, such as bubbles that
intend adding to a main body, or well, fragments of rock suspended in a solution;
it is detailed in Section 2.2. With the objective of detailing some of its properties
and performing a comparative analysis with the first procedure, we make similar
calculations and computations for this case, which are shown in Section 3 too.

In this way, our work contributes to the previous efforts in the literature from novel fractal
and IFS constructions that intend to be able to reproduce structures that have the potential to
be employed in different contexts (at least four). This contrasts with the specific usability of the
reported methods for each context, while allowing our procedures to compete in simplicity,
spatial multiscalability, and a wide set of properties that enhance the rise of new modifications.
We discuss our main results for both procedures, deep into their applicability, and tag some
lines for future research in Section 4. Finally, we summarize our findings in Section 5.
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2. IFS-Based Methods to Modify the
√

2-Ball Fractal Dust
2.1. Addition of a Resizer Parameter

Let an initial generator ball be with the radius ρ0 and its four associated balls with
the radius ρ0

2

(
1− 1√

2

)
, which are defined by the 1-st iteration of the

√
2-ball dust in a

two-dimensional construction. We propose a modification of that 1-st iteration by applying
an iterative interaction, tagged with the subindex k, between the generator (ρk) and its
associated corner balls (rk), observing that ρk and rk are two sequences of radii. It is given
by redefining the radii associated with the generator balls as

rk =
1
2

(
ρ0 −

ρk−1√
2

)
, ∀k = 1, 2, 3, . . . (1)

ρk = ρ0 − αrk, ∀k = 1, 2, 3, . . . (2)

where α controls the ratio between the radii sizes in each iteration. The proposed modifica-
tion is equivalent to expressing Sequences (1) and (2) as

rk = ρ0

(√
2− 1

) k

∑
j=1

αj−1(√
2

3)j , ∀k = 1, 2, 3, . . . (3)

ρk = ρ0 − αρ0

(√
2− 1

) k

∑
j=1

αj−1(√
2

3)j , ∀k = 1, 2, 3, . . . (4)

so that we have two infinite sequences, ρ = {ρ0, ρ1, ρ2, . . .} and r = {r1, r2, . . .}, taking
part in the original generator ρ0 in its corresponding sequence. For the values of α we
are interested in, the series in Equations (3) and (4) correspond to a geometric series and,
therefore, can be explicitly computed. We employ this fact in our analysis below.

Then, some particular shapes or relationships between the generator and associated
balls occur when k→ ∞ and α takes certain values. That is, we will focus on two cases that
resize the balls but maintain the nontouching property (α < 2), the inflexion case in which
associated balls are touching while the generator disappears (α = 2), and two more cases
in which all the balls overlap each other by increasing their original size (α > 2).

• Case α = 1. The particularity of this case is the exchange ratio itself, decreasing the
radius of the next generator ball (ρk) with the radius of the current associated balls
(rk); see Equation (2), which leads from Sequences (3) and (4) to the limits

lim
k→∞

rk = ρ0

(
1

3 +
√

2

)
(5)

lim
k→∞

ρk = ρ0

(
2 +
√

2
3 +
√

2

)
. (6)

The convergence of Equations (5) and (6) is visualized in Figure 1, in which the slight
increase and decrease of rk and ρk are shown, respectively. This leads to the fact that the
radius ratio ρk

rk
stabilizes before rk is greater than ρk; indeed, the balls corresponding

to the radius ri do not touch those ones ρj, ∀i = 1, 2, . . ., j = 1, 2, . . ., as illustrated in
Figure 2 up to the 50-th iteration.

• Case α = 2. In contrast with case α = 1, the radius ρk decreases with the diameter
2rk−1. Then,

lim
k→∞

k

∑
j=1

2j−1(√
2

3)j =

√
2 + 1
2

,
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which leads to a stabilization of the radius ratio at ρk
rk

= 0, since

lim
k→∞

rk =
ρ0

2
(7)

lim
k→∞

ρk = 0; (8)

i.e., the generator ball disappears, whereas the four associated balls grow up to being
tangent to each other and to the enveloping square; see Figures 1 and 3.

