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Abstract: This paper delves into the extension and characterization of radial positive definite func-
tions into non-integer dimensions. We provide a thorough investigation by employing the Riemann–
Liouville fractional integral and fractional Caputo derivatives, enabling a comprehensive under-
standing of these functions. Additionally, we introduce a secondary characterization based on
the Bernstein characterization of completely monotone functions. The practical significance of our
study is showcased through an examination of the positivity of the fundamental solution of the
space-fractional Bessel diffusion equation, highlighting the real-world applicability of the developed
concepts. Through this work, we contribute to the broader understanding of radial positive definite
functions and their utility in diverse mathematical and applied contexts.
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1. Introduction

Radial positive definite functions are fundamental in various mathematical disciplines,
such as functional analysis, probability theory, signal processing, and more [1–3]. They
exhibit essential properties that make them indispensable in diverse applications, including
defining positive definite kernels in machine learning, stochastic processes in probability
theory, and generating interpolating functions in signal processing [3].

Traditionally, the study of radial positive definite functions has been confined to
Euclidean spaces with integer dimensions. However, there has been a growing interest in
extending these functions beyond integer dimensions to investigate their behavior in more
general spaces, such as fractional and non-integer dimensions. Such extensions provide a
deeper understanding of the underlying mathematical structures and open up new avenues
for practical applications in areas such as image processing, geostatistics, and fractional
calculus.

The works of Cholewinski et al. [4] and Chebli [5] have made significant contributions
to this field by exploring the continuation of radial positive definite functions associated
with Bessel operators of arbitrary order and a family of singular regular differential oper-
ators. Additionally, Trimeche [6] has investigated the extension of these functions in the
context of Bessel and Jacobi operators, enhancing our understanding of their behavior in
different operator settings.

Fractional calculus, which deals with derivatives and integrals of non-integer order,
provides a powerful framework for analyzing functions with non-local and long-range
dependencies. This makes it particularly well-suited for the study of radial positive definite
functions beyond integer dimensions. Numerous researchers have employed fractional
calculus to explore the properties and behavior of such functions, leading to insights into
their fractional derivatives and fractional integrals [1,2,7–12].

The primary objective of this study is to delve into the continuation of radial positive
definite functions and their characterization using fractional derivatives. Building upon the
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foundational works of Cholewinski et al. and Chebli, we aim to establish a comprehensive
understanding of these functions in non-integer dimensions. Furthermore, we introduce
an alternative characterization based on completely monotone functions, which have
significant properties and find extensive applications in various mathematical areas [13,14].

To demonstrate the practical relevance of our findings, we explore the application of
these extended positive definite functions in the context of the space fractional diffusion
equation. By utilizing the obtained characterization, we investigate the positivity of the
fundamental solution of this equation, shedding light on the practical implications and
potential applications of the continued radial positive definite functions in solving real-
world problems.

The paper is structured as follows: In Section 2, we provide an overview and intro-
duce the notations and key facts related to the Fourier–Bessel transform and the Delsarte
translation, essential tools for the subsequent analyses.

Section 3 delves into the concept of radial positive definite functions, with a particular
focus on the renowned Bochner and Schoenberg theorems. Additionally, we explore the
continuation of radial positive definite functions in the context of fractional dimensions,
showcasing their behavior beyond integer dimensions.

In Section 4, we present a detailed characterization of the representation of functions
on the interval (0, ∞) as Fourier–Bessel transforms using Riemann–Liouville integrals and
Caputo fractional derivatives. These characterizations reveal the underlying structure of
these functions and provide insights into their fractional behavior.

Section 5 focuses on the characterization of the class Pκ by leveraging Bernstein’s
theorem for completely monotone functions. This alternative characterization offers a
complementary perspective and further enriches our understanding of radial positive
definite functions.

Finally, in the last section, we demonstrate the positivity of the fundamental solution
of the space-fractional Bessel diffusion equation, showcasing the practical implications
of our study and highlighting the utility of extended radial positive definite functions in
solving real-world problems.

2. Preliminaries

This section serves as an introduction to the notations and key facts related to the
Fourier–Bessel transform and the Delsarte translation. These concepts are essential for
understanding the subsequent analysis and characterization of radial positive definite
functions beyond integer dimensions.

