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Abstract: We focus our study on a co-variational inequality problem involving two generalized Yosida
approximation operators in real uniformly smooth Banach space. We show some characteristics
of a generalized Yosida approximation operator, which are used in our main proof. We apply the
concept of nonexpansive sunny retraction to obtain a solution to our problem. Convergence analysis
is also discussed.
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1. Introduction

Variational inequality theory is an influential unifying methodology for solving many
obstacles of pure as well as applied sciences. In 1966, Hartman and Stampacchia [1] initiated
the study of variational inequalities while dealing with some problems of mechanics.

The concept of variational inequalities provides us with various devices for modelling
many problems existing in variational analysis related to applicable sciences. One can
ensure the existence of a solution and the convergence of iterative sequences using these
devices. The concept of variational inequality is applicable for the study of stochastic con-
trol, network economics, the computation of equilibria, and many other physical problems
of real life. For more applications, see [2–12] and references mentioned there.

Alber and Yao [13] first considered and studied a co-variational inequality problem
using the nonexpansive sunny retraction concept. They obtained a solution of the co-
variational inequality problem and discussed the convergence criteria. Their work is
extended by Ahmad and Irfan [14] with a slightly different approach.

Yosida approximation operators are useful for obtaining solutions of various types
of differential equations. Petterson [15] first solved the stochastic differential equation
by using the Yosida approximation operator approach. For the study of heat equations,
the problem of couple sound and heat flow in compressible fluids and wave equations,
etc., the concept of the Yosida approximation operator is applicable. For our purpose,
we consider a generalized Yosida approximation operator and we have shown that it is
Lipschitz continuous as well as strongly accretive. For more details, we refer to [16–20].

After the above important discussion, the aim of this work is to introduce a different
version of the co-variational inequality problem, which involves two generalized Yosida
approximation operators. We obtain the solution of our problem as well as discuss the
convergence criteria for the sequences achieved by the iterative method.
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2. Preliminaries

Throughout this document, we denote the real Banach space by E and its dual space
by E∗. Let 〈ȧ, ḃ〉 be the duality pairing between ȧ ∈ E and ḃ ∈ E∗. The usual norm on E
is denoted by ‖ · ‖, the class of nonempty subsets of E by 2E and the class of nonempty
compact subsets of E by Ĉ(E).

Definition 1. The Hausdörff metric on Ĉ(E) is defined by

D(P, Q) = max

{
sup
x∈P

d(x, Q), sup
y∈P

d(P, y)

}
,

where d(x, Q) = inf
y∈Q

d(x, y) and d(P, y) = inf
x∈P

d(x, y),

where d is the metric induced by the norm ‖ · ‖.

Definition 2. The normalized duality operator J : E→ E∗ is defined by

J(ȧ) =
{

ḃ ∈ E∗ : 〈ȧ, ḃ〉 = ‖ȧ‖2 = ‖ḃ‖2
}

, ∀ȧ ∈ E.

Some characteristics of the normalized duality operator can be discovered in [21].

Definition 3. The modulus of smoothness for the space E is given by the function:

ρE(t) = sup
E

{
‖ċ + ḋ‖+ ‖ċ− ḋ‖

2
− 1 : ‖ċ‖ = 1, ‖ḋ‖ = t

}
.

Definition 4. The Banach space E is uniformly smooth if and only if

lim
t→0

t−1ρE(t) = 0.

The following result is instrumental for our main result.

Proposition 1 ([13]). Let E be a uniformly smooth Banach space and J be the normalized duality
operator. Then, for any ȧ, ḃ ∈ E, we have

(i) ‖ȧ + ḃ‖2 ≤ ‖ȧ‖2 + 2〈ḃ, J(ȧ + ḃ)〉.

(ii) 〈ȧ− ḃ, J(ȧ)− J(ḃ)〉 ≤ 2d2ρE(4‖ȧ− ḃ‖/d), where d =
√
‖ȧ‖2 + ‖ḃ‖2/2 .

Definition 5. The operator h1 : E→ E is called:

(i) Accretive, if
〈h1(ȧ)− h1(ḃ), J(ȧ− ḃ)〉 ≥ 0, ∀ȧ, ḃ ∈ E;

(ii) Strongly accretive, if

〈h1(ȧ)− h1(ḃ), J(ȧ− ḃ)〉 ≥ r1‖ȧ− ḃ‖2, ∀ȧ, ḃ ∈ E,

where r1 > 0 is a constant;
(iii) Lipschitz continuous, if

‖h1(ȧ)− h1(ḃ)‖ ≤ λh1
‖ȧ− ḃ‖, ∀ȧ, ḃ ∈ E,

where λh1
> 0 is a constant.
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(iv) Expansive, if
‖h1(ȧ)− h1(ḃ)‖ ≥ βh1

‖ȧ− ḃ‖, ∀ȧ, ḃ ∈ E,

where βh1
> 0 is a constant.

Remark 1. If E is a Hilbert space then the definitions of the accretive operator and the strongly
accretive operator become the definitions of the monotone operator and the strongly monotone
operator, respectively. For more literature on different types of operators, see [22–24].