• Case α = 1
2−
√

2
. This is an intermediate case to the above ones, with 1 < α < 2, which

produces

lim
k→∞

k

∑
j=1

(
1

2−
√

2

)j−1

(√
2

3)j =
2−
√

2(√
2− 1

)(
3−
√

2
) ,

leading in turn to

lim
k→∞

rk = lim
k→∞

ρk = ρ0
2−
√

2
3−
√

2
; (9)

i.e., this case stabilizes, leading to five nontouching identical balls in size, as shown in
Figure 1 and illustrated in Figure 4.

• Case α = 23 − (
√

2)5. As expected by the trend shown in previous cases, ρk stabilizes
at a negative value for cases with α > 2. Specifically, in the present one, it produces

rk = ρ0

(√
2− 1

) k

∑
j=1

αj−1(√
2

3)j , ∀k = 1, 2, 3, . . . (10)

ρk = ρ0 − αρ0

(√
2− 1

) k

∑
j=1

αj−1(√
2

3)j , ∀k = 1, 2, 3, . . .

and when k→ ∞, we obtain

lim
k→∞

α
k

∑
j=1

αj−1(√
2

3)j = 2(
√

2 + 1),

which leads to a stabilization at ρk
rk

< 0, since

lim
k→∞

rk =
2ρ0

α
(11)

lim
k→∞

ρk = −ρ0; (12)

i.e., the generator ball passes from diminishing its size up to recovering it as a nonphys-
ically possible solution but mathematically, whereas the four associated balls overlap
each other and are tangent in two points to the enveloping square. Figure 5 plots the
iterative process considering absolute values for ρk. Note that, for convenience in
procedure, limits (11) and (12) were obtained in a partial reverse way by looking for
the value of α, observing from Equation (10) that

lim
k→∞

rk =
ρ0

(
√

2
3 − α)(

√
2 + 1)

(13)

and then assuming that Equation (12) is satisfied so that

α =
8 + 25/2

3 + 23/2 = 23 − (
√

2)5
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• Case α = 1 +
√

2. This case is similar to the latter one and produces

rk = ρ0

(√
2− 1

) k

∑
j=1

αj−1(√
2

3)j , ∀k = 1, 2, 3, . . .

ρk = ρ0 − αρ0

(√
2− 1

) k

∑
j=1

αj−1(√
2

3)j , ∀k = 1, 2, 3, . . .

and when k→ ∞, we obtain

lim
k→∞

k

∑
j=1

αj−1(√
2

3)j = 1 +
√

2,

which also leads to a stabilization at ρk
rk

< 0, since

lim
k→∞

rk = ρ0 (14)

lim
k→∞

ρk = ρ0(1− α); (15)

i.e., the generator ball passes from diminishing its original size to increasing and
overpassing it (in negative value), whereas the four associated balls fully overlap each
other, being tangent in four points to the enveloping square; i.e., they become the
original generator (see Figure 6). Similar to the latter case, limits (14) and (15) can be
obtained by looking for the value of α; namely, one can see that

α =
3 + 23/2

21/2 + 1
= 1 +

√
2

by using Equation (13) while assuming that (15) is fulfilled.

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	10 	20 	30 	40 	50

0

2-	√2

k

1

1/2

3-	√2

2+√2

3+√2

3+√2

r k
/ρ

0,	
		ρ

κ/ρ
0

Figure 1. Evolution of the radii rk and ρk (normalized to ρ0) as a function of the number of iterations
k. Cases α = 1, 1/(2−

√
2), and 2 depicted as square, triangle, and circle symbols, respectively.

Values of rk are displayed with solid symbols and with open ones for ρk. The color scale refers to the
iteration number. The corresponding values for lim k→ ∞ are shown on the right axis. Although the
radii seem to have converged for k < 30, extra values are included to agree in color scale with the
convergence shown in the figures below.
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-1

	0

	1

-1 	0 	1
Figure 2. Case α = 1, up to the 50-th iteration. Circles are colored according to the iteration number,
following the color scale shown in Figure 1. B(κ0, ρ0), κ0 = (0, 0), ρ0 = 1 units is plotted in black as
a reference.