First, we introduce the normalized Bessel function, denoted as Jκ(x), which plays a
fundamental role in the sequel. The normalized Bessel function is defined by

Jκ(x) := Γ(κ + 1) (2/x)κ Jκ(x), κ > −1,

where Γ(·) is the Gamma function [15] and Jκ(·) is the Bessel function, see [(10.16.9)] [16]. Then,

Jκ(x) =
∞

∑
k=0

(− 1
4 x2)k

(κ + 1)k k!
= 0F1

(
−

κ + 1
;− 1

4 x2
)

(κ > −1).

Here, (κ + 1)k denotes the Pochhammer symbol, and 0F1(·) represents the confluent hyper-
geometric function [15]. The normalized Bessel function emerges as the unique solution
of the eigenvalue problem associated with the Bessel equation. Specifically, the functions
x →Jκ(λx) is the unique solution of the eigenvalue problem [(10.13.5)] [16] Bκu(x) = −λ2u(x),

u(0) = 1, u′(0) = 0.
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where Bκ is the Bessel operator

Bκ :=
d2

dx2 +
2κ + 1

x
d

dx
, κ ≥ −1/2.

The function Jκ(·) is an even entire analytic function, and we have the simple special
cases:

J−1/2(x) = cos x, J1/2(x) =
sin x

x
.

By ([§7.21] [16]), we have the asymptotic expansion of the normalized Bessel function

Jκ(x) = cos(x− κπ

2
− π

4
) + O(

1
x
), x → ∞, κ > −1

2
. (1)

We denote by Lp
κ (0, ∞) (1 ≤ p), the Lebesgue space associated with the measure

σκ(dx) =
x2κ+1

2κ+1Γ(κ + 1)
dx

and by ‖ f ‖κ,p the usual norm given by

‖ f ‖κ,p =
( ∫ ∞

0
| f (x)|p σκ(dx)

)1/p
.

The Fourier–Bessel transform Fκ f of f ∈ L1
κ(0, ∞) is defined as:

Fκ f (x) =
∫ ∞

0
f (t)Jκ(tx)σκ(dx), κ ≥ −1/2. (2)

This integral transform plays a similar role as the Fourier transform in the Euclidean
one. In particular, it can be extended to an isometry of L2

κ(0, ∞), and for any f ∈ L1
κ(0, ∞)∩

L2
κ(0, ∞), we have ∫ ∞

0
| f (x)|2 σκ(dx) =

∫ ∞

0
|Fκ f (t)|2 σκ(dt) (3)

and its inverse is given by

f (x) =
∫ ∞

0
Fκ f (t)Jκ(tx) σκ(dt). (4)

Next, we discuss the generalized translation operator associated with the Bessel
operator. This operator is denoted as τx

κ and acts on functions f ∈ L1
κ(0, ∞) as follows

[§3.4.1] [17]:

τx
κ f (y) =


∫ π

0 f (
√

x2 + y2 + 2xy cos θ) sin2κ θ dθ, if κ > −1/2,

1
2 ( f (x + y) + f (x− y)), if κ = −1/2.

(5)

With the help of this translation operator, one defines the convolution of f ∈ L1
κ(0, ∞) and

g ∈ Lp
κ (0, ∞) for p ∈ [1, ∞) as the element f ∗κ g of Lp

κ (0, ∞) given by

( f ∗κ g)(x) :=
∫ ∞

0
(τx

κ f )(y) g(y)σκ(dy), κ ≥ −1/2. (6)

The following properties are obvious:

• Fκ(τx
κ f )(t) = Jκ(xt)Fκ f (t);

• Fκ( f ∗κ g)(x) = Fκ f (x)Fκ g(x).
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3. Continuation of Radial Positive Definite Functions

In this section, we will delve into the concept of radial positive definite functions, with
a particular focus on the renowned Bochner and Schoenberg theorems. Additionally, we
explore the continuation of radial definite positive functions.

