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Abstract: Hilfer fractional stochastic differential equations with delay are discussed in this paper.
Firstly, the solutions to the corresponding equations are given using the Laplace transformation and
its inverse. Afterwards, the Picard iteration technique and the contradiction method are brought
up to demonstrate the existence and uniqueness of understanding, respectively. Further, finite-time
stability is obtained using the generalized Grönwall–Bellman inequality. As verification, an example
is provided to support the theoretical results.
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1. Introduction

Fractional calculus is favored by many researchers because of its genetic characteristics.
In simulation processes related to control theory, physics, chaos and turbulence, fluid
mechanics and visco-elastic materials, fractional differential equations obtain better results
than integer-order differential equations. For related content, readers can refer to the
monographs [1–4]. Therefore, in recent decades, fractional calculus has gradually become a
powerful tool for discussing and resolving the problems of modern production technology
in relation to the rapid development of such technology and natural science. It is worth
noting that, in the study of control theory, some researchers use fractional calculus to obtain
better simulation results [5]. There are also some related findings that can be referred to in
the articles [6–8]. Significantly, as an improvement of Riemann–Liouville fractional calculus
and Caputo fractional calculus, Hilfer fractional calculus is more widely used in practical
life. Gou [9] studied the monotonic iterative technique for a kind of Hilfer fractional system.

Random disturbances are well-known and unavoidable factors in the study of real
systems. They are also one of the important factors in research on system stability and play
an indispensable role. Fractional Brownian motion is widely used to describe uncertainty
because of its excellent properties, such as self-similarity and long-distance correlation.
In many fields of stochastic analysis, fractional Brownian motion has attracted much
attention because of these good properties. On this basis, investigators have carried
out many interesting studies and obtained many useful conclusions [10–21]. In general,
the study of stochastic systems is very meaningful and challenging.

In order to get closer to real life, investigators tend to study systems with delays in
their research processes. A system is affected by its current state and its past state as well.
In general, delay often causes a system to oscillate and become unstable. Therefore, it
is necessary to study systems with delay. Some researchers have studied systems with
delays and achieved some results. For example, Luo et al. [16] analyzed a class of stochastic
fractional differential equations with time delays and proved the results obtained using
numerical simulation. Xu et al. [22] studied a class of stochastic delay fractional differential
equations powered by Brownian motion. Ahmed et al. investigated differential equations
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with Poisson jumps, which are a kind of delay stochastic system with Hilfer-type fractional
derivatives, in [23]. Salem et al. [24] established integral representations of solutions for
homogeneous and inhomogeneous delay systems for Hilfer fractional derivatives and gave
the results in terms of finite-time stability for the corresponding solutions.

So far, there is much more research on deterministic fractional systems with delay
than on stochastic fractional systems with delay, and there are many issues to be further
studied. In the exploration of fractional stochastic systems, most researchers pay more
attention to the existence and uniqueness of solutions (readers can consult [25–28]). With the
advance of time, research on the uniqueness and existence of solutions to systems is
getting deeper and deeper. On this basis, Ahmed et al. [29] studied a class of Hilfer-type
stochastic fractional integro-differential equations and obtained the existence result using
the methods of fractional calculus, the Sadovskii fixed-point theorem, and the semigroup
property. Johnson et al. discussed a class of infinite delay neutral stochastic Hilfer-type
fractional integro-differential equations and demonstrated the existence result for the
solutions through the use of Banach fixed-point theory in [30]. By using Hilfer fractional
calculus, the fixed-point method, and the Mittag–Leffer function, Gao and Yu [31] studied
the uniqueness and existence of the nonlocal values of solutions for a kind of semi-linear
system with Hilfer fractional derivatives. Li et al. [32] first established the equivalent
Volterra integral equation, and then existence and uniqueness for a kind of fractional
system of the Hilfer type with variable coefficients were discussed.

As we all know, a large part of a simulation in practical applications is affected by
the dynamic behavior of the model, especially the stability. Therefore, the study of the
stability of differential equations has been favored by researchers, and some research results
have been achieved [33]. In fact, as early as the 1960s, there were studies on finite-time
stability [34]. It is worth mentioning that Dorato [34] studied a kind of time-varying linear
system and discussed its short-time stability. Moreover, Kushner [35] further extended the
finite-time stability of stochastic systems on the grounds discussed by Dorato. Luo et al. first
derived the solution for a system by means of the Laplace transformation and its inverse
and then derived the finite-time stability result by using interval translation techniques and
the Henry Grönwall delay inequality in [36]. In [37], Coppel’s inequality and the Jensen
inequality were used to analyze the finite-time stability results for a kind of system with
finite delay. There are more finite-time stability results available in [38–42].

As the above discussion shows, to the best of our knowledge, there are not many
studies on finite-time stability for Hilfer-type fractional stochastic differential equations
with delay. Therefore, we explore the finite-time stability of such systems in this paper.

