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Abstract: Variable-order fractional discrete calculus is a new and unexplored part of calculus that
provides extraordinary capabilities for simulating multidisciplinary processes. Recognizing this
incredible potential, the scientific community has been researching variable-order fractional discrete
calculus applications to the modeling of engineering and physical systems. This research makes
a contribution to the topic by describing and establishing the first generalized discrete fractional
variable order Gronwall inequality that we employ to examine the finite time stability of nonlinear
Nabla fractional variable-order discrete neural networks. This is followed by a specific version of a
generalized variable-order fractional discrete Gronwall inequality described using discrete Mittag–
Leffler functions. A specific version of a generalized variable-order fractional discrete Gronwall
inequality represented using discrete Mittag–Leffler functions is shown. As an application, utilizing
the contracting mapping principle and inequality approaches, sufficient conditions are developed to
assure the existence, uniqueness, and finite-time stability of the equilibrium point of the suggested
neural networks. Numerical examples, as well as simulations, are provided to show how the key
findings can be applied.

Keywords: generalized discrete Gronwall inequality; Caputo nabla variable-order operator;
variable-order fractional discrete neural networks; finite-time stability; computer simulations

1. Introduction

Fractional operators are fundamentally multi-scale because of their differ-integral
character. Whereas time fractional operators support memory impacts, space fractional op-
erators may accommodate the impacts of non-locality and scale. In the past decade, a surge
in attention to fractional-order operators and their applicability to physical issue modeling
has emerged (see [1–7]). Despite the fact that fractional calculus theory could address many
critically important physical problems, it cannot depict important sets of physical events
whose order is governed by dependent or independent factors. Variable-order operators
are an analytic generalization of fractional operators. The order of integration variables
like time, space, or even a distinct external variable can vary constantly in variable order
operators. Variable fractional calculus has witnessed an increase in attention and many
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different applicabilities related to the simulation of scientific and engineering systems
throughout the last decade [8–10].

Several mathematicians have expressed a strong interest in discrete fractional calculus
in the past few years. For the fractional backward or nabla difference, we call your attention
to [11–13]. However, academics’ interest in discrete variable order fractional calculus, which
is the equivalent of variable fractional calculus, has increased in popularity throughout the
last several years, despite the fact that few publications have been published [14–18].

Many features of differential and difference equations are investigated using mathe-
matical inequalities. The Gronwall inequality, which is the focus of this paper, has been
developed for fractional differential equations [19,20]. Nonetheless, research on the Gron-
wall inequality for fractional difference equations is uncommon [21,22]. Prior to studying
the qualitative features of different forms of differential or difference equations, Many
researchers concentrated on the presence and uniqueness of solutions as an essential use of
Gronwall inequality. Many recent studies on the existence, uniqueness, and stability of so-
lutions for differential equations with fractional order were published [23,24]. Furthermore,
various effective and long-term results concerning the dynamic behavior of solutions for
difference equations with fractional order were established [25,26]. However, according
to the researchers, there is minimal study on this behavior for variable-order fractional
difference equations.

The major issue in many real systems is the system’s behavior over a finite time-
frame [27]. The standard Lyapunov approach is inapplicable in this circumstance. As
a consequence, the finite-time stability technique is presented. When a system’s initial
condition is stated, if the system’s state variable is within a defined constraint in a given
time interval, the system is finite-time stable [28]. In comparison to the classic Lyapunov
technique, the finite-time stability approach seems to be more realistic and less conservative.
There have been several publications on the finite-time stability of difference equations
with fractional order. As an example, in [29], a finite-time convergence criteria for Caputo
delta difference equations was established applying Gronwall inequality. Other works
regarding this type of stability may be found in [30,31].