Definition 6. Let Ã : E→ E be an operator. The operator S : E× E× E→ E is said to be:

(i) Lipschitz continuous in the first slot, if

‖S(u1, ·, ·)− S(u2, ·, ·)‖ ≤ δS1
‖u1− u2‖, ∀ȧ, ḃ ∈ E and for some u1 ∈ Ã(ȧ), u2 ∈ Ã(ḃ),

where δS1
> 0 is a constant.

Similarly, we can obtain Lipschitz continuity of S in other slots;

(ii) Strongly accretive in the first slot with respect to Ã, if

〈S(u1, ·, ·)− S(u2, ·, ·), J(ȧ− ḃ)〉 ≥ λS1
‖ȧ− ḃ‖2, ∀ȧ, ḃ ∈ E and for some u1 ∈ Ã(ȧ), u2 ∈ Ã(ḃ),

where λS1
> 0 is a constant.

Similarly strong accretivity of S in other slots and with respect to other operators can be
obtained.

Definition 7. The operator Ã : E→ Ĉ(E) is called D-Lipschitz continuous if

D(Ã(ȧ), Ã(ḃ)) ≤ αÃ‖ȧ− ḃ‖, ∀ ȧ, ḃ ∈ E,

where αÃ > 0 is a constant and D(·, ·) denotes the Housdörff metric.

Definition 8 ([13]). Suppose that Ω is the nonempty closed convex subset of E. Then an operator
QΩ : E→ Ω is called:

(i) Retraction on Ω, if Q2
Ω = QΩ;

(ii) Nonexpansive retraction on Ω, if it satisfies the inequality:

‖QΩ(ȧ)−QΩ(ḃ)‖ ≤ ‖ȧ− ḃ‖, ∀ȧ, ḃ ∈ E;

(iii) Nonexpansive sunny retraction on Ω, if

QΩ(QΩ(ȧ) + t̂(ȧ−QΩ(ȧ))) = QΩ(ȧ),

for all ȧ ∈ E and for 0 ≤ t̂ < +∞.

Nonexpansive sunny retraction operators are characterized as follows, which can be
found in [25–27].

Proposition 2. The operator QΩ is a nonexpansive sunny retraction, if and only if

〈ȧ−QΩ(ȧ), J(QΩ(ȧ)− ḃ)〉 ≥ 0,

for all ȧ ∈ E and ḃ ∈ Ω.
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Remark 2. If E is a Hilbert space, then operator QΩ is a nonexpansive sunny retraction, if and
only if

〈ȧ−QΩ(ȧ), QΩ(ȧ)− ḃ〉 ≥ 0,

for all ȧ ∈ E and ḃ ∈ Ω.

Proposition 3. Suppose m̃ = m̃(ȧ) : E → E and QΩ : E → Ω is a nonexpansive sunny
retraction. Then, for all ȧ ∈ E, we have

QΩ+m̃(ȧ)(ȧ) = m̃(ȧ) + QΩ(ȧ− m̃(ȧ)).

Remark 3. Let us take E to be a Hilbert space and Ω to be a nonempty closed convex subset of
E. Then, an example of nonexpansive sunny retraction of E onto Ω is the nearest point projection
PΩ from E onto Ω. But this fact does not hold for all Banach spaces because, outside a Hilbert
space, nearest point projections are sunny but not nonexpansive. In view of Proposition 2, it is
observed that a nonexpansive retraction behaves similarly in a Banach space to how the nearest point
projection behaves in a Hilbert space. Bruck [28] has shown that, for a nonexpansive retraction,
there is a nonexpansive sunny retraction if the Banach space is uniformly smooth.

Definition 9. The multi-valued operator M̂ : E→ 2E is called accretive, if

〈u− v, J(ȧ− ḃ)〉 ≥ 0, ∀ ȧ, ḃ ∈ E and for some u ∈ M̂(ȧ), v ∈ M̂(ḃ).

Definition 10. Let h1 : E→ E be an operator. The multi-valued operator M̂ : E→ 2E is said to
be h1-accretive if M̂ is accretive and the range of [h1 + λM̂] is E, where λ > 0 is a constant.

Definition 11. Let M̂ : E→ 2E be a multi-valued operator. The operator RM̂
I,λ : E→ E defined by

RM̂
I,λ(ȧ) = [I + λM̂]−1(ȧ), for all ȧ ∈ E,

is called a classical resolvent operator, where I is the identity operator and λ > 0 is a constant.

Definition 12. We define RM̂
h1,λ : E→ E such that

RM̂
h1,λ(ȧ) = [h1 + λM̂]−1(ȧ), ∀ȧ ∈ E, where λ > 0 is a constant.

We call it a generalized resolvent operator.

Definition 13. The classical Yosida approximation operator is defined by

YM̂
I,λ(ȧ) =

1
λ
[I − RM̂

I,λ](ȧ), for all ȧ ∈ E,

where I is the identity operator and λ > 0 is a constant.