-1

	0

	1

-1 	0 	1
Figure 3. Case α = 2 up to the 50-th iteration. Same notations as in Figure 2.
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-1

	0

	1

-1 	0 	1

Figure 4. Case α = 1
2(1−

√
2)

up to the 50-th iteration. Same notations as in Figure 2.

-1

	0

	1

-1 	0 	1

Figure 5. Case α = 23 −
(√

2
)5

up to the 50-th iteration. Dashed lines refer to balls with a negative
radius. Same notations as in Figure 2.
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-1

	0

	1

-1 	0 	1
Figure 6. Case α = 1 +

√
2 up to the 50-th iteration. Same notations as in Figure 5.

2.2. An Embedded Fractal

Let an initial generator ball be with the radius ρ0 and its four associated balls defined
by the 1-st iteration of the

√
2-BFD, as for the α’s cases in Section 2.1. Starting from those

balls, we propose an additional step for that 1-st iteration by adding a new embedded
fractal G that follows a similar IFS construction. That is, the 0-th iteration of the new fractal
is defined by G0 =

⋃4
i=1 B(κi, ρi), with B(κi, ρi), being computed by the balls B(κi, ρ1),

i = 1, 2, 3, 4 that are located at the corners of the enveloper square; the ball belonging to the
0-th iteration, and located at the top-right corner, is shown in Figure 7.

Then, at the 1-st iteration, B(κ1, ρ1) generates the two largest squares (S(κ5, ρ5),S(κ6, ρ6))
inside S(κ0, ρ0) that fulfill the following:

• Touch the boundary ∂B(κ0, ρ0) at only one different point {x5, x6} ∈ R2, x6 6= x5.
• Do not touch any previous ball but only the boundary of their generator ∂B(κ1, ρ1),
• They are only path-connected by their square generator S(κ1, ρ1) so that the intersect-

ing points agree with ||x6 − x1|| < ||x6 − x5||.
Thus, the couples of parameters defining the two generated squares are obtained by

the fulfillment of the following constraints:

κi ∈ S(κ0, ρ0), κi /∈ B(κ0, ρ0),
⋂

i
κi = ∅, i = 5, 6 (16)

ρ5 =
1
2

sup

{
δ5 :

(
S(κ5, δ5) ⊂ S(κ0, ρ0),S(κ5, δ5)

⋂ 4⋃
i=1

S◦(κi, ρi) = ∅,

∂S(κ5, δ5)
⋂

∂S(κ1, ρ1) 6= ∅,S(κ5, δ5)
⋂

B(κ0, ρ0) = x5

)}
, ∀δ5 > 0.

(17)
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ρ6 =
1
2

sup

{
δ6 :

(
S(κ6, δ6) ⊂ S(κ0, ρ0),S(κ6, δ6)

⋂ 5⋃
i=1

S◦(κi, ρi) = ∅,

∂S(κ6, δ6)
⋂

∂S(κ1, ρ1) 6= ∅, S(κ6, δ6)
⋂

B(κ0, ρ0) = x6, ||x6 − x1|| < ||x6 − x5||
)}

, ∀δ6 > 0.

(18)

Equations (16)–(18) can be applied to determine the rest of the 1-st iteration balls, this
by substituting the corresponding subindexes to obtain the balls numbered by j = 7, . . . , 12
from their corresponding generators j = 2, 3, 4. Thus, the balls B(κj, δj), j = 5, . . . , 12 make
up G1. See Figure 7 to visualize the balls corresponding to the top-right corner, belonging
from the 1-st to the 10-th iteration; as shown in the picture, each couple of generated balls
corresponds to one located on the left, while another at the bottom of their generator ball
(this applies to the top-right corner; however, the directions are reversed depending on the
selected corner).

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	0.2 	0.4 	0.6 	0.8 	1

3
1

2

3

3

3

0

1

2

	0.9

	1

	0.2 	0.3 	0.4

3
45678910

4

456

4

4

Figure 7. Top-right corner of the
√

2-ball-boundary dust up to the 10-th iteration, considering an
initial generator B(κ0, ρ0), κ0 = (0, 0), ρ0 = 1 units. Numbers and colors of the balls refer to the
iteration at which the corresponding ball belongs to.