Neural networks that are characterized by non-integer-order differential operators are
a significant class of non-integer-order dynamical systems. Numerous studies have been
performed to examine the dynamics of these systems. For instance, in [32], the bifurcation of a
fractional-order BAM neural network with mixed time delays was investigated. Additionally,
the bifurcation behavior of delayed BAM neural networks with both integer and fractional
orders was studied in [33]. Bifurcation dynamics and control mechanisms of tri-neuron
bidirectional associative memory neural networks, including delay, were covered in [34].
Furthermore, a new perspective on the bifurcation of fractional-order 4D neural networks
with two distinct time delays was explored in [35]. The stability and bifurcation analysis of a
fractional predator-prey model with two non-identical delays were examined in [36]. Merging
discrete fractional calculus with neural networks has been shown in recent years to improve
overall model efficiency. In comparison to traditional discrete neural networks, fractional
discrete neural networks efficiently capture the features of neurons, such as memory and
heritability, in many systems. Because fractional-order systems have limitless memory, they
are extremely effective. It needs to be highlighted as well that the computation capabilities
of fractional discrete neural networks enable efficient data processing, stimulus prediction,
and phase shift during oscillatory neuron firing. Consequently, the discrete fractional-order
version of neural networks has proven an outstanding and strong tool in different computing
domains. Several studies have been undertaken with the examination of the dynamics of
fractional discrete neural networks, As an example, in [37], a type of semi-linear fractional
difference equations was proposed, and the fixed point concept was used to determine some
stability criteria, with finite-time stability addressed and contrasted as an application. In [38],
certain suitable delay-dependent conditions were inferred to verify the solution’s existence
and finite-time stability of a suggested neural network. In [39], a variable-order discrete
neural network was described, and two unique theorems on the solution’s existence and
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Ulam-Hyers stability were demonstrated. In [40], new theorems on the asymptotic stability of
variable-order nabla systems and variable-order nabla neural networks were illustrated. For
more references, one can refer to [41–44].

The goal of this study is to advance previously investigated models by providing
more in-depth understanding of the various dynamics of variable-order fractional discrete
neural networks. The formation of variable-order fractional discrete-time neural networks
is followed by the presentation of the first generalized variable-order discrete Gronwall
inequality in terms of the Nabla variable-order fractional difference sum operator, followed
by the establishment of the necessary and sufficient conditions for its finite-time stability
with the help of the noval variable-order discrete Gronwall inequality and the fixed point
technique. Following is an outline of the paper in the following order:

• We present a new theorem concerning the Gronwall inequality for generalized variable-
order discrete using the Caputo Nabla fractional variable-order operator.

• We introduce novel variable-order fractional discrete neural networks.
• The uniqueness of the solution of the system under consideration was examined with

the help of the contracting mapping principle and inequality approaches.
• The stability of variable-order fractional discrete neural networks is addressed, and a

finite-time stability approach is used.
• Numerical simulations are illustrated to reflect theoretical conclusions.

The following is how the paper is managed: Section 2 introduces certain definitions
and features of fractional variable-order discrete calculus. Section 3 provides a modified
variable-order fractional discrete Gronwall inequality that extends and improves on the
current ones. Its applications to the uniqueness as well as finite-time stability of variable-
order fractional discrete neural networks are discussed in Section 4. Section 5 includes
various examples to show how the theoretical findings may be applied. Finally, in Section 6,
conclusions are reached.

2. Mathematical Background

This section defines multiple concepts related to fractional as well as variable discrete
calculus.

Given r0, T ∈ R, We use the designation Nr0 = {r0, r0 + 1, r0 + 2, . . .} and
NT
r0

= {r0, r0 + 1, r0 + 2, . . . , T}.