Definition 14. We define YM̂
h1,λ : E→ E such that

YM̂
h1,λ(ȧ) =

1
λ
[h1 − RM̂

h1,λ](ȧ), ∀ȧ ∈ E, where λ > 0 is a constant.

We call it a generalized Yosida approximation operator.
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Proposition 4 ([29]). Let h1 : E→ E be r1-strongly accretive and M̂ : E→ 2E be an h1-accretive
multi-valued operator. Then, the operator RM̂

h1,λ : E→ E satisfies the following condition:

∥∥∥RM̂
h1,λ(ȧ)− RM̂

h1,λ(ḃ)
∥∥∥ ≤ 1

r1
‖ȧ− ḃ‖, ∀ȧ, ḃ ∈ E.

That is, RM̂
h1,λ is

1
r1

-Lipschitz continuous.

Proposition 5. If h1 : E → E is r1-strongly accretive, βh1-expansive, λh1-Lipschitz continuous
operator, and RM̂

h1,λ : E→ E is 1
r1

-Lipschitz continuous operator, then the operator YM̂
h1,λ : E→ E

satisfies the following condition:〈
YM̂

h1,λ(ȧ)−YM̂
h1,λ(ḃ), J(h1(ȧ)− h1(ḃ))

〉
≥ δYh1

‖ȧ− ḃ‖2, ∀ȧ, ḃ ∈ E,

where δYh1
=

β2
h1

r1 − λh1

λr1
, β2

h1
r1 > λh1 , λr1 6= 0 and all the constants involved are positive. That

is, YM̂
h1,λ is δYh1

-strongly accretive with respect to the operator h1.

Proof. Since YM̂
h1,λ = 1

λ [h1 − RM̂
h1,λ], we evaluate〈

YM̂
h1,λ(ȧ)−YM̂

h1,λ(ḃ), J(h1(ȧ)− h1(ḃ))
〉

=
1
λ

〈
h1(ȧ)− RM̂

h1,λ(ȧ)−
[

h1(ḃ)− RM̂
h1,λ(ḃ)

]
, J(h1(ȧ)− h1(ḃ))

〉
=

1
λ

〈
h1(ȧ)− h1(ḃ), J(h1(ȧ)− h1(ḃ))

〉
− 1

λ

〈
RM̂

h1,λ(ȧ)− RM̂
h1,λ(ḃ), J(h1(ȧ)− h1(ḃ))

〉
.

Using the expansiveness of h1, Lipschitz continuity of h1, and Lipschitz continuity of the
generalized resolvent operator RM̂

h1,λ, we obtain〈
YM̂

h1,λ(ȧ)−YM̂
h1,λ(ḃ), J(h1(ȧ)− h1(ḃ))

〉
≥ 1

λ

∥∥h1(ȧ)− h1(ḃ)
∥∥2 − 1

λ

∥∥∥RM̂
h1,λ(ȧ)− RM̂

h1,λ(ḃ)
∥∥∥∥∥h1(ȧ)− h1(ḃ)

∥∥
≥ 1

λ

∥∥h1(ȧ)− h1(ḃ)
∥∥2 − 1

λ

1
r1

∥∥ȧ− ḃ
∥∥∥∥h1(ȧ)− h1(ḃ)

∥∥
≥ 1

λ
β2

h1

∥∥ȧ− ḃ
∥∥2 − 1

λ

1
r1

λh1

∥∥ȧ− ḃ
∥∥∥∥ȧ− ḃ

∥∥
≥

β2
h1

λ

∥∥ȧ− ḃ
∥∥2 −

λh1

λr1

∥∥ȧ− ḃ
∥∥2

≥
β2

h1
r1 − λh1

λr1

∥∥ȧ− ḃ
∥∥2

= δYh1

∥∥ȧ− ḃ
∥∥2.

That is, 〈
YM̂

h1,λ(ȧ)−YM̂
h1,λ(ḃ), J(h1(ȧ)− h1(ḃ))

〉
≥ δYh1

∥∥ȧ− ḃ
∥∥2.

That is, YM̂
h1,λ is δYh1

-strongly accretive with respect to h1.
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Proposition 6. Let h1 : E → E be λh1-Lipschitz continuous, r1-strongly accretive operator and

RM̂
h1,λ : E → E is

1
r1

-Lipschitz continuous operator, then the operator YM̂
h1,λ : E → E satisfies the

following condition: ∥∥∥YM̂
h1,λ(ȧ)−YM̂

h1,λ(ḃ)
∥∥∥ ≤ λYh1

‖ȧ− ḃ‖, ∀ȧ, ḃ ∈ E,

where λYh1
=

λh1 r1 + 1
λr1

, λr1 6= 0. That is, YM̂
h1,λ is λYh1

-Lipschitz continuous.