The process is then extended to the µ-th iteration, taking the balls belonging to G1 as
generators and applying Equations (16)–(18) to them. Since we start from four balls (one at
each corner), and each ball generates two balls more, the number of balls generated at the
µ-th iteration is given by Nµ = 4(2µ). In this way, the fractal is defined properly as follows:

Definition 1. Let Gµ,q be the q-th ball generated at the µ-th iteration of the IFS described above; then

Gµ =

Nµ⋃
q=1

Gµ,q,
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and this new ball-gasket fractal consists of

G = lim
µ→∞

Gµ, (19)

which we will refer to as the
√

2-ball-boundary dust,
√

2-BBD.

The name of the gasket comes from the fact that when k increases, smaller balls
approximate ∂B(κ0, ρ0).

3. Results

Table 1 illustrates some properties of the sets constructed in Section 2. That is, the table
contains the percentage area A of the initial square S0 that such sets cover and their respective
Hausdorff dimension dimH . Table 1 also contains the percentage area A of the initial square
S0 that the generator balls in the first and final (limit as k, µ→ ∞) iterations (stages) cover
in each of the cases considered. For

√
2-BBD, to compare with the other sets, we consider

the union of G and the ball B0 that it delimits (see Figure 7); more precisely, we modify
the generator set in the first iteration for G by redefining it as the union of the sets of the
original initial iteration and B0. Thus, the sets in the initial stage represent about 85.3% of S0
in all cases. Notice that the area contained by the constructed sets, which result from the
union of the sets in all iterations (stages) as in any IFSs, is above 90%. Besides, the Hausdorff
dimension of such sets is 2; this computation follows straightforwardly from the monotonic
property of such a dimension.

For the construction with the resizer parameter, Table 1 shows that the area of the
constructed sets (union) increases nonlinearly as a function of α. The increments soar
abruptly after α = 2, which is directly related to changes in the size of the radii ρk and rk,
as suggested by the parametric study displayed in Figure 8a. In this figure, the limits are
plotted in red, and it can be observed that such limits are reached slower as the value of
α increases. Figure 8b illustrates the approximated linear behavior followed by the ratio
ρk/rk as a function of α. Table 1 also reveals that the filled area by the generator balls in
the final iteration is generally smaller than the area covered by the generator balls in the
initial iteration, except for case α = 1 +

√
2. An explanation for this monotonicity is that

the overlapping areas between the ball with the radius ρk and the four balls with the radii
rk increase as a function of k; however, this is not directly observable in Figure 8. Similarly,
it can also be observed that the covered area by the initial stage does not follow a monotone
pattern with respect to the final stage as a function of α. This phenomenon occurs despite
the decreasing behavior of ρk/rk.

Regarding fractal G, Table 1 indicates that the area of its generator sets in its modified
initial iteration is 85.3%, which passes to 0% at the final stage (composed of a dust of
miniballs with the radius ρµ → 0, µ→ ∞). Additionally, the area of the union of the sets in
all iterations fills about 95.4%. Notice that after the second iteration, the elements in this
union consist entirely of points in S0 ∩ Bc

0, covering almost all the space out of B0.

Table 1. General modifications on properties of the fractal
√

2-BBD, caused by the IFSs described in
Section 2. Percentage area is relative to the enclosing initial square S0. It is measured (or calculated)
at the initial, final (limit), and union stages of the respective IFSs. For cases with α > 2, areas are filled
considering balls with the absolute value of their radii.