Definition 1 ([45]). Let ` : Nr0+1 → R and 0 < δ ≤ 1 be provided. The δ−th order is deter-
mined by

r0∇−δ
r `(r) =

1
Γ(δ)

r

∑
s=r0+1

(r− ρ(s))δ−1`(s), ρ(r) = r− 1, r ∈ Nr0+1, (1)

where

rδ =
Γ(r+ δ)

Γ(r)
, r, δ ∈ R, (2)

while the gamma function Γ is represented as follows:

Γ(δ) =
∫ ∞

0
rδ−1 exp−r dr. (3)

Definition 2 ([45]). Consider `(r) determined on Nr0+1 and 0 < δ ≤ 1. The Caputo nabla
difference is identified by:

C
r0
∇δ`(r) = ∇−(m−δ)

r0 ∇m`(r), r ∈ Nr0+1, (4)

If m = 1, then what follows occurs
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C
r0
∇δ`(r) =

1
Γ(1− δ)

r

∑
s=r0+1

(r− ρ(s))−δ∇`(s), r ∈ Nr0+1, (5)

while
∇`(r) = `(r)− `(r− 1). (6)

Definition 3 ([45]). Given µ ∈ R, |µ| < 1 and θ, β, r ∈ C, with Re(θ) > 0, the discrete nabla
Mittag–Leffler function is described by:

Fθ,v(µ, r− r0) =
∞

∑
k=0

λk (r− r0)
kθ+v−1

Γ(kθ + v)
, r ∈ Nr0 . (7)

Definition 4 ([46]). Consider 0 < δ(r) ≤ 1 for each r ∈ Nr0 . The left nabla sum of order δ(r) for
` : Nr0 → R, is referred to by

r0∇−δ(r)`(r) =
1

Γ(δ(r))

r

∑
s=r0+1

(r− ρ(s))δ(r)−1`(s), r ∈ Nr0+1. (8)

Definition 5 ([46]). In the case of ` : Nr0+1 → R and 0 < δ(r) < 1. The Caputo nabla
variable-order difference is provided by:

C
r0
∇δ(r)`(t) =

1
Γ(1− δ(r))

r

∑
s=r0+1

(r− ρ(s))−δ(r)∇`(s), r ∈ Nr0+1. (9)

3. A Gronwall Inequality

Recently, Ref. [31] presented a Gronwall inequality related to the Nabla fractional
operator for fractional difference equations. Ref. [47] also established a discrete Gronwall
inequality for the discrete Atangana Baleanu fractional operator. Inspired by it, in this
section, we describe and illustrate a unique variable-order discrete variant of the generalized
Gronwall’s inequality.

Theorem 1. Suppose that u(r) and v(r) are discrete non-negative, non-decreasing functions, with
0 ≤ v(r) ≤ L < 1. For each r ∈ Nr0+1, `(r) is non-negative and fulfills the following

`(r) ≤ u(r) + v(r)∇−δ(r)
r `(r), (10)

then,
`(r) ≤ u(r)Fδ1

(Kv(r), r− r0), (11)

where

δ1 ≤ δ(r) ≤ δ2, S = max{(r− r0)
δ1−1, (r− r0)

δ2−1} and K =
SΓ(δ1)

(r− r0)δ1−1Γ(δ2)
.

Proof. According to [40], one can find that for T ∈ Nr0+1 we have:

Tδ(r)−1 =
Γ(Tδ(r)− 1)

Γ(T)
≤
{
Tδ1−1, 0 ≤ T ≤ 1,
Tδ2−1, T > 1.

(12)

Given T = r− r0 and S = max{Tδ1−1,Tδ2−1}. Using the characteristic of Γ(r) on (0, 1),
we obtain Γ(δ2) ≤ Γ(δ(r)) ≤ Γ(δ1), that provides along with Definition 4:
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`(r) ≤ u(r) + v(r)
1

Γ(δ(r))

r

∑
s=r0+1

(r− ρ(s))δ(r)−1`(s),

≤ u(r) + v(r)
S

Γ(δ2)

r

∑
s=r0+1

(r− ρ(s))

Tδ(r)−1

δ(r)−1

`(s),

≤ u(r) + v(r)
S

Γ(δ2)

r

∑
s=r0+1

(
(r− ρ(s))

T

)δ1−1

`(s),

≤ u(r) + Kv(r) r0∇
−δ1
t `(r),

where K =
SΓ(δ1)

Tδ1−1Γ(δ2)
.