Proof. Since h1 and the generalized resolvent operator RM̂
h1,λ are Lipschitz continuous,

we obtain∥∥∥YM̂
h1,λ(ȧ)−YM̂

h1,λ(ḃ)
∥∥∥ =

∥∥∥∥ 1
λ

[
h1(ȧ)− RM̂

h1,λ(ȧ)
]
− 1

λ

[
h1(ḃ)− RM̂

h1,λ(ḃ)
]∥∥∥∥

=
1
λ

∥∥h1(ȧ)− h1(ḃ)
∥∥+ 1

λ

∥∥∥RM̂
h1,λ(ȧ)− RM̂

h1,λ(ḃ)
∥∥∥

≤ 1
λ

λh1

∥∥ȧ− ḃ
∥∥+ 1

λ

1
r1

∥∥ȧ− ḃ
∥∥

=

(
λh1 r1 + 1

λr1

)∥∥ȧ− ḃ
∥∥

= λYh1

∥∥ȧ− ḃ
∥∥.

That is, ∥∥∥YM̂
h1,λ(ȧ)−YM̂

h1,λ(ḃ)
∥∥∥ ≤ λYh1

‖ȧ− ḃ‖, ∀ȧ, ḃ ∈ E.

Thus, the operator YM̂
h1,λ is λYh1

-Lipschitz continuous.

3. Problem Formation and Iterative Method

Suppose S : E× E× E → E is a nonlinear operator, Ã, B̃, C̃ : E → Ĉ(E) are multi-
valued operators, and K̃ : E→ 2E is a multi-valued operator such that K̃(ȧ) is a nonempty,
closed, and convex set for all ȧ ∈ E. Let h1, h2 : E → E be the single-valued operators,
M̂ : E → 2E be an h1-accretive multi-valued operator and N̂ : E → 2E be an h2-accretive
multi-valued operator, YM̂

h1,λ : E → E and YN̂
h2,λ : E → E be the generalized Yosida

approximation operators, where λ > 0 is a constant.

We consider the problem of finding ȧ ∈ E, u ∈ Ã(ȧ), v ∈ B̃(ȧ), andw ∈ C̃(ȧ) such that〈
YM̂

h1,λ(ȧ)−YN̂
h2,λ(ȧ), J(S(u, v, w))

〉
≥ 0, ∀ S(u, v, w) ∈ K̃(ȧ). (1)

We call problem (1) a co-variational inequality problem involving two generalized
Yosida approximation operators.

Clearly for problem (1), it is easily accessible to obtain co-variational inequalities
studied by Alber and Yao [13] and Ahmad and Irfan [14].

We provide few characterizations of a solution of problem (1).

Theorem 1. Let Ã, B̃, C̃ : E → Ĉ(E) be the multi-valued operators, S : E× E× E → E be the
nonlinear operator, and K̃ : E → 2E be a multi-valued operator such that K̃(ȧ) is a nonempty,
closed, and convex set for all ȧ ∈ E. Let h1, h2 : E→ E be the single-valued operators, M̂ : E→ 2E

be the h1-accretive multi-valued operator, and N̂ : E→ 2E be the h2-accretive multi-valued operator,
YM̂

h1,λ : E→ E and YN̂
h2,λ : E→ E be the generalized Yosida approximation operators, where λ > 0

is a constant. Then, the following assertions are similar:

(i) ȧ ∈ E, u ∈ Ã(ȧ), v ∈ B̃(ȧ), w ∈ C̃(ȧ) constitute the solution of problem (1);
(ii) ȧ ∈ E, u ∈ Ã(ȧ), v ∈ B̃(ȧ), w ∈ C̃(ȧ) such that
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S(u, v, w) = QK̃(ȧ)[S(u, v, w)− λ
(

YM̂
h1,λ(ȧ)−YN̂

h2,λ(ȧ)
)
].

Proof. For proof, see [7,21].

Combining Proposition 3 and Theorem 1, we obtain the theorem mentioned below.

Theorem 2. Suppose all the conditions of Theorem 1 are fulfilled and, additionally, K̃(ȧ) = m̃(ȧ) + F,
for all ȧ ∈ E, where F is a nonempty closed convex subset of E and QF : E→ F is a nonexpansive
sunny retraction. Then, ȧ ∈ E, u ∈ Ã(ȧ), v ∈ B̃(ȧ), and w ∈ C̃(ȧ) constitute the solution of
problem (1), if and only if

ȧ = ȧ + m̃(ȧ)− S(u, v, w) + QF[S(u, v, w)− λ
(

YM̂
h1,λ(ȧ)−YN̂

h2,λ(ȧ)
)
− m̃(ȧ)], (2)

where λ > 0 is a constant.

Using Theorem 2, we construct the following iterative method.

Iterative Method 1. For initial points ȧ0 ∈ E, u0 ∈ Ã(ȧ0), v0 ∈ B̃(ȧ0), w0 ∈ C̃(ȧ0), let

ȧ1 = ȧ0 + m̃(ȧ0)− S(u0, v0, w0) + QF[S(u0, v0, w0)− λ
(

YM̂
h1,λ(ȧ0)−YN̂

h2,λ(ȧ0)
)
− m̃(ȧ0)].