Dγ,δ
0+ χ(h̄) = Aχ(h̄) + κ(h̄, χ(h̄), χ(h̄− τ)) + σ(h̄, χ(h̄), χ(h̄− τ)) dBh̄

dh̄ , h̄ ∈ [0, V],

χ(h̄) = Ψ(h̄),−τ ≤ h̄ ≤ 0,

I1−λ
0+ χ(0) = 0, λ = γ + δ− γδ,

(1)

where Dγ,δ
0+ expresses the Hilfer fractional derivative equipped with 0 ≤ γ ≤ 1,

0 < δ < 1. A ∈ Rd×d, κ: [0, V] × Rd × Rd → Rd, and σ: [0, V] × Rd × Rd → Rd×n

are all continuous measurable functions. Bh̄ is n-dimensional Brownian motion defined on
a complete probability space (Ω,F , P). Ψ: [−τ, 0]→ Rd is a continuous function. Let the
norm of Rd be ‖ · ‖ and satisfy E‖Ψ(h̄)‖2 < ∞.

The major contributions of this paper can be described as the following:

(i) The system we encountered is almost affected by the current states and the past states.
Compared with [12,14], System (1) contains delay, which brings the states of the
system closer to the states in real life and is more convenient for practical applications;

(ii) The model mentioned in this paper is more general than the model in [41]. The delay
term is considered in a fractional stochastic system of the Hilfer type. There is
relatively little research on this type of system;
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(iii) The difference between this manuscript and [16–19] is that we adopt the method of the
Laplace transformation and its inverse when we derive the solutions to the fractional
delay stochastic differential equations, and the Mittag–Leffler function is included in
the derived processes, which is helpful for subsequent derivations.

The rest of the paper is arranged as follows. We provide some basic preparatory work
in Section 2. In Section 3, we first give the solution to the system under consideration using
the Laplace transformation and its inverse and then prove the existence and uniqueness of
the solution using the Picard iteration technique and the contradiction method. The results
for finite-time stability are given in Section 4. Finally, an example is provided to demonstrate
the theoretical results in Section 5.

2. Essential Definitions and Lemmas

Definition 1 ([15]). For a function σ, the fractional integral operator of order δ can be described as

Iδσ(h̄) =
1

Γ(δ)

∫ h̄

0

σ(v)

(h̄−v)1−δ
dv, h̄ > 0,

where Γ(·) denotes the Gamma function.

Definition 2 ([15]). For 0 ≤ γ ≤ 1, 0 < δ < 1, and a function σ, the Hilfer-type fractional
derivative of orders γ and δ can be described as

Dγ,δ
0+σ(h̄) = Iγ(1−δ)

0+
d
dt

I(1−γ)(1−δ)
0+ σ(h̄),

where D = d
dt .

Definition 3 ([15]). The form of the Mittag–Leffler function can be defined as

Eb,m(ξ) =
∞

∑
i=0

ξ i

Γ(ib + m)
, b, m > 0.

In particular, we have

Eb,1(ξ) =
∞

∑
i=0

ξ i

Γ(ib + 1)
= Eb(ξ).

Definition 4 ([36]). Suppose the functions ϕ(h̄) and χ(h̄) both satisfy the condition that when
h̄ → 0, ϕ(h̄) = χ(h̄) = 0; that means

∫ h̄
0 ϕ(h̄− ι)χ(h̄)dι is the convolution of ϕ(h̄) and χ(h̄).

This is expressed as

ϕ(h̄) ∗ χ(h̄) = χ(h̄) ∗ ϕ(h̄) =
∫ h̄

0
ϕ(h̄− ι)χ(h̄)dι.

Lemma 1 ([43]). For the function χ(h̄), the Laplace transformation for the Hilfer fractional
derivative can be expressed as

L{Dγ,δ
0+ χ(h̄); t} = tγχL(t)− tδ(γ−1) I1−λ

0+ χ(0),

where λ = γ + δ− γδ.

Proposition 1. The Laplace transformation has some properties, as shown below

L{π(h̄) ∗ δ(h̄); v} = Π(v)∆(v);

L−1{Π(v) ∗ ∆(v); v} = π(h̄)δ(h̄);
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L−1{Π(v)∆(v); v} = π(h̄) ∗ δ(h̄).

Functions π(h̄) and δ(h̄) are real-valued functions defined on [0, ∞), and Π(v) =
∫ ∞

0 π(h̄)
e−vh̄dh̄ and ∆(v) =

∫ ∞
0 δ(h̄)e−vh̄dh̄ are called image functions of π(h̄) and δ(h̄), respectively.

Lemma 2 ([15]). For the Mittag–Leffler function, the Laplace transformation can be denoted in the
following form

L{h̄bi+m−1E(i)
b,m(±βh̄b); t} =

∫ ∞

0
e−th̄ h̄bi+m−1E(i)

b,m(±βh̄b)dh̄

=
i!tb−m

(tb ∓ β)i+1 .

Lemma 3 ([44]). Given a random variable ω, ∀l > 0 and 1 ≤ m < ∞, and we can deduce that
the formula mentioned below is true

P(‖ω‖ ≥ l) ≤ 1
lm E(‖ω‖m).

Lemma 4 ([44]). If En satisfies {En} ⊂ F and
∞
∑

n=1
P(En) < ∞, then we can conclude that

P( lim
n→∞

sup En) = 0.

Definition 5 ([36]). The positive constants $, ξ, andV satisfy $ < ξ. Thus, the system is finite-
time-stable on [−τ, V] if, when E‖Ψ(0)‖2 ≤ $, we have E‖ψ‖2 ≤ ξ.

We postulate the following hypotheses to facilitate the smooth development of the
following work.