Now, let be the operator ψ`(r) = Kv(r) r0∇
−δ1
r `(r), then,

`(r) ≤ u(r) + ψ`(r), (13)

given the monotonicity of operator ψ, we obtain

ψ`(r) ≤ ψu(r) + ψ2`(r), (14)

carrying out with the above process yields:

`(r) ≤
n−1

∑
p=0

ψpu(r) + ψn`(r). (15)

Following that, we will demonstrate that:

ψn`(r) ≤ vn(r) r0∇
−nδ1
t `(r), (16)

lim
n→∞

ψn = 0. (17)

Indeed, inequality (16) plainly remains true for n = 1. Using mathematical induction,
for n = p, we obtain:

ψp`(r) ≤ vp(r) r0∇
−pδ1
r `(r). (18)

Because v(r) is a discrete non-decreasing function on Nr0+1, we obtain

ψp+1`(r) = ψ(ψp`(r)),

= Kv(r) r0∇
−δ1
r ψp`(r)),

≤ Kv(r) r0∇
−δ1
r

(
vp(s) r0∇

−pδ1
s `(s)

)
,

= v(r)
K

Γ(δ1)

r

∑
s=r0+1

(r− ρ(s))δ1−1

(
vp(s)

1
Γ(pδ1)

s

∑
s′=r0+1

(s− ρ(s′))pδ1−1`(s′)

)
,

≤ Kvp+1(r) r0∇
−(p+1)δ1
r `(r),

where the procedure for composing two fractional sums was applied. As a result, we may
conclude that the inequality (16) holds for any n ∈ Nr0+1.

Since v(r) ≤ L, we may deduce from inequality (16) that

ψn`(r) ≤ Ln K
Γ(nδ1)

r

∑
s=r0+1

(r− ρ(s))nδ1−1`(s),

≤ KLnX
1

Γ(nδ1)

r

∑
s=r0+1

(r− ρ(s))nδ1−1,
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= KXLn (r− r0)
nδ1

Γ(nδ1 + 1)
, (19)

where X = maxr∈Nr0+1{`(r)}.
As a result, relation (19) is derived. Furthermore, one may deduce that

ψn`(r) ≤ KLnX
(r− r0)

nδ1

Γ(nδ1 + 1)
→ 0 as n→ +∞, r ∈ Nr0+1, (20)

and we obtain limn→∞ ψn`(r) = 0. Therefore:

`(r) ≤
n−1

∑
p=0

ψpu(r) = u(r) +
n−1

∑
p=1

ψpu(r) ≤ u(r) +
+∞

∑
p=1

ψpu(r) ≤ u(r) +
+∞

∑
p=1

Kpvp(r) r0∇
−pδ1
r u(r). (21)

We may derive from (16) and the hypothesis that u(r) is a non-decreasing function for
r ∈ NT

r0+1 that:

`(r) ≤ u(r) +
+∞

∑
p=1

Kpvp(r) r0∇
−pδ1
r u(r),

≤ u(r) +
+∞

∑
p=1

Kpvp(r)
1

Γ(pδ1)

r

∑
s=r0+1

(r− ρ(s))pδ1−1u(s),

≤ u(r) +
+∞

∑
p=1

Kpvp(r)u(r)
1

Γ(pδ1)

r

∑
s=r0+1

(r− ρ(s))pδ1−1,

≤ u(r) +
+∞

∑
p=1

Kpvp(r)u(r)
(r− r0)

pδ1

Γ(pδ1 + 1)
,

= u(r)
+∞

∑
p=0

(Kv(r))p
(r− r0)

pδ1

Γ(pδ1 + 1)

= u(r)Fδ1
(Kv(r), r− r0).

As with the usual Gronwall inequality, the importance of (11) rests in the fact that it
establishes a bound for `(r) in terms of u(r), v(r), and δ(r). The proof is completed.