Since Ã(ȧ0), B̃(ȧ0), and C̃(ȧ0) are nonempty convex sets, by Nadler [30], there exists u1 ∈ Ã(ȧ1),
v1 ∈ B̃(ȧ1), and w1 ∈ C̃(ȧ1) such that

‖u1 − u0‖ ≤ D(Ã(ȧ1), Ã(ȧ0)),

‖v1 − v0‖ ≤ D(B̃(ȧ1), B̃(ȧ0)),

and ‖w1 − w0‖ ≤ D(C̃(ȧ1), C̃(ȧ0)),

where D(·, ·) denotes the Hausdorff metric.
Proceeding in a similar manner, we can find the sequences {ȧn}, {un}, {vn} and {wn} using the
following method:

ȧn+1 = ȧn + m̃(ȧn)− S(un, vn, wn) + QF[S(un, vn, wn)− λ
(

YM̂
h1,λ(ȧn)−YN̂

h2,λ(ȧn)
)
− m̃(ȧn)], (3)

un ∈ Ã(ȧn), ‖un+1 − un‖ ≤ D(Ã(ȧn+1), Ã(ȧn)), (4)

vn ∈ B̃(ȧn), ‖vn+1 − vn‖ ≤ D(B̃(ȧn+1), B̃(ȧn)), (5)

wn ∈ C̃(ȧn), ‖wn+1 − wn‖ ≤ D(C̃(ȧn+1), C̃(ȧn)), (6)

for n = 0, 1, 2, 3, · · · · · · , where λ > 0 is a constant.

4. Convergence Result

Theorem 3. Suppose E is real uniformly smooth Banach space and ρE(t) ≤ Ct2, for some C > 0,
is the modulus of smoothness. Suppose F is a closed convex subset of E, S(·, ·, ·) : E× E× E→ E
is an operator, Ã, B̃, C̃ : E → Ĉ(E) are the multi-valued operators, m̃ : E → E is an operator.
Let QF : E→ F be a nonexpansive sunny retraction operator and K̃ : E→ 2E be a multi-valued
operator such that K̃(ȧ) = m̃(ȧ) + F, for all ȧ ∈ E. Let M̂, N̂ : E → 2E be the multi-valued

operators, and h1, h2 : E→ E be the operators. Let Y
M̂
h1,λ be the generalized Yosida approximation

operator associated with the generalized resolvent operator R
M̂
h1,λ and Y

N̂
h2,λ be the generalized Yosida

approximation operator associated with the generalized resolvent operator R
N̂
h2,λ. Suppose that the

following assertions are satisfied:

(i) S(·, ·, ·) is λS1
-strongly accretive with respect to Ã in the first slot, λS2

-strongly accretive

with respect to B̃ in the second slot, λS3
-strongly accretive with respect to C̃ in the third slot
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and δS1
-Lipschitz continuous in the first slot, δS2

-Lipschitz continuous in the second slot,
δS3

-Lipschitz continuous in the third slot;

(ii) Ã is α
Ã

-D-Lipschitz continuous, B̃ is α
B̃

-D-Lipschitz continuous and C̃ is α
C̃

-D-Lipschitz
continuous;

(iii) m̃ is λm-Lipschitz continuous;
(iv) h1 is r1-strongly accretive, βh1

-expansive and λh1
-Lipschitz continuous; h2 is r2-strongly

accretive, βh2
-expansive, and λh2

-Lipschitz continuous;

(v) R
M̂
h1,λ is 1

r1
-Lipschitz continuous and R

N̂
h2,λ is 1

r2
-Lipschitz continuous;

(vi) YM̂
h1,λ is δYh1

-strongly accretive, λYh1
-Lipschitz continuous and YN̂

h2,λ is δYh2
-strongly accretive,

λYh2
-Lipschitz continuous;

(vii) Suppose that

0 <

[√[(
1− 2(λS1 + λS2 + λS3)

)
+ 64C

(
δ

2
S1

α
2

Ã
+ δ

2
S2

α
2

B̃
+ δ

2
S3

α
2

C̃

)]
+2λm + (δS1 αÃ + δS2 αB̃ + δS3 αC̃) +

√
1− 2λδYh1

+ 64Cλ4λ2
Yh1

+
√

1− 2λδYh2
+ 64Cλ4λ2

Yh2

]
< 1,

where

δYh1
=

β2
h1

r1 − λh1

λr1
, δYh2

=
β2

h2
r2 − λh2

λr2
,

λYh1
=

λh1 r1 + 1
λr1

, λYh2
=

λh2 r2 + 1
λr2

,

β2
h1

r1 > λh1 and β2
h2

r2 > λh2 .

Then, there exist ȧ ∈ E, u ∈ Ã(ȧ), v ∈ B̃(ȧ) and w ∈ C̃(ȧ), the solution of problem (1). Also,
sequences {ȧn}, {un}, {vn} and {wn} converge strongly to ȧ, u, v and w, respectively.