• (H1) For κ, σ in System (1), for ∀ϕi, ϕ̂i ∈ Rd, (i = 1, 2), h̄ ∈ [−τ, V], and we can find a
corresponding constant µ1 > 0 such that

‖κ(h̄, ϕ1, ϕ̂1)− κ(h̄, ϕ2, ϕ̂2)‖2 ∨ ‖σ(h̄, ϕ1, ϕ̂1)− σ(h̄, ϕ2, ϕ̂2)‖2

≤ µ1(‖ϕ1 − ϕ2‖2 + ‖ϕ̂1 − ϕ̂2‖2).

• (H2) For κ, σ in System (1), ϕ, ϕ̂ ∈ Rd, h̄ ∈ [−τ, V], and we can find a constant µ2 > 0,

‖κ(h̄, ϕ, ϕ̂)‖2 ∨ ‖σ(h̄, ϕ, ϕ̂)‖2 ≤ µ2

(
1 + ‖ϕ‖2 + ‖ϕ̂‖2

)
.

Lemma 5 ([16]). Let ϑ1, ϑ2, · · ·, ϑn(n ∈ N) be real numbers and satisfy ϑi ≥ 0, (i = 1, 2, . . . , n).
Thus (

n

∑
i=1

ϑi

)p

≤ np−1
n

∑
i=1

ϑ
p
i , for p > 1.

Lemma 6 ([44]). (Generalized Grönwall–Bellman inequality) Assume 0 < β < 1 and h̄ ∈ [0, V),
where V ≤ ∞. For h̄ ∈ [0, V), the locally integrable non-negative functions x(h̄), y(h̄), and z(h̄)
are non-negative and nondecreasing bounded continuous functions. χ(h̄) is a non-negative and
locally integrable function on [0, V) such that

χ(h̄) ≤ x(h̄) + y(h̄)
∫ h̄

0
χ(v)dv + z(h̄)

∫ h̄

0
(h̄−v)β−1χ(v)dv.
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Thus, the following estimation is valid

χ(h̄) ≤ x(h̄) +
∞

∑
n=1

n

∑
i=0

(
n
i

)
yn−i(h̄)

[z(h̄)Γ(β)]i

Γ(iβ + n− i)

∫ h̄

0
(h̄−v){i(2β−1)−(i+1−n)}x(v)dv.

3. Existence and Uniqueness

In this section, the equivalent form of system (1) under consideration is derived by means
of the Laplace transformation and its inverse and expressed with the Mittag–Leffler function.

Lemma 7. If a function χ(·) is the solution to the following integral equations, it is also said to be
the solution to System (1)

χ(h̄) =



Ψ(h̄), h̄ ∈ [−τ, 0],∫ h̄
0 (h̄−v)γ−1Eγ,γ(A(h̄−v)γ)κ(v, χ(v), χ(v− τ))dv

+
∫ h̄

0 (h̄−v)γ−1Eγ,γ(A(h̄−v)γ)σ(v, χ(v), χ(v− τ))dBv,

v ∈ [0, V].

(2)

Proof. For h̄ ∈ [−τ, 0], we have
χ(h̄) = Ψ(h̄).

Taking the Laplace transformation of both sides of System (1) for h̄(h̄ ∈ [0, V]), we
then obtain

L{Dγ,δ
0+ χ(h̄); t} = tγχL(t),

followed by
tγχL(t) = AχL(t) + Ξ(t) + Λ(t),

where χL(t), Ξ(t), and Λ(t) represent the Laplace transformation of χ(h̄), κ(h̄, χ(h̄), χ(h̄− τ)),
and σ(h̄, χ(h̄), χ(h̄− τ)) dBh̄

dh̄ , respectively. Therefore

χL(t) =
Ξ(t)

tγ − A
+

Λ(t)
tγ − A

.

If we take the inverse Laplace transformation of both sides of the above formula, then
we can obtain the following form

χ(h̄) =κ(h̄, χ(h̄), χ(h̄− τ)) ∗ h̄γ−1Eγ,γ(Ah̄γ)

+ h̄γ−1Eγ,γ(Ah̄γ) ∗ σ(h̄, χ(h̄), χ(h̄− τ))
dBh̄
dh̄

=
∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)κ(v, χ(v), χ(v− τ))dv

+
∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)φ(v, χ(v), χ(v− τ))dBv.

Next, we aim to demonstrate the existence and uniqueness of the solution. In order to
get the desired result, we use the Picard iteration technique and the contradiction method.

We define the norm as ‖χ‖c = sup
h̄∈[−τ,V]

E‖χ(h̄)‖ < ∞ on Banach space C([−τ, V];Rd).

In addition, we let P = max
0≤h̄≤V

‖Eγ,γ(Ah̄γ)‖.

Theorem 1. Assuming the above hypotheses (H1) and (H2) are true, then System (1) has solutions
in C([−τ, V];Rd).
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Proof. In this proof, we verify the existence of solutions. Define χ0(h̄) = χ0 = Ψ(0).

Assume V > 0 is sufficiently small and satisfies M = 4(V+4)P2µ1V2γ−1

2γ−1 < 1
2 .

Then, we use the Picard iteration technique and write the stochastic process {χn(h̄), n ≥ 0}
as follows

χ(h̄) = Ψ(h̄), h̄ ∈ [−τ, 0],

χn+1(h̄) =
∫ h̄

0 (h̄−v)γ−1Eγ,γ(A(h̄−v)γ)κ(v, χn(v), χn(v− τ))dv

+
∫ h̄

0 (h̄−v)γ−1Eγ,γ(A(h̄−v)γ)σ(v, χn(v), χn(v− τ))dBv,

h̄ ∈ [0, V].

(3)

Step 1. Prove that the sequence {χn(h̄)} is bounded. By using the Jensen inequality,
we can obtain

sup
0≤h̄≤V

E‖χn+1(h̄)‖2

≤2 sup
0≤h̄≤V

E
∥∥∥∥∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)κ(v, χn(v), χn(v− τ))dv

∥∥∥∥2

+ 2 sup
0≤h̄≤V

E
∥∥∥∥∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)σ(v, χn(v), χn(v− τ))dBv

∥∥∥∥2

:=2(I1 + I2).

(4)

From the Hölder inequality and assumption (H2), it is simple to find that

I1 = sup
0≤h̄≤V

E
∥∥∥∥∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)κ(v, χn(v), χn(v− τ))dv

∥∥∥∥2

≤P2 sup
0≤h̄≤V

∫ h̄

0
(h̄−v)2γ−2dv ·

∫ h̄

0
E‖κ(v, χn(v), χn(v− τ))‖2dv

≤P2 V2γ−1

2γ− 1
· sup

0≤h̄≤V

∫ h̄

0
µ2(1 +E‖χn(v)‖2 +E‖χn(v− τ)‖2)dv

≤P2µ2
V2γ−1

2γ− 1
· (V +

∫ V

0
E sup

0≤r≤v
‖χn(r)‖2dv +

∫ V

0
E sup

0≤r≤v
‖ψn(r− τ)‖2dv).

(5)

By means of hypothesis (H2) and the Burkholder–Davis–Gundy (B-D-G) inequality,
we can derive

I2 = sup
0≤h̄≤V

E
∥∥∥∥∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)σ(v, χn(v), χn(v− τ))dBv

∥∥∥∥2

≤4P2E
∫ V

0
(V −v)2γ−2‖σ(v, χn(v), χn(v− τ))‖2dv

≤4P2
∫ V

0
(V −v)2γ−2µ2(1 +E‖χn(v)‖2 +E‖χn(v− τ)‖2)dv

≤4P2µ2

[
V2γ−1

2γ− 1
+
∫ V

0
sup

0≤r≤v

(V − r)2γ−2E‖χn(r)‖2dv

+
∫ V

0
sup

0≤r≤v

(V − r)2γ−2E‖χn(r− τ)‖2dv

]
.

(6)

In general, with Equations (4)–(6), we have
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sup
0≤h̄≤V

E‖χn+1(h̄)‖2

≤2P2µ2
V2γ

2γ− 1
+ 2P2µ2

V2γ−1

2γ− 1

∫ V

0
E sup

0≤r≤v

‖χn(r)‖2dv

+ 2P2µ2
V2γ−1

2γ− 1

∫ V

0
E sup

0≤r≤v

‖χn(r− τ)‖2dv

+ 8P2µ2
V2γ−1

2γ− 1
+ 8P2µ2

∫ V

0
sup

0≤r≤v

(V − r)2γ−2E‖χn(r)‖2dv

+ 8P2µ2

∫ V

0
sup

0≤r≤v

(V − r)2γ−2E‖χn(r− τ)‖2dv

≤2P2µ2
V2γ−1

2γ− 1
(V + 4) + 4P2µ2

V2γ

2γ− 1
‖χn‖2

c + 16P2µ2
V2γ−1

2γ− 1
‖χn‖2

c .

Subsequently, we can draw a conclusion that there is a constant C that satisfies

sup
0≤h̄≤V

E‖χn+1(h̄)‖2 ≤ C.

Step 2. Prove the sequence {χn(h̄)} is a Cauchy sequence. From Equation (3), we get
the following formula

χn+1(h̄)− χn(h̄)

=
∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)[κ(v, χn(v), χn(v− τ))− κ(v, χn−1(v), χn−1(v− τ))]dv

+
∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ) · [σ(v, χn(v), χn(v− τ))− σ(v, χn−1(v), χn−1(v− τ))]dBv .

In particular, for n = 0, from (H2) and the B-D-G inequality, Jensen inequality, and
Hölder inequality, we have

E sup
0≤˜̄h≤h̄

∥∥∥χ1(˜̄h)− χ0(˜̄h)∥∥∥2

=E sup
0≤˜̄h≤h̄

‖
∫ ˜̄h

0
(˜̄h−v)γ−1Eγ,γ(A(˜̄h−v)γ)κ(v, χ0(v), χ0(v− τ))dv

+
∫ ˜̄h

0
(˜̄h−v)γ−1Eγ,γ(A(˜̄h−v)γ)σ(v, χ0(v), χ0(v− τ))dBv −Ψ(0)‖2

≤3E sup
0≤˜̄h≤h̄

‖Ψ(0)‖2

+ 3E sup
0≤˜̄h≤h̄

∥∥∥∥∥
∫ ˜̄h

0
(˜̄h−v)γ−1Eγ,γ(A(˜̄h−v)γ) · κ(v, χ0(v), χ0(v− τ))dv

∥∥∥∥∥
2

+ 3E sup
0≤˜̄h≤h̄

∥∥∥∥∥
∫ ˜̄h

0
(˜̄h−v)γ−1Eγ,γ(A(˜̄h−v)γ) · σ(v, χ0(v), χ0(v− τ))dBv

∥∥∥∥∥
2

≤3Ψ2(0) + 3P2V ·E
∫ h̄

0
(h̄−v)2γ−2‖κ(v, χ0(v), χ0(v− τ))‖2dv

+ 12P2 ·E
∫ h̄

0
(h̄−v)2γ−2‖σ(v, χ0(v), χ0(v− τ))‖2dv

≤3Ψ2(0) + 3P2Vµ2 ·
∫ h̄

0
(h̄−v)2γ−2(1 +E‖χ0(v)‖2 +E‖χ0(v− τ)‖2)dv

+ 12P2µ2 ·
∫ h̄

0
(h̄−v)2γ−2(1 +E‖χ0(v)‖2 +E‖χ0(v− τ)‖2)dv

≤3Ψ2(0) + 3P2Vµ2 ·
∫ h̄

0
(h̄−v)2γ−2(1 + 2E‖χ0‖2

c )dv

+ 12P2µ2 ·
∫ h̄

0
(h̄−v)2γ−2(1 + 2E‖χ0‖2

c )dv

≤3Ψ2(0) +
3P2µ2(V + 4)

2γ− 1
V2γ−1(1 + 2E‖χ0‖2

c ).
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It can be found from (H1) and the B-D-G inequality, Jensen inequality, and Hölder
inequality that

E sup
0≤˜̄h≤h̄

∥∥∥χn+1(˜̄h)− χn(˜̄h)∥∥∥2

≤2E sup
0≤˜̄h≤h̄

‖
∫ ˜̄h

0
(˜̄h−v)γ−1Eγ,γ(A(˜̄h−v)γ)

· [κ(v, χn(v), χn(v− τ))− κ(v, χn−1(v), χn−1(v− τ))]dv‖2

+ 2E sup
0≤˜̄h≤h̄

‖
∫ ˜̄h

0
(˜̄h−v)γ−1Eγ,γ(A(˜̄h−v)γ)

· [σ(v, χn(v), χn(v− τ))− σ(v, χn−1(v), χn−1(v− τ))]dBv‖2

≤2P2V
∫ h̄

0
(h̄−v)2γ−2

·E‖κ(v, χn(v), χn(v− τ))− κ(v, χn−1(v), χn−1(v− τ))‖2dv

+ 8P2
∫ h̄

0
(h̄−v)2γ−2

·E‖σ(v, χn(v), χn(v− τ))− σ(v, χn−1(v), χn−1(v− τ))‖2dv

≤(2P2V + 8P2)µ1 ·
∫ h̄

0
(h̄−v)2γ−2

·
(
E‖χn(v)− χn−1(v)‖2 +E‖χn(v− τ)− χn−1(v− τ)‖2

)
dv

≤2(2P2V + 8P2)µ1 ·
∫ h̄

0
(h̄−v)2γ−2E( sup

0≤ϑ≤v

‖χn(ϑ)− χn−1(ϑ)‖2)dv

≤4(V + 4)P2µ1V2γ−1

2γ− 1
E( sup

0≤˜̄h≤h̄

∥∥∥χn(˜̄h)− χn−1(˜̄h)∥∥∥2
).

(7)

Suppose E sup
0≤˜̄h≤h̄

∥∥∥χn(˜̄h)− χn−1(˜̄h)∥∥∥2
≤ T ·Mn−1, n = 1, 2, . . . , h̄, where

T = E sup
0≤˜̄h≤h̄

∥∥∥χ1(˜̄h)− χ0(˜̄h)∥∥∥2
,

M =
4(V + 4)P2µ1V2γ−1

2γ− 1
,

which are constants and only depend on γ, V, µ1.
It can be obtained from mathematical induction combined with Equation (7) that

E sup
0≤˜̄h≤h̄

∥∥∥χn+1(˜̄h)− χn(˜̄h)∥∥∥2
≤ T ·Mn, n = 0, 1, . . . , h̄,

By means of Chebyshev’s inequality, we can obtain

P{ sup˜̄h∈[0,h̄]

∥∥∥χn+1(˜̄h)− χn(˜̄h)∥∥∥2
≥ 1

2n } ≤ T · (2M)n.

The sum of both sides of the inequality above is

∞

∑
n=0

P{ sup˜̄h∈[0,h̄]

∥∥∥χn+1(˜̄h)− χn(˜̄h)∥∥∥2
≥ 1

2n } ≤
∞

∑
n=0

T · (2M)n.
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We know that
∞
∑

n=0
T · (2M)n < ∞ by means of the comparison test. Subsequently,

the Borel Cantelli lemma can be used to find that sup˜̄h∈[0,h̄]

∥∥∥χn+1(˜̄h)− χn(˜̄h)∥∥∥2
converges to

0. This also implies that χn is a Cauchy sequence. Thus, χn converges almost surely and
uniform on [−τ, V] to a limit χ(h̄) defined by

lim
N→∞

(χ0(h̄) +
N

∑
n=1

(χn(h̄)− χn−1(h̄))) = lim
N→∞

χN = χ(h̄).

Combining the bounds of E‖χn+1(h̄)‖2 and by using Fatou’s lemma, we can obtain

E‖χ(h̄)‖2 ≤ 2P2µ2
V2γ−1

2γ− 1
(V + 4) + 4P2µ2

V2γ

2γ− 1
‖χn‖2

c + 16P2µ2
V2γ−1

2γ− 1
‖χn‖2

c .

Therefore, from Equation (3), we can obtain

χ(h̄) =



Ψ(h̄), h̄ ∈ [−τ, 0],∫ h̄
0 (h̄−v)γ−1Eγ,γ(A(h̄−v)γ)κ(v, χ(v), χ(v− τ))dv

+
∫ h̄

0 (h̄−v)γ−1Eγ,γ(A(h̄−v)γ)σ(v, χ(v), χ(v− τ))dBv,

v ∈ [0, V].

(8)

for all h̄ ∈ [−τ, V].

Theorem 2. System (1) has a unique solution in C([−τ, V];Rd) if hypothesis (H1) holds.

Proof. Here, we use the contradiction method. Suppose System (1) has two different
solutions χ(h̄) and ϕ(h̄) and, at the same time, let ρ(h̄) = χ(h̄)− ϕ(h̄), h̄ ∈ [−τ, V]. Then,
we can obtain the following. For h̄ ∈ [−τ, 0], we have

ρ(h̄) =χ(h̄)− ϕ(h̄)

=Ψ(h̄)−Ψ(h̄)

=0;

For h̄ ∈ [0, V], we have

ρ(h̄) =
∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)[κ(v, χ(v), χ(v− τ))− κ(v, ϕ(v), ϕ(v− τ))]dv

+
∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)[σ(v, χ(v), χ(v− τ))− σ(v, ϕ(v), ϕ(v− τ))]dBv .

By applying (H1) and the Hölder inequality, Jensen inequality, and B-D-G inequality,
we can derive
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E sup
0≤v≤h̄

‖ρ(v)‖2

≤2E sup
0≤v≤h̄

‖
∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)

· [κ(v, χ(v), χ(v− τ))− κ(v, ϕ(v), ϕ(v− τ))]dv‖2

+ 2E sup
0≤v≤h̄

‖
∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)

· [σ(v, χ(v), χ(v− τ))− σ(v, ϕ(v), ϕ(v− τ))]dBv‖2

≤2VP2 sup
0≤v≤h̄

∫ h̄

0
(h̄−v)2γ−2E‖κ(v, χ(v), χ(v− τ))− κ(v, ϕ(v), ϕ(v− τ))‖2dv

+ 8P2
∫ h̄

0
(h̄−v)2γ−2E‖σ(v, χ(v), χ(v− τ))− σ(v, ϕ(v), ϕ(v− τ))‖2dv

≤2VP2µ1

∫ h̄

0
(h̄−v)2γ−2(E sup

0≤ω≤v
‖χ(ω)− ϕ(ω)‖2

+E sup
0≤ω≤v

‖χ(ω− τ)− ϕ(ω− τ)‖2)dv

+ 8P2µ1

∫ h̄

0
(h̄−v)2γ−2(E sup

0≤ω≤v
‖χ(ω)− ϕ(ω)‖2

+E sup
0≤ω≤v

‖χ(ω− τ)− ϕ(ω− τ)‖2)dv

=2VP2µ1

∫ h̄

0
(h̄−v)2γ−2(E sup

0≤ω≤v
‖ρ(ω)‖2 +E sup

0≤ω≤v
‖ρ(ω− τ)‖2)dv

+ 8P2µ1

∫ h̄

0
(h̄−v)2γ−2(E sup

0≤ω≤v
‖ρ(ω)‖2 +E sup

0≤ω≤v
‖ρ(ω− τ)‖2)dv

Assume ρ̂(h̄) = E sup
v∈[−τ,h̄]

‖ρ(v)‖. Therefore, for h̄ ∈ [0, V], we haveE sup
v∈[−τ,h̄]

‖ρ(v)‖2

≤ (ρ̂(v))2 and E sup
v∈[0,h̄]

‖ρ(v− τ)‖2 ≤ (ρ̂(v))2.

Thus,

E sup
0≤v≤h̄

‖ρ(v)‖2 ≤2VP2µ1

∫ h̄

0
(h̄−v)2γ−2(E sup

0≤ω≤v
‖ρ(ω)‖2 +E sup

0≤ω≤v
‖ρ(ω− τ)‖2)dv

+ 8P2µ1

∫ h̄

0
(h̄−v)2γ−2(E sup

0≤ω≤v
‖ρ(ω)‖2 +E sup

0≤ω≤v
‖ρ(ω− τ)‖2)dv

≤4P2µ1(V + 4)
∫ h̄

0
(h̄−v)2γ−2(ρ̂(v))2dv.

In general, for ∀θ ∈ [0, h̄], we can get

E sup
0≤θ≤h̄

‖ρ(θ)‖2 ≤4P2µ1(V + 4)
∫ θ

0
(θ −v)2γ−2(ρ̂(v))2dv

≤4P2µ1(V + 4)
∫ h̄

0
(h̄−v)2γ−2(ρ̂(v))2dv.

Therefore,
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‖ρ̂(h̄)‖2 =E sup
v∈[−τ,h̄]

‖ρ(v)‖2

≤max{E sup
v∈[−τ,0]

‖ρ(v)‖2,E sup
v∈[0,h̄]

‖ρ(v)‖2}

≤max{0, 4P2µ1(V + 4)
∫ h̄

0
(h̄−v)2γ−2(ρ̂(v))2dv}

=4P2µ1(V + 4)
∫ h̄

0
(h̄−v)2γ−2(ρ̂(v))2dv.

By means of the Grönwall–Bellman inequality, we can get ‖ρ̂(h̄)‖2 ≤ 0. That applies
ρ(h̄) = 0. Therefore, System (1) has a unique solution in C([−τ, V];Rn).

4. Finite-Time Stability

Theorem 3. Assume that conditions (H1) and (H2) are established and there are positive constants
$ and ξ satisfying $ < ξ, ‖Ψ(0)‖2 ≤ $. We can then deduce that System (1) is finite-time-stable if
it satisfies

(4 + V)
2P2µ2V2γ−1

2γ− 1

+
∞

∑
n=1

n

∑
i=0

(
n
i

)
(

4P2µ2V2γ−1

2γ− 1
)n−i [16P2µ2Γ(2γ− 1)]i

Γ(i(2γ− 1) + n− i)

·
∫ h̄

0
(h̄−v){i(4γ−3)−(i+1−n)}(4 + V)

2P2µ2V2γ−1

2γ− 1
dv

<ξ.

Proof. From Section 3, we have understood that System (1) has a unique solution, as
shown below

χ(h̄) =



Ψ(h̄), h̄ ∈ [−τ, 0],∫ h̄
0 (h̄−v)γ−1Eγ,γ(A(h̄−v)γ)κ(v, χ(v), χ(v− τ))dv

+
∫ h̄

0 (h̄−v)γ−1Eγ,γ(A(h̄−v)γ)σ(v, χ(v), χ(v− τ))dBv,

h̄ ∈ [0, V].

(9)

For h̄ ∈ [0, V], by applying the Jensen inequality, we can obtain

E
(

sup
0≤v≤h̄

‖χ(v)‖2

)

≤2E sup
0≤v≤h̄

∥∥∥∥∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)κ(v, χ(v), χ(v− τ))dv

∥∥∥∥2

+ 2E sup
0≤v≤h̄

∥∥∥∥∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)σ(v, χ(v), χ(v− τ))dBv

∥∥∥∥2

:=J1 + J2.

This is given by combining the Hölder inequality and (H2)
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J1 =2E sup
0≤v≤h̄

∥∥∥∥∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)κ(v, χ(v), χ(v− τ))dv

∥∥∥∥2

≤2P2E sup
0≤v≤h̄

∫ h̄

0
(h̄−v)2γ−2dv ·

∫ h̄

0
‖κ(v, χ(v), χ(v− τ))‖2dv

≤2P2h̄2γ−1

2γ− 1

∫ h̄

0
µ2(1 +E sup

0≤v≤v

‖ψ(v)‖2 +E sup
0≤v≤v

‖ψ(v− τ)‖2)dv.

(10)

From the B-D-G inequality and by using hypothesis (H2) again, we can derive

J2 =2E sup
0≤v≤h̄

∥∥∥∥∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)σ(v, χ(v), χ(v− τ))dBv

∥∥∥∥2

≤8P2E
∫ h̄

0
(h̄−v)2γ−2‖σ(v, χ(v), χ(v− τ))‖2dv

≤8P2
∫ h̄

0
(h̄−v)2γ−2µ2(1 +E sup

0≤v≤v

‖ψ(v)‖2 +E sup
0≤v≤v

‖ψ(v− τ)‖2)dv.

(11)

Thus, from Equations (10) and (11), we can deduce that

E
(

sup
0≤v≤h̄

‖χ(v)‖2

)

≤2E sup
0≤v≤h̄

∥∥∥∥∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)κ(v, χ(v), χ(v− τ))dv

∥∥∥∥2

+ 2E sup
0≤v≤h̄

∥∥∥∥∫ h̄

0
(h̄−v)γ−1Eγ,γ(A(h̄−v)γ)σ(v, χ(v), χ(v− τ))dBv

∥∥∥∥2

≤2P2h̄2γ−1

2γ− 1

∫ h̄

0
µ2(1 +E sup

0≤v≤v

‖χ(v)‖2 +E sup
0≤v≤ν

‖χ(v− τ)‖2)dv

+ 8P2
∫ h̄

0
(h̄−v)2γ−2µ2(1 +E sup

0≤v≤v

‖χ(v)‖2 +E sup
0≤v≤v

‖χ(v− τ)‖2)dv

≤8P2µ2V2γ−1

2γ− 1

+
2P2µ2V2γ−1

2γ− 1

∫ h̄

0
(1 +E‖χ(v)‖2 +E‖χ(v− τ)‖2)dv

+ 8P2µ2

∫ h̄

0
(h̄−v)2γ−2(E‖χ(v)‖2 +E‖χ(v− τ)‖2)dv.

Letting Θ(h̄) = sup
−τ≤α≤h̄

‖χ(α)‖2, we can then derive

Θ(ν) = sup
−τ≤α≤v

‖χ(α)‖2 ≥ ‖χ(v)‖2,

and

‖χ(v− τ)‖2 ≤ sup
−τ≤α≤v−τ

‖χ(α)‖2

≤ sup
−τ≤α≤v

‖χ(α)‖2

=Θ(v).

Thus,
‖χ(v)‖2 ≤ Θ(v),
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and
‖χ(v− τ)‖2 ≤ Θ(v).

Then, we have

E
(

sup
0≤v≤h̄

‖χ(v)‖2

)

≤8P2µ2V2γ−1

2γ− 1

+
2P2µ2V2γ−1

2γ− 1

∫ h̄

0
(1 +E‖χ(v)‖2 +E‖χ(v− τ)‖2)dv

+ 8P2µ2

∫ h̄

0
(h̄−v)2γ−2(E‖χ(v)‖2 +E‖χ(v− τ)‖2)dv

≤8P2µ2V2γ−1

2γ− 1

+
2P2µ2V2γ−1

2γ− 1

∫ h̄

0
(1 +E(Θ(v)) +E(Θ(v)))dv

+ 8P2µ2

∫ h̄

0
(h̄−v)2γ−2(E(Θ(v)) +E(Θ(v)))dv

≤(4 + V)
2P2µ2V2γ−1

2γ− 1

+
2P2µ2V2γ−1

2γ− 1

∫ h̄

0
2E(Θ(v))dv

+ 8P2µ2

∫ h̄

0
(h̄−v)2γ−2 · 2E(Θ(v))dv.

For all α ∈ [0, h̄], we have

E
(

sup
0≤v≤α

‖χ(v)‖2

)

≤(4 + V)
2P2µ2V2γ−1

2γ− 1
+

2P2µ2V2γ−1

2γ− 1

∫ α

0
2E(Θ(v))dv

+ 8P2µ2

∫ α

0
(h̄−v)2γ−2 · 2E(Θ(v))dv

≤(4 + V)
2P2µ2V2γ−1

2γ− 1
+

2P2µ2V2γ−1

2γ− 1

∫ h̄

0
2E(Θ(v))dv

+ 8P2µ2

∫ h̄

0
(h̄−v)2γ−2 · 2E(Θ(v))dv.

Therefore,

E(Θ(h̄))

=E sup
−τ≤α≤h̄

‖χ(α)‖2

≤max{E sup
−τ≤α≤0

‖χ(α)‖2,E sup
0≤α≤h̄

‖χ(α)‖2}

≤max{$, (4 + V)
2P2µ2V2γ−1

2γ− 1
+

4P2µ2V2γ−1

2γ− 1

∫ h̄

0
E(Θ(v))dv

+ 16P2µ2

∫ h̄

0
(h̄−v)2γ−2 ·E(Θ(v))dv}.
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By applying Lemma 6, and according to the condition given by Theorem 3, we
can obtain

E(Θ(h̄))

≤(4 + V)
2P2µ2V2γ−1

2γ− 1

+
∞

∑
n=1

n

∑
i=0

(
n
i

)
(

4P2µ2V2γ−1

2γ− 1
)n−i [16P2µ2Γ(2γ− 1)]i

Γ(i(2γ− 1) + n− i)

·
∫ h̄

0
(h̄−v){i(4γ−3)−(i+1−n)}(4 + V)

2P2µ2V2γ−1

2γ− 1
dv

<ξ.

Therefore,

E
(

sup
0≤v≤α

‖χ(v)‖2

)
≤ E

(
sup
−τ≤α≤h̄

‖χ(α)‖2

)
= E(Θ(h̄)) < ξ.

We can thus know that System (1) is finite-time-stable on [−τ, V] from Definition 5.

5. Example

Consider the equations given below
D0.8,0.5

0+ χ(h̄) = Aχ(h̄) + 0.01e−h̄χ(h̄) + 0.01χ(h̄− τ)

+(0.01 cos(h̄)χ(h̄) + 0.01 sin(h̄)χ(h̄− τ)) dBh̄
dh̄ , h̄ ∈ [0, 10],

χ(h̄) = Ψ(h̄), −τ ≤ h̄ ≤ 0,
I0.1
0+ χ(0) = 0.

(12)

By simple calculation, we can get µ1 = 0.0002 and µ2 = 0.0002.
Let $ = 0.1, ξ = 0.3, and A = 0.1I (I is the one-dimensional identity matrix). It can be

obtained by using mathematical software that

P = max
0≤h̄≤V

‖Eγ,γ(Ah̄γ)‖ = 2.0224.

We can find that the assumptions of Theorems 1 and 3 are satisfied through simple
verification. Thus, System (12) has a unique solution, and we can conclude that the norm of
the solution does not reach beyond ξ = 0.3 above [0, 10]. From Definition 5, the conclusion
that System (12) is finite-time-stable on [0, 10] can be drawn.

6. Conclusions

In this manuscript, we focused on the existence, uniqueness, and finite-time stability
of a kind of Hilfer-type fractional stochastic system with delay. Firstly, the existence of
solutions was derived using the Picard iteration technique. Secondly, the uniqueness result
was obtained using the the contradiction method. Subsequently, the finite-time stability
was obtained by combining the Hölder inequality, B-D-G inequality, Jensen inequality, and
generalized Grönwall–Bellman inequality. Finally, an example was provided to account for
the validity of the theoretical results.

In the future, the focus of our research will be fuzzy differential equations. How to
deal with random terms in fuzzy differential equations has been an inconvenient point in
our following work and this will make our research more interesting.
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