4. Finite–Time Stability of Nabla Variable-Order Neural Networks

To demonstrate the application of the essential results, we prove the uniqueness and
limited time stability of nabla variable-order neural networks using the results from the
prior section.

We investigate the variable-order fractional discrete neural network

C
r0
∇δ(r)`(r) = −D`(r) + Ch(r, `(r)) + I. (22)

whereas C
r0
∇δ(r) is the Caputo nabla operator of order δ(r), 0 < δ(r) < 1,

`(r) = (`1(r), `2(r), . . . , `n(r))T ∈ Rn represents the state vector, D = diag(d1, d2, . . . , dn) ∈
Rn∗n denotes the self-feedback connecting weight with di > 0, The connection weight ma-
trix is C = (ci`)n∗n ∈ Rn∗n. h(r, `(r)) = (h1(r, `(r)), h2(r, `(r)), . . . , hn(r, `(r)))T : C(Nr0+1 →
Rn) is the activation function, and I = (I1, . . . , In)T is the vector of external inputs.

Definition 6 ([2]). Given positive numbers γ, ε, and for the initial condition φ, system (22) is said
finite-time stable with regard to {γ, ε, T}, γ < ε if only for

‖φ‖ ≤ γ, (23)
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then,
‖`(r)‖ ≤ ε, t ∈ NT

r0+1. (24)

First, few assumptions are made before proceeding with the investigation of this study.

Hypothesis 1. Assume that h(r, `(r)) is a continuous function that meets the Lypschitz condition
with regard to `, i.e.,

|hi(r, `i(r))− hi(r, yi(r))| ≤ li|`i(r)− yi(r)|, r ∈ Nr0+1. (25)

Hypothesis 2. For di, ci`, and l`, it holds that:

0 < − min
i=1,...,n

di +
n

∑
i=1

max
`=1,...,n

|ci`|l` ≤ 1. (26)

Hypothesis 3. For γ and ε defined in Definition 6, it holds that:

Fδ1

(
− min

i=1,...,n
di +

n

∑
i=1

max
`=1,...,n

|ci`|l`, r− r0

)
<

ε

γ
. (27)

Theorem 2. Assuming condition (H1) holds. If `(r) and y(r) are distinct solutions for system (22),
then, `(r) = y(r).

Proof. Suppose ` as well as y are distinct solutions of (22), with the same initial conditions.
ω is denoted by ω(r) = `(r)− y(r). Thus, for r ∈ Nr0+1 we have:

ωi(r) =
1

Γ(δ(r))

r

∑
s=r0+1

(r− ρ(s))δ(r)−1

(
−diωi(s) +

n

∑
`=1

ci`(h`(s, `j(s))− h`(s, y`(s)))

)
, i = 1, . . . , n. (28)

This implies:

|ωi(r)| ≤
1

Γ(δ(r))

r

∑
s=r0+1

(r− ρ(s))δ(r)−1

(
di|ωi(s)|+

n

∑
`=1
|ci`||h`(s, ``(s))− h`(s, y`(s))|

)
, (29)

≤ 1
Γ(δ(r))

t

∑
s=r0+1

(r− ρ(s))δ(r)−1

(
di|ωi(s)|+

n

∑
`=1
|ci`|l`|ωj(s)|

)
. (30)

Which leads us to

‖ω(r)‖ =
n

∑
i=1
|ωi(r)|,

≤ 1
Γ(δ(r))

r

∑
s=r0+1

(r− ρ(s))δ(r)−1

(
α

n

∑
i=1
|ωi(s)|+

n

∑
i=1

n

∑
`=1
|ci`|l`|ω`(s)|

)
,

≤ 1
Γ(δ(r))

r

∑
s=r0+1

(r− ρ(s))δ(r)−1

(
α‖ω(s)‖+ β

n

∑
i=1
|ωi(s)|

)
,

≤ (α + β)
1

Γ(δ(r))

r

∑
s=r0+1

(r− ρ(s))δ(r)−1‖ω(r)‖,

= (α + β) r0∇−δ(r)‖ω(r)‖,

where α = maxi=1,...,n{di} and β = maxi=1,...,n{∑n
`=1 |c`i|li}.