Property Stage α = 1 α = 1
2−
√

2
α = 2 α = 23−

(√
2
)5

α = 1 +
√

2 G + B0

A (%)
Initial 85.3 85.3 85.3 85.3 85.3 85.3
Final 63.1 53.6 78.5 84.4 157.1 0.0
Union 91.6 96.1 97.9 99.6 157.1 95.4

dimH - 2 2 2 2 2 2
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For the
√

2-ball-boundary dust (G), Figure 9 depicts the number of new balls in each
iteration µ and their respective radii in the logarithmic scale. There, we can observe that
the largest ball in each iteration is several orders of magnitude larger than the smaller balls;
this difference increases as a function of the iteration parameter µ. The size of the largest
balls stabilizes as the number of iterations increases, and the size of the largest and smallest
balls can be described approximately by a line as a function of µ. It is also worth noting
that the balls’ sizes exhibit a clusterized behavior. Looking into the detail, the number of
different ball sizes for

√
2-BBD increases with the number of iterations, such that there are

2µ−1 ball sizes presented at the µ-th iteration, ∀µ = 1, 2, 3, . . .. Thus, observe that each size
is present in eight balls (two per corner) per iteration, connected to the number of balls per
iteration Nµ, as introduced in Section 2.2.
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regarding the value of α and the iteration number starting from k = 1 (in color scale as shown in
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4. Discussion
4.1. First Procedure: Plants and Mandalas’ Patterns

In the previous sections, we presented several figures to graphically portray some be-
haviors and properties of the proposed modifications of

√
2-BFD. For the first modification,

Figures 2–6 show different patterns depicted by the boundary of the generating balls as
a function of the resizer parameter α. These figures, generated by the α-parametrization,
exhibit structures similar to those encountered in mandalas and succulent plants. Thus,
the proposed modifications of the fractal could be used to describe and generate these
structures, providing a variety of shapes based on the parametric modeling of the fractal or
determining new features to characterize, such as has been reported for trees (see [54–56]
and the fractal canopy in [1]). Furthermore, our methodology brings a smooth transition
of shapes by simply varying the parameter α. As shown in panels of Figure 10, mandalas
are generated for values α > 2, offering a wide catalogue of circular patterns that include
shaping petals for 2.05 ≤ α ≤ 2.25, and succulent plants at least for 2.25 ≤ α ≤ 2.35 and
then returning at α = 2.50.

Although the above observations are brief, they lead to some implications but highlight
the novelty and benefits that our first procedure provides, namely,

• The method establishes a connection between fractals/IFSs and mandalas. This could
seem a trivial case since a trained eye could detect the appearance of fractal structures
on them; however, no previous works regarding the construction of mandalas (and
succulent plants) from IFSs have been reported, as mentioned in Section 1.2.

• In fact, most of the methods for designing mandalas are of an artistic type, taking
only into account the maintenance of symmetry; see also the online generator [57] as
a practical example. In this sense, our procedure introduces mathematical formality
to construct those patterns while illustrating their asymptotic behavior as a form to
understand their possible complexity (Table 1 and Figures 1 and 8). This involves the
increasing of the knowledge about the geometrical properties that a mandala could
possess, while enhancing the exploration of other fractals for those purposes.

• Finally, since mandalas are widely used as coloring therapy to reduce anxiety and
other disorders about mental health, the exploration of new geometries, such as that
generated by us, is important when looking for improving effectiveness (see [58,59]
and the references therein). Therefore, this first procedure could be explored in future
medical/psychological works to determine its feasibility.
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Figure 10. Ten different mandala patterns generated with procedure 1 by taking α = 2.05, 2.10,
2.15, . . . , 2.50, which are tagged by (a–j), respectively. The color scale agrees with Figure 1.
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4.2. Second Procedure: Bubble and Percolation Models

The structure depicted in Figure 7 resembles that found in soap bubbles, where smaller
bubbles surround the boundary of a large bubble. This aspect suggests that

√
2-BBD could

provide a model to describe and understand the dynamics involved, and potentially model
different types of foams, not just bubbles. In turn, Figure 7 also suggests the usage of our
second procedure in percolation modeling through porous materials and filters consisting
of individual grain/rock elements of different sizes. As a matter of fact, the density of√

2-BBD is a relevant parameter for applications in percolation and the modeling of bubbles
and sponges since it should be directly related to the filtration level and the materials’
characteristics.