Proof. Using (3) of iterative method 1 and the nonexpansive retraction property of QF,
we estimate

‖ȧn+1 − ȧn‖ =
∥∥∥[ȧn + m̃(ȧn)− S(un, vn, wn) + QF

[
S(un, vn, wn)

−λ

(
Y

M̂
h1,λ(ȧn)−Y

N̂
h2,λ(ȧn)

)
− m̃(ȧn)

]]
−
[

ȧn−1 + m̃(ȧn−1)− S(un−1, vn−1, wn−1) + QF
[
S(un−1, vn−1, wn−1)

−λ

(
Y

M̂
h1,λ(ȧn−1)−Y

N̂
h2,λ(ȧn−1)

)
− m̃(ȧn−1)

]]∥∥
≤ ‖ȧn − ȧn−1 −

(
S(un, vn, wn)− S(un−1, vn−1, wn−1)

)
‖+ ‖m̃(ȧn)− m̃(ȧn−1)‖

+
∥∥QF

[
S(un, vn, wn)− λ

(
Y

M̂
h1,λ(ȧn)−YN̂

h2,λ(ȧn)

)
− m̃(ȧn)

]
−QF

[
S(un−1, vn−1, wn−1)− λ

(
Y

M̂
h1,λ(ȧn−1)−Y

N̂
h2,λ(ȧn−1)

)
− m̃(ȧn−1)

]∥∥
≤ ‖ȧn − ȧn−1 −

(
S(un, vn, wn)− S(un−1, vn−1, wn−1)

)
‖

+2‖m̃(ȧn)− m̃(ȧn−1)‖+ ‖S(un, vn, wn)− S(un−1, vn−1, wn−1)‖

+‖ȧn − ȧn−1 − λ

(
Y

M̂
h1,λ(ȧn)−Y

M̂
h1,λ(ȧn−1)

)
‖
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+‖ȧn − ȧn−1 − λ

(
Y

N̂
h2,λ(ȧn)−Y

N̂
h2,λ(ȧn−1)

)
‖. (7)

Applying Proposition 1, we evaluate

‖ȧn − ȧn−1 −
(
S(un, vn, wn)− S(un−1, vn−1, wn−1)

)
‖2

≤ ‖ȧn − ȧn−1‖2

−2〈S(un, vn, wn)− S(un−1, vn−1, wn−1), J
(
ȧn − ȧn−1 −

(
S(un, vn, wn)− S(un−1, vn−1, wn−1)

))
〉

= ‖ȧn − ȧn−1‖2 − 2〈S(un, vn, wn)− S(un−1, vn−1, wn−1), J(ȧn − ȧn−1)〉
−2〈S(un, vn, wn)− S(un−1, vn−1, wn−1),

J(ȧn − ȧn−1 −
(
S(un, vn, wn)− S(un−1, vn−1, wn−1)

))
− J(ȧn − ȧn−1)〉

= ‖ȧn − ȧn−1‖2 − 2〈S(un, vn, wn)− S(un−1, vn, wn)

+S(un−1, vn, wn)− S(un−1, vn−1, wn) + S(un−1, vn−1, wn)− S(un−1, vn−1, wn−1), J(ȧn − ȧn−1)〉
−2〈S(un, vn, wn)− S(un−1, vn−1, wn−1), J(ȧn − ȧn−1

−
(
S(un, vn, wn)− S(un−1, vn−1, wn−1)

)
− J(ȧn − ȧn−1)〉

= ‖ȧn − ȧn−1‖2 − 2〈S(un, vn, wn)− S(un−1, vn, wn), J(ȧn − ȧn−1)〉
−2〈S(un−1, vn, wn)− S(un−1, vn−1, wn), J(ȧn − ȧn−1)〉
−2〈S(un−1, vn−1, wn)− S(un−1, vn−1, wn−1), J(ȧn − ȧn−1)〉
−2〈S(un, vn, wn)− S(un−1, vn−1, wn−1),

J(ȧn − ȧn−1 −
(
S(un, vn, wn)− S(un−1, vn−1, wn−1)

)
− J(ȧn − ȧn−1)〉. (8)

Since S(·, ·, ·) is λS1
-strongly accretive with respect to Ã in the first slot, λS2

-strongly

accretive with respect to B̃ in the second slot, λS3
-strongly accretive with respect to C̃ in the

third slot and applying (ii) of Proposition 1, (8) becomes

‖(ȧn − ȧn−1)−
(
S(un, vn, wn)− S(un−1, vn−1, wn−1)

)
‖2

≤ ‖ȧn − ȧn−1‖2 − 2
(
λS1 + λS2 + λS3

)
‖ȧn − ȧn−1‖2

−2〈S(un, vn, wn)− S(un−1, vn−1, wn−1),

J
(
ȧn − ȧn−1 −

(
S(un, vn, wn)− S(un−1, vn−1, wn−1)

))
− J(ȧn − ȧn−1)〉

≤ (1− 2(λS1 + λS2 + λS3))‖ȧn − ȧn−1‖2

+4d2ρE

(
4‖S(un, vn, wn)− S(un−1, vn−1, wn−1)‖

d

)
. (9)

As S(·, ·, ·) is δS1
-Lipschitz continuous in the first slot, δS2

-Lipschitz continuous in the

second slot, δS3
-Lipschitz continuous in the third slot, and Ã is αÃ-D-Lipschitz continuous,