Since α + β and ‖ω(r)‖ are positive, using the result of Theorem 1, we have:

‖ω(r)‖ ≤ 0× Fδ1
(α + β, r− r0). (31)
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It follows that, ‖`(r) − y(r)‖ = 0, hence, `(r) = y(r) for r ∈ NT
r0+1. The proof is

completed.

Theorem 3. Assuming (H1)–(H3) are true, the unique fixed point of system (22) is finite time
stable with regards to r ∈ NT

r0+1.

Proof. Let be the unique fixed point of system (22) `∗ ∈ Rn, thus,

−di`∗i +
n

∑
`=1

ci`h`(r, `∗` ) + Ii = 0, i = 1, . . . , n. (32)

In what comes next, we will demonstrate that `∗ is finite time stable. Assuming `(r))
is any solution of system (22), then,

C
r0
∇δ(r)(`i(r)− `∗i ) = −di(`i(r)− `∗i ) +

n

∑
`=1

ci`(h`(r, ``(r))− h`(r, `∗` )). (33)

However, according to Definition 5, we have:

C
r0
∇δ(r)|`i(r)− `∗i | =

1
Γ(δ(r))

t

∑
s=r0+1

(r− ρ(s))δ(r)−1|`i(s)− `∗i )| (34)

=


C
r0
∇δ(r)(`i(r)− `∗i ), if `i(r)− `∗i > 0,

0, if `i(r)− `∗i = 0,
− C

r0
∇δ(r)(`i(r)− `∗i ), if `i(r)− `∗i < 0,

(35)

= sgn(`i(r)− `∗i )
C
r0
∇δ(r)(`i(r)− `∗i ). (36)

Therefore:

C
r0
∇δ(r)|`i(r)− `∗i | = sgn(`i(r)− `∗i )

C
r0
∇δ(r)(`i(r)− `∗i ),

= sgn(`i(r)− `∗i )(−di(`i(r)− `∗i ) +
n

∑
`=1

ci`(h`(r, ``(r))− h`(r, `∗` ))),

= −di|`i(r)− `∗i |+ sgn(`i(r)− `∗i )
n

∑
`=1

ci`(h`(r, ``(r))− h`(r, `∗` )),

≤ −di|`i(r)− `∗i |+
n

∑
`=1
|ci`|l`|``(r)− `∗` |.

Using the fractional variable-order sum, We may deduce that:

|`i(r)− `∗i | ≤ −di r0∇−δ(r)|`i(r)− `∗i |+
n

∑
`=1
|ci`|l` r0∇−δ(r)|``(r)− `∗` |+ |`i(r0)− `∗i |. (37)

We may directly acquire:
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‖`(r)− `∗‖ =
n

∑
i=1
|`i(r)− `∗i |,

≤ −di
n

∑
i=1

r0∇−δ(r)|`i(r)− `i ∗ |+
n

∑
i=1

n

∑
`=1
|ci`|l` r0∇−δ(r)|``(r)− `∗` |+

n

∑
i=1
|`i(r0)− `∗i |,

≤ − min
i=1,...,n

di r0∇−δ(r)‖`(r)− `∗‖+
n

∑
i=1

max
`=1,...,n

|ci`|l` r0∇−δ(r)
n

∑
`=1
|``(r)− `∗` |

+ ‖φ− ` ∗ ‖,

= ‖φ− ` ∗ ‖+
(
− min

i=1,...,n
di +

n

∑
i=1

max
`=1,...,n

|ci`|l`

)
r0∇−δ(r)‖`(r)− `∗‖.