The discussion of the above cues is improved by the benefits and limitations mentioned
in the following items:

• The structures induced by our proposal allow for including multiple scales governed
by the number of iterations in a clear way (Figure 9). This property (multiscaling) is
useful for realistic simulations of the fluid dynamics’ phenomena that we deal with
in this work and improves the original

√
2-BFD, since the multiscaling transition

includes variation in circle sizes inside each iteration while decreasing them with a
wide bank of sizes throughout iterations. This also contrasts with the works cited in
Section 1.2, such as [52], which are feasible but do not include a multiscale approach.

• Together with the multiscaling property, we could mention the simplicity in construc-
tion as the second benefit. This involves not only the feasibility in programming but
also the quickness in iterations for reproducing small structures, as also shown in
Figures 7 and 9.

• The two points above make our procedure compete also in feasibility for specific prob-
lems. Indeed, as seen in Figure 11,

√
2-BBD fits better (with a maximum iteration

number of µ = 5, 7, 10) to real data of granite size distribution than the UDEC model
proposed by [53]. Although our technique is evidently limited by the structures it can
construct (only nontouching circles), the procedure can be adjusted to approximate other
geometric sets in cases where such an object interacts at different scales with the medium
surrounding it. As a hint for that, users could add roughness to the generated structures
by means of the fact that

√
2-BBD intends to delineate the limit of the boundary of a

circle at higher iterations.
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Therefore, even though we must keep in mind that other approaches could produce
more realistic forms that include irregular polygons,

√
2-BBD produces a framework simple

enough to test and simulate theories and models for real-world phenomena that could
be an initial point to create more intricate models. Additionally, our ideas provide the
foundation to obtain a richer class of sets by adding other modifications to our proposals
or other fractals.

4.3. Future Research

The first research line to explore is the extension of our procedures to a 3D space,
which could include the addition of a step consisting of altering the 3D construction. This
change should produce new structures in the space that could include fractals even more
closer to shapes in nature, which is remarkable since not all fractals have the extension
property to 3D or higher dimensions while conserving feasibility in applications. Among
the suggested modifications, we could mention to repeat the construction algorithm of√

2-BFD for each of the squares delineated in each iteration of
√

2-BBD in order to fully
cover the initial square. Additionally, for

√
2-BBD fractal, a pending work is to compute its

perimeter’s length and Hausdorff dimension.
The next recommendations for future research consist of increasing the fitting of

our procedures to the four application cases we discussed in this work, namely, modeling
patterns of mandalas (1), plants (2), foams (3), and percolation structures (4). Some examples
would be (a) the addition of asymmetry that expands the styles for (1) and shapes more
natural silhouettes for (3) and (4); (b) customization of the IFS for (1) and (2) by adding
another parameter that increase the variety of shapes; and (c) exploration of related areas
by combining the developed procedures in such a way that the main iterative process
could include an embedding subprocess that is started if a threshold is exceeded under
certain scenarios.

5. Conclusions

Two IFSs were designed to modify the structure of the
√

2-ball fractal dust. Those pro-
cedures provided new potential frameworks and mathematical models to aid in describing
structures and phenomena in different contexts of the real world. Our main findings and
benefits are detailed in the following bullets:

• It is possible to recursively generate a set of structures resembling mandalas and
succulent plants with the first procedure (Figure 10), effectively providing an algorithm
to produce geometric objects based on simple rules and equations. This last part is an
advantage of our approach over others. The study included the computation of the
area covered by sets generated with different values of the resizer parameter α—we
do it only for some values since the general case is too intricate, and further research
is required to unveil a possible formula. According to the Hausdorff dimension (HD),
the resulting IFSs are not considered a fractal.

• The second procedure generates a configuration similar to that found in foams, bub-
bles, and sponges. Our proposal enriches the existing literature in modeling and
generating such structures with a procedure based, again, on simple rules and equa-
tions. Another potential benefit of our second proposal is that it could also help model
percolation through porous materials and filters consisting of grains of different sizes,
which is supported by performing a direct comparison with the grain size frequency
of granite rocks (Figure 11). We call the resulting set of the second modification of the√

2-ball-boundary dust. For this case, the HD also indicates that the set is not a fractal
by these criteria, although the resulting structure exhibits multiscaling properties.
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