A complex-valued function f defined on Rn is said to be definite positive and belongs
to the class Φ(Rn) if it is continuous at the origin and the matrix [13,14,18](

f (xi − xj)
)N

i,j=1

is non-negative definite for all finite systems of points x1, x2, . . . , xN ∈ Rn .
The classical Bochner’s theorem [18] provides a fundamental characterization of the

class Φ(Rn). Specifically, a function f belongs to Φ(Rn) if and only if it can be expressed as
the Fourier transform of a finite non-negative Borel measure µ on Rn as:

f (x) =
∫
Rn

e−i〈x,t〉µ(dt), (7)

where x, t ∈ Rn, and 〈x, t〉 denotes the inner product between x and t.
In the context of radial functions, let us recall that a function f defined on Rn is

considered radial if there exists an even function f0 defined on R such that f (x) = f0(‖x‖)
for all x ∈ Rn, where ‖ · ‖ denotes the Euclidean norm on Rn. In other words, the value
of the radial function f (x) depends solely on the magnitude or norm of the vector x. By
considering the properties of radial functions, we obtain the following expression for the
Fourier transform:

F f (ξ) =
1

(2π)n

∫
Rn

f (x)e−ix·ξ dx, ξ ∈ Rn

=
2πn/2

Γ(n/2)

∫ ∞

0
f0(r)Jn/2−1(‖ξ‖r)rn−1dr.

A function f : [0, ∞)→ R is considered a radial positive definite function of the class Φn,
if the function f (‖ · ‖) belongs to the class Φ(Rn). The class Φn is characterized by the
Schoenberg theorem, which is referenced as [14].

Theorem 1 ([4]). Function f (·) belongs to the class Φn if and only if

f (x) =
∫ ∞

0
Jn/2−1(tx)µ(dt), (8)

where µ is a non-negative finite Borel measure on [0, ∞).

In [4], the authors introduced an innovative class of positive definite functions that
relies on the generalized translation of Delsarte τx

κ , as in Equation (5).

Definition 1 ([4]). Pκ is the set of continuous functions f : [0; ∞)→ R such that the matrix(
τ

xi
κ f (xj)

)N
i,j=1

is non-negative definite for all finite systems of points x1, x2, . . . , xN ∈ [0, ∞).

Note that the discrete condition in the aforementioned definition implies the continuity
of its integral counterpart function f (x) on [0, ∞). A bounded function f (x) is said to be
positive definite if for every ϕ ∈ D0(R) (where D0(R) denotes the space of even C∞

functions on R with compact support), the following inequality holds:∫ ∞

0

∫ ∞

0
τt

κ f (x)ϕ(x)ϕ(t)σκ(x)σκ(t) ≥ 0. (9)
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For more details, see [4,5].
In [4], we found the following characterization of positive definite functions for the

Bessel operator, see also [6].

Theorem 2 ([4]). A continuous function f (x) is a bounded positive definite function for the Bessel
operator Bν if and only if there exists a non-negative finite Borel measure µ on [0, ∞) such that for
every x ≥ 0,

f (x) =
∫ ∞

0
Jκ(tx)µ(dt). (10)

In the following proposition, we will show that, when κ is half-integer (κ = n/2− 1),
the class Pκ coincides with Φn.

Proposition 1. For every n ∈ N, we have Pn/2−1 = Φn.

Proof. Let f be an integrable radial function f (x) = f0(‖x‖) on Rn . Since the Lebesgue
measure is invariant under the orthogonal transformation, the function

x →
∫
Rn

f (x− y)dy

is a radial function. Therefore,∫
Rn

f (x− y)dy =
∫
Rn

f (‖x‖e1 − y)dy,

where e1 = (1, 0, . . . , 0). It follows∫
Rn

f (x− y)dy =
∫
R

∫
Rn−1

f0(
√
(‖x‖+ p)2 + ‖y‖2)dydp

= ωn−2

∫
R

∫ ∞

0
f0(
√
(‖x‖+ p)2 + ρ2)ρn−2dρ dp.

where

ωn−1 =
2πn/2

Γ(n/2)
.

Making the substitution p = t cos θ, ρ = tsinθ∫
Rn

f (x− y)dy =ωn−2

∫ ∞

0

∫ π

0
f0(
√
‖x‖2 + t2 + 2t‖x‖ cos θ) sinn−2(θ) tn−1 dt

=
∫ ∞

0
τ
‖x‖
n/2−1 f0(r)σn/2−1(dr).

The result follows from Equation (9) and Proposition 6.4 in [3].

4. Characterization of Positive Definite Functions via Caputo Fractional Derivatives

In this section, we present a characterization of the representation of functions on the
interval (0, ∞) as Fourier–Bessel transforms using the Riemann–Liouville integral and the
Caputo fractional derivative.
To begin, let us recall the definitions of left-sided and right-sided fractional Riemann–
Liouville integrals of order α [12].