Given that ‖φ− `∗‖, −mini=1,...,n di + ∑n
i=1 max`=1,...,n |ci`|l`, and ‖`(r)− `∗‖ are all

positive, we may derive from Theorem 1 and (H3) that (38) holds:

‖`(r)− `∗‖ ≤ ‖φ− `∗‖Fδ1

(
− min

i=1,...,n
di +

n

∑
i=1

max
`=1,...,n

|ci`|l`, r− r0

)
<

ε

γ
. (38)

In line with Definition 6, this immediately shows that `∗ point of system (22) is finite
time stable with regard to r ∈ NT

r0+1. The proof is finished.

Remark 1. In [40], the author performed an asymptotic stability study of variable-order discrete
neural networks. In [48,49], the authors examined the Mittag–Leffler stability of variable-order
neural networks. Ref. [41] explored the uniform stability of discrete fractional variable-order neural
networks. In contrast to prior studies, a new adequate condition has been constructed in this research
by applying a generalized Gronwall-type inequality and the method of iteration, and the simulated
examples in the next part will put the acquired findings to the test.

Remark 2. In [30], the authors demonstrated that fractional discrete neural networks were finite-
time stable utilizing the Mittag–Leffler matrix function technique. In certain practical applications,
neural networks must be generated with only one stable equilibrium point. In the present research,
we established an appropriate criterion for the stability of the targeted networks’ unique equilibrium
point. Meanwhile, our approach varies from that of [20], where the author first showed the stability
of the model that was suggested and then demonstrated the fact that this network has a unique
equilibrium point based on additional criteria.

5. Numerical Simulations

Now, we shall apply theoretical stability conclusions to two numerical cases linked
to variable-order discrete neural networks. Since most of the fractional variable-order
difference equations do not exist analytic solutions, so approximation and numerical
techniques must be used. A numerical sum for solving fractional variable-order difference
equations was proposed. As shown below, we established explicit numerical formulations
for the Nabla variable-order neural networks.

`1(i) = `1(r0) +
1

Γ(δ(i))
∑i
`=1

Γ(i− `+ δ(i))

Γ(i− `+ 1)
(−d1`1(i) + ∑n

`=1 c1`h`(i, ``(j)) + I1),

. . .

`n(i) = `n(r0) +
1

Γ(δ(i))
∑i
`=1

Γ(i− `+ δ(i))

Γ(i− `+ 1)
(
−dn`n(i) + ∑n

`=1 cn`hj(i, ``(i)) + In
)
.

(39)
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Example 1. We study the following discrete neural networks with variable order:{
C
0∇δ(r)`1(r) = −d1`1(r) + c11 sin(`1(r)) + c12 sin(`2(r)) + I1,
C
0∇δ(r)`2(r) = −d2`2(r) + c21 sin(`1(r)) + c22 sin(`2(r)) + I2.

(40)

Let be the following parameters

D =

(
1.1 0
0 0.9

)
, C =

(
0.7 0.5

0.5 − 0.6

)
, I =

(
0
0

)
, (41)

as well as the variable-order function:

δ(r) =

| ln
(

1
r+ 1

)
+ 1|

10
, δ1 = 0.1, δ2 = 0.2433987. (42)

We can see finite-time behavior within given parameters. Indeed, for

− min
`=1,...,n

d` +
n

∑
i=1

max
`=1,...,n

l`|ci`| = 0.4, (43)

Fδ1

(
− min

i=1,...,n
di +

n

∑
i=1

max
`=1,...,n

|ci`|lj, 30

)
≤ 1.172509622300451, (44)

The activation functions satisfy assumption (H1) with li = 1, i = 1, 2. Take γ = 0.4 and
ε = 0.469003848920180. Then, it is easy to verify that (H2)–(H3) hold, according to Theorem 2,
system (40) has a unique equilibrium point which is finite time stable.