B̃ is αB̃-D-Lipschitz continuous, and C̃ is αC̃-D-Lipschitz continuous, we have

‖S(un, vn, wn)− S(un−1, vn−1, wn−1)‖
= ‖S(un, vn, wn)− S(un−1, vn, wn) + S(un−1, vn, wn)− S(un−1, vn−1, wn)

+S(un−1, vn−1, wn)− S(un−1, vn−1, wn−1)‖
≤ δS1‖un − un−1‖+ δS2‖vn − vn−1‖+ δS3‖wn − wn−1‖
≤ δS1 D(Ã(ȧn), Ã(ȧn−1)) + δS2 D(B̃(ȧn), B̃(ȧn−1)) + δS3 D(C̃(ȧn), C̃(ȧn−1))

≤ δS1 αÃ‖ȧn − ȧn−1‖+ δS2 αB̃‖ȧn − ȧn−1‖+ δS3 αC̃‖ȧn − ȧn−1‖
≤ (δS1 αÃ + δS2 αB̃ + δS3 αC̃)‖ȧn − ȧn−1‖. (10)

Using Equation (10) and (ii) of Proposition 1, we evaluate

4d2ρE

(
4‖S(un, vn, wn)− S(un−1, vn−1, wn−1)‖

d

)
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= 4d2ρE

(
4
d
(
‖S(un, vn, wn)− S(un−1, vn, wn) + S(un−1, vn, wn)

− S(un−1, vn−1, wn) + S(un−1, vn−1, wn)− S(un−1, vn−1, wn−1)‖
))

≤ 64C
(
‖S(un, vn, wn)− S(un−1, vn, wn)‖2 + ‖S(un−1, vn, wn)

− S(un−1, vn−1, wn)‖2 + ‖S(nn−1, vn−1, wn)− S(un−1, vn−1, wn−1)‖2
)

≤ 64C
(
δ

2
S1
‖un − un−1‖2 + δ

2
S2
‖vn − vn−1‖2 + δ

2
S3
‖wn − wn−1‖2)

≤ 64C
(
δ

2
S1

D2(Ã(ȧn), Ã(ȧn−1)) + δ
2
S2

D2(B̃(ȧn), B̃(ȧn−1)) + δ
2
S3

D2(C̃(ȧn), C̃(ȧn−1))
)

≤ 64C
(
δ

2
S1

α
2

Ã
‖ȧn − ȧn−1‖2 + δ

2
S2

α
2

B̃
‖ȧn − ȧn−1‖2 + δ

2
S3

α
2

C̃
‖ȧn − ȧn−1‖2)

= 64C
(
δ

2
S1

α
2

Ã
+ δ

2
S2

α
2

B̃
+ δ

2
S3

α
2

C̃

)
‖ȧn − ȧn−1‖2. (11)

Combining (9) and (11), we have

‖(ȧn − ȧn−1)−
(
S(un, vn, wn)− S(un−1, vn−1, wn−1)

)
‖2 ≤

[(
1− 2(λS1 + λS2 + λS3)

)
+ 64C

(
δ

2
S1

α
2

Ã
+ δ

2
S2

α
2

B̃
+ δ

2
S3

α
2

C̃

)]
‖ȧn − ȧn−1‖2,

which implies that

‖(ȧn − ȧn−1)−
(
S(un, vn, wn)− S(un−1, vn−1, wn−1)

)
‖

≤

√[(
1− 2(λS1 + λS2 + λS3)

)
+ 64C

(
δ

2
S1

α
2

Ã
+ δ

2
S2

α
2

B̃
+ δ

2
S3

α
2

C̃

)]
‖ȧn − ȧn−1‖. (12)

Since m̃ is λm-Lipschitz continuous, we have

‖m̃(ȧn)− m̃(ȧn−1)‖ ≤ λm‖ȧn − ȧn−1‖. (13)

As Yosida approximation operator Y
M̂
h1,λ is δYh1

-strongly accretive, λYh1
-Lipschitz continuous,

and applying Proposition 1, we evaluate

∥∥∥∥(ȧn − ȧn−1)− λ

(
Y

M̂
h1,λ(ȧn)−Y

M̂
h1,λ(ȧn−1)

)∥∥∥∥2

≤ ‖ȧn − ȧn−1‖2 − 2λ

〈
Y

M̂
h1,λ(ȧn)−Y

M̂
h1,λ(ȧn−1), J

(
ȧn − ȧn−1 − λ

(
Y

M̂
h1,λ(ȧn)−Y

M̂
h1,λ(ȧn−1))

)〉
= ‖ȧn − ȧn−1‖2 − 2λ〈Y

M̂
h1,λ(ȧn)−Y

M̂
h1,λ(ȧn−1), J(ȧn − ȧn−1)〉

−2λ〈Y
M̂
h1,λ(ȧn)−Y

M̂
h1,λ(ȧn−1), J(ȧn − ȧn−1 −

(
Y

M̂
h1,λ(ȧn)−Y

M̂
h1,λ(ȧn−1)

)
)− J(ȧn − ȧn−1)〉

≤ ‖ȧn − ȧn−1‖2 − 2λδYh1
‖ȧn − ȧn−1‖2 + 4d2ρE

4λ2
∥∥∥∥Y

M̂
h1,λ(ȧn)−Y

M̂
h1,λ(ȧn−1)

∥∥∥∥
d


= ‖ȧn − ȧn−1‖2 − 2λδYh1

‖ȧn − ȧn−1‖2 + 64Cλ4
∥∥∥∥Y

M̂
h1,λ(ȧn)−Y

M̂
h1,λ(ȧn−1)

∥∥∥∥2

= ‖ȧn − ȧn−1‖2 − 2λδYh1
‖ȧn − ȧn−1‖2 + 64Cλ4λ2

Yh1
‖ȧn − ȧn−1‖2
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= (1− 2λδYh1
+ 64Cλ4λ2

Yh1
)‖ȧn − ȧn−1‖2,

that is,

‖(ȧn − ȧn−1)− λ

(
Y

M̂
h1,λ(ȧn)−Y

M̂
h1,λ(ȧn−1)

)
‖ ≤

√
1− 2λδYh1

+ 64Cλ4λ2
Yh1
‖ȧn − ȧn−1‖. (14)

Using the same arguments as for (14), we have

‖(ȧn − ȧn−1)− λ

(
Y

N̂
h2,λ(ȧn)−Y

N̂
h2,λ(ȧn−1)

)
‖ ≤

√
1− 2λδYh2

+ 64Cλ4λ2
Yh2
‖ȧn − ȧn−1‖. (15)

Using (7), (10) and (12)–(15) becomes

‖ȧn+1 − ȧn‖ ≤

√[(
1− 2(λS1 + λS2 + λS3)

)
+ 64C

(
δ

2
S1

α
2

Ã
+ δ

2
S2

α
2

B̃
+ δ

2
S3

α
2

C̃

)]
‖ȧn − ȧn−1‖

+2λm‖ȧn − ȧn−1‖+ (δS1 αÃ + δS2 αB̃ + δS3 αC̃)‖ȧn − ȧn−1‖

+
√

1− 2λδYh1
+ 64Cλ4λ2

Yh1
‖ȧn − ȧn−1‖

+
√

1− 2λδYh2
+ 64Cλ4λ2

Yh2
‖ȧn − ȧn−1‖

= θ‖ȧn − ȧn−1‖, (16)

where θ =

[√[(
1− 2(λS1 + λS2 + λS3)

)
+ 64C

(
δ

2
S1

α
2

Ã
+ δ

2
S2

α
2

B̃
+ δ

2
S3

α
2

C̃

)]
+2λm + (δS1 αÃ + δS2 αB̃ + δS3 αC̃) +

√
1− 2λδYh1

+ 64Cλ4λ2
Yh1

+
√

1− 2λδYh2
+ 64Cλ4λ2

Yh2

]
. (17)

In view of the assumption (vii), 0 < θ < 1 and clearly {ȧn} is a Cauchy sequence in E
such that ȧn → ȧ ∈ E. Using (4)–(6) of iterative method 1, D-Lipschitz continuity of Ã, B̃,
C̃ and the techniques of Ahmad and Irfan [14], it is clear that {un}, {vn} and {wn} are
all Cauchy sequences in E. Thus, un → u ∈ E, vn → v ∈ E and wn → w ∈ E. Since
QF, S(·, ·, ·), Ã, B̃, C̃, h1, h2, M̂, N, YM̂

h1,λ and YN̂
h2,λ are all continuous operators in E, we have

ȧ = ȧ + m̃(ȧ)− S(u, v, w) + QF[S(u, v, w)− λ
(

YM̂
h1,λ(ȧ)−YN̂

h2,λ(ȧ)
)
].

It remains to be shown that u ∈ Ã(ȧ), v ∈ B̃(ȧ) and wn → w ∈ C̃(ȧ). In fact,

d(u, Ã(ȧ)) = inf{‖u− h‖ : h ∈ Ã(ȧ)}
≤ ‖u− un‖+ d(un, Ã(ȧ))

≤ ‖u− un‖+ D(Ã(ȧn), Ã(ȧ))

≤ ‖u− un‖+ α
Ã
‖ȧn − ȧ‖ → 0.

Hence, d(u, Ã(ȧ)) = 0 and thus u ∈ Ã(ȧ). Similarly, we have v ∈ B̃(ȧ) and w ∈ C̃(ȧ).
From Theorem 2, the result follows.

5. Conclusions

In this work, we consider a different version of co-variational inequalities existing in
the available literature. We call it the co-variational inequality problem, which involves two
generalized Yosida approximation operators depending on different generalized resolvent
operators. Some properties of generalized Yosida approximation operators are proved. Us-
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ing the concept of nonexpansive sunny retraction, we prove an existence and convergence
result for problem (1).

Our results may be used for further generalizations and experimental purposes.
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