For Re(α) > 0, the left-sided fractional Riemann–Liouville integral of order α is
given by:

Iα
+{ f (t); x} :=

1
Γ(α)

∫ x

0

f (t)dt
(x− t)1−α

(x > 0). (11)
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Similarly, the right-sided fractional Riemann–Liouville integral of order α is defined
as:

Iα
−{ f (t); x} :=

1
Γ(α)

∫ ∞

x

f (t)dt
(t− x)1−α

(x ≥ 0). (12)

These integrals involve the gamma function Γ(α), which is defined as the integral:

Γ(α) =
∫ ∞

0
tα−1e−tdt α > 0. (13)

When α = n is a positive integer, we have

In
+{ f (t); x} = 1

(n− 1)!

∫ x

0
f (t)(x− t)n−1 dt

=
∫ x

0
dx1

∫ x1

0
dx2· · ·

∫ xn−1

0
f (xn) dxn.

The following semigroup property holds

Iα
+ Iβ

+ = Iα+β
+ , <(α), <(β) > 0. (14)

For <(α) ≥ 0 and α /∈ N, the Caputo fractional derivative Dα
∗ f is defined as [§2] [12]:

Dα
∗{ f (t); x} := In−α

+ {Dn f (t); x}, n = [<(α)] + 1, (15)

where In−α
+ represents the Riemann–Liouville fractional integral defined in Equation (11),

and Dn denotes the n-th derivative with respect to x. For α ∈ N, the Caputo fractional
derivative is given by Dn

∗ = Dn.
More general fractional operators are the left-side and right-sided Erdélyi–Kober

integrals that involve an additional parameter, known as the Erdélyi–Kober parameter. Let
f be continuous function on [0, ∞), Re(α) > 0, and η > − 1

2 . The left-sided Erdélyi–Kober
fractional integral of order α and parameter η, denoted by Iα

+,2,η f (x), is given by:

(Iα
+,2,η f )(x) :=

2
Γ(α)

1
x2(α+η)

∫ x

0
f (t)(x2 − t2)α−1 t2η+1 dt x > 0. (16)

Similarly, the right-sided Erdélyi–Kober fractional integral of order α and parameter η,
denoted by Iα

−,2,η f (x), is defined as:

(Iα
−,2,η f )(x) :=

2
Γ(α)

x2η
∫ ∞

x
f (t)(t2 − x2)α−1t1−2α−2ηdt (x ≥ 0). (17)

To handle even continuous functions f defined on the real line R, we can extend the
definition of Iα

±,2,η f by utilizing parity. Specifically, we define Iα
±,2,η f on R by setting

(Iα
±,2,η f )(x) = (Iα

±,2,η f )(|x|) for all x ∈ R.

A straightforward computation shows that

Iα+1/2
+,−1/2 f (x) = x−2α Iα+1/2

+

{
( f (
√

t)√
t

, x2}, (18)

Iα+1/2
+ f (x) = xα Iα+1/2

+,−1/2l
{

t f (t2),
√

x
}

. (19)

The following theorem represents the primary result in this section.

Theorem 3. Let κ ≥ −1/2 and ε > 0, and the following hold:

(i) Pκ+ε ⊂Pκ ;
(ii) f ∈Pκ if and only if Iε

+,2,κ f ∈Pκ+ε.
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Furthermore, the mapping Iε
+,2,κ : Pκ →Pκ+ε is one-to-one.

Proof. By utilizing the Sonine integral representation for the Bessel function, as described
in [§12.11] [16], we obtain the following result

Iε
+,2,κ{Jκ(u); t} = Γ(κ + 1)

Γ(κ + ε + 1)
Jκ+ε(t).

Now, let f ∈Pκ+ε, then let there be a non-negative finite Borel measure µ on [0, ∞)
such that

f (x) =
∫ ∞

0
Jκ+ε(xt)dµ(t).

It follows

f (x) =
Γ(κ + ε + 1)

Γ(κ + 1)

∫ ∞

0
Iε
+,2,κ{Jκ(u); t}dη(t)

=
∫ ∞

0
Jκ(xu)dη̃(u),

where

dη̃(u) =
2Γ(κ + 1)

Γ(κ + 1)Γ(ε)
u2(κ+1)

∫ ∞

u
t−2κ+ε(t2 − u2)ε−1 dη(t).

Therefore, f ∈Pκ . This proves (i) and (ii). To complete the proof, we aim to demon-
strate that if f is a bounded measurable function on [0, ∞) and α, β > −1, such that the
integral

∫ 1
0 tα(1− t2)β f (xt)dt = 0, then we can conclude that f = 0 almost everywhere. By

using the transformation t→
√

t, we can rewrite the integral as follows:∫ 1

0
tα(1− t2)β f (xt)dt =

1
2

∫ 1

0
t(α−1)/2(1− t)β f (x

√
t)dt.

Applying the Titchmarsh theorem on convolution (see, [2]) to this transformed integral,
we can establish the desired result.

The following theorem, which serves as the second main result in this section, is
inspired by the work of R. M. Trigub [§6.3] [2].

Theorem 4. Let κ > − 1
2 . In order for f ∈ Pκ , it is necessary and sufficient that the function

f (·) satisfies:

(i)
(

xκ f (
√

x)
)(j)

= 0, for j = 0, 2, . . . , n;
(ii) xD CDκ−1/2

∗ {tκ f (
√

t), x2} ∈P−1/2;

where κ = n + r with −1/2 < r ≤ 1/2.

Proof. Necessity: Suppose f ∈ Pκ . By Theorem 3, f ∈ Pκ if and only if there exists
g ∈P−1/2 such that

f (x) = Iκ+1/2
+,2,−1/2{g(t); x} = 2

Γ(κ + 1/2)x2κ

∫ x

0
g(t)(x2 − t2)κ−1/2dt. (20)

Using Equation (18), we can rewrite Equation (20) in the following equivalent form:

xκ f (
√

x) =
1

Γ(κ + 1/2)

∫ x

0
g(
√

t)(x− t)κ−1/2t−1/2dt.
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Since the function t→ g0(t)√
t

is locally integrable on [0, ∞), it follows that x → xκ f (
√

x)
belongs to class Cn on [0, ∞), and for j = 0, 1, . . . , n, we have[

dj

dxj

(
xκ f (
√

x)
)]

x=0
= 0,

where
κ = n + r, and − 1

2
< r ≤ 1

2
.

Furthermore,

• for r = 1/2, we have

g(
√

x) =
√

x
[

xn+1/2 f (
√

x)
](n+1)

= Dn+1
∗

[
xn+1/2 f (

√
x)
]
,

• for −1/2 < r < 1/2,

dn

dxn

[
xκ f (
√

x)
]
=

1
Γ(r + 1/2)

∫ x

0
g(
√

t)(x− t)r−1/2t−1/2 dt. (21)

In this case, we can solve the above Abel integral equation to obtain

g(
√

x) =
√

x
Γ( 1

2 − r)
d

dx

∫ x

0

dn

dtn

(
tκ f (
√

t)
) dt
(x− t)r+1/2 ,

=
√

xD CDκ−1/2
∗ {tκ f (

√
t); x}.

This proves (i) and (ii).
Sufficiency: Let us assume that f satisfies conditions (i) and (ii). We consider two

cases based on the value of κ = n + r, where −1/2 < r ≤ 1/2.
Case 1: r = 1/2 From condition (ii), we have

g(
√

x) =
√

x
[(

xn+1/2 f (
√

x)
)(n+1)

]
. (22)

Applying In+1
+ to the above equation and using condition (i), we obtain

f (x) =
2
n!
· 1

x2n+1

∫ x

0
(x2 − t2)ng(t)dt ∈ Pn+1/2. (23)

Case 2: −1/2 < r < 1/2. From condition (ii), we can write

dn

dxn

[
xκ f (
√

x)
]
=

1
Γ(r + 1/2)

∫ x

0
g(
√

t)(x− t)r−1/2t−1/2 dt.

Applying In
+ to the above equation and using condition (i) and semigroup property for the

Riemann–Liouville integral in Equation (14), we obtain

f (x) = Iκ+1/2
+,2,−1/2{g(t); x} ∈ Pκ . (24)

Therefore, in both cases, we have shown that f ∈ Pκ , which completes the proof of
sufficiency.

5. Characterization via Complete Monotone Function

In this section, we explore the characterization of the class Pκ by leveraging Bernstein’s
theorem for completely monotone functions.
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Recall that a function— f : [0, ∞)→ R—is a completely monotone function if it is of
class C∞ on (0, ∞) and

(−1)n f n(x) ≥ 0, x > 0, n ∈ N.

According to Bernstein’s characterization, f is completely a monotone function if and
only if there exists some measure µ on [0, ∞) such that

f (x) =
∫ ∞

0
e−txdµ(t).

We now focus on the connection between positive, definite radial functions and
completely monotone functions, as originally established by Schoenberg in 1938 (see [14]).

Theorem 5 ([4]). A function f is completely monotone on [0, ∞) if and only if the function
f (x) := f (‖x‖) is positive definite on every Rn.

The main result in this section is the following theorem.

Theorem 6. For any κ ≥ −1/2, a function f belongs to the class Pκ if and only if f (
√

x) is
completely monotone on the interval [0, ∞).

Proof. Sufficiency: By the Bernstein theorem, there exists a finite positive measure µ on
[0, ∞) such that for all x ≥ 0,

f (x) =
∫ ∞

0
e−tx2

dµ(t).

On the other hand, according to (Formula 4.11.27) [15], we have

e−tx2
=
∫ ∞

0
Jκ(ux)

e−
u2
4t

(2t)κ+1 σκ(du). (25)

Using this representation, we can rewrite f (x) as

f (x) =
∫ ∞

0
Jκ(tx)dµ̃(t),

where

dµ̃(t) =
∫ ∞

0

e−
x2
4t

(2t)κ+1 dµ(t)σκ(du).

Therefore, we have shown that f (x) ∈ Pκ for all κ ≥ −1/2. Hence, the sufficiency of the
conditions is established.

Necessity: Suppose f ∈ Pκ for all κ ≥ −1/2. In particular, f ∈ Φn for all n ∈ N.
Then, the result follows from Theorem 5, which establishes the connection between positive
definite radial functions and completely monotone functions. Hence, the necessity of the
conditions is demonstrated.

6. Application: Positivity of the Fundamental Solution

In this section, we will show the positivity of the fundamental solution of the following
space-fractional Bessel diffusion equation:{

∂tu(t, x) = −(−Bκ)α/2u(t, x),
u(0, x) = f (x), x ≥ 0, t > 0.

(26)

Here, (−Bκ)α/2 is the fractional Bessel operator, which is given by [19],

(−Bκ)
α/2 f (x) =

2α+κΓ(κ + α
2 + 1)

Γ(κ + 1)|Γ(− α
2 )|

∫ ∞

0

f (x)− τx
κ f (y)

yα+1 dy.
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Let us denote the Fourier–Bessel transform of a function u(t, x) with respect to x as
û(t, λ), where λ ≥ 0. Applying the Fourier–Bessel transform to both sides of the equation
in Equation (26), we obtain: {

∂tû(t, λ) = −λαû(t, λ),
û(0, x) = f̂ (λ).

Then,
û(λ, t) = f̂ (λ)e−λαt.

Therefore,
u(t, x) = (G α,κ

t ∗ f )(x),

where
G α,κ

t (x) = G α,κ(x, t) =
∫ ∞

0
e−λαtJκ(λx) σκ(dλ). (27)

Using the following scaling rules for the Fourier–Bessel transform:∫ ∞

0
f (ax)Jκ(λx)σκ(dx) =

1
a2κ+2

∫ ∞

0
f (x)Jκ(λx/a)σκ(dx), a > 0,

we obtain the following scaling property of the kernel G α,κ(x, t)

G α,κ(t, x) = t−2(κ+1)/αG α,κ(xt−1/α, 1), t > 0, x ∈ R.

Consequently, introducing the similarity variable x/tα, we can write

G α,κ(x, t) = t−2(κ+1)/αK α,κ(xt−1/α),

where
K α,κ(x) =

∫ ∞

0
e−λα

Jκ(λx)σκ(dλ). (28)

Particular cases of the density K α,κ are the following [1,8]:

• The density K 2,κ(x), κ ≥ −1/2, is the Gaussian density kernel

K 2,κ(x) =
e−

x2
4

2κ+1 ; (29)

• The density K 1,κ , κ ≥ −1/2, is the Poison density

K 1,κ(x) =
2κ+1Γ(κ + 3

2 )√
π

1

(1 + x2)κ+ 3
2

. (30)

Proposition 2 ([19]). The following holds:

1. For κ ≥ −1/2, 0 < α < 2 , we have

• x 6= 0

K α,κ(x) =
1

2κ+1π

∞

∑
n=1

(−1)n+1 Γ(1 + αn/2)Γ(κ + 1