Example 2. Let be the discrete neural networks
C
0∇δ(r)`1(r) = −1.1`1(r) + 0.6 tanh(`1(r)) + 0.5 tanh(`2(r))− 0.3 tanh(`3(r)),
C
0∇δ(r)`2(r) = −1.2`2(r) + 0.2 tanh(`1(r))− 0.6 tanh(`2(r)) + 0.5 tanh(`3(r)),
C
0∇δ(r)`3(r) = −1.1`3(r) + 0.275 tanh(`1(r)) + 0.8 tanh(`2(r))− 0.11 tanh(`3(r)),

(45)

with the variable-order function as follows

δ(r) = |1
6
− e
−
r

4 |, δ1 = 0.05646 and δ2 = 0.83333. (46)

Clearly, lj = 1, j = 1; 2; 3, the activation functions meets (H1). Also, (H2)–(H3) hold for

− min
`=1,...,n

d` +
n

∑
i=1

max
`=1,...,n

l`|ci`| = 0.9, (47)

Fδ1

(
− min

i=1,...,n
di +

n

∑
i=1

max
`=1,...,n

|ci`|l`, 30

)
≤ 1.142428052757200. (48)

Hence, subject to Theorem 2, system (45) has an unique equilibrium point that is finite time
stable when taking γ = 0.8 and ε = 0.469003848920180. We examine the next three numerical
simulation scenarios: Case 1: Let `(0) = (0.8, 0.8, 0.8)T , Case 2: Let `(0) = (0.1, 0.5, 0.2)T and
Case 3 for the initial condition `(0) = (1,−2, 5)T .

The following is the description of the results:

• Figure 1 shows the solutions of system (40), with the variable-order function δ(r)

defined in (42) and the initial condition `(0) = (0.4,−0.4)T and the set of parameters
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(41) and (42) and by Theorems 2 and 3, the unique equilibrium point `∗ = (0, 0)T is
finite time stable.

• Figures 2–4 indicate that the unique equilibrium point `∗ = (0, 0)T of the variable-order
fractional neural networks (45), with the variable-order function δ(t) described in (2), and
the chosen set of parameters, is stable in a finite time based on Theorems 2 and 3 for multi-
ple initial conditions `(0) = (0.8, 0.8, 0.8)T, `(0) = (0.1, 0.5, 0.2)T and `(0) = (1,−2, 5)T ,
respectively.

0 10 20 30 40 50

t

-4

-3

-2

-1

0

1

2

3

x
1
(t)

x
2
(t)

Figure 1. Numerical simulation of the variable-order fractional discrete neural networks (40) for the
initial condition `(0) = (0.4,−0.4)T .
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Figure 2. Numerical simulation of the variable-order fractional discrete neural networks (45) for the
initial condition `(0) = (0.8, 0.8, 0.8)T .
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Figure 3. Numerical simulation of the variable-order fractional discrete neural networks (45) for the
initial condition `(0) = (0.1, 0.5, 0.2)T .
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Figure 4. Numerical simulation of the variable-order fractional discrete neural networks (45) for the
initial condition `(0) = (1,−2, 5)T .

6. Conclusions

The purpose of this study is to introduce the first generalized discrete variable-order
Gronwall inequality in the sense of the Nabla fractional variable-order difference sum
operator, in addition to discuss sufficient conditions that ensure the uniqueness and finite-
time stability of non-linear nabla discrete variable-order neural networks based on the
generalized discrete Gronwall inequality and the contracting mapping principle. We offer
two numerical examples to demonstrate the suggested finite-time stability conclusions. We
would like to emphasize that our approach can be extended to include more application,
such as chaos and synchronization control in variable-order fractional discrete-time neural
networks. It has been established that chaos exists in both the variable-order cases and the
fractional logistic map. We may investigate the chaotic behavior of the new neural networks
using a similar concept and analytical techniques involving the Jacobian matrix approach
for calculating the Lyapunov exponent. Additionally, different chaotic synchronization and
control rules can be developed in accordance with the stability criteria of this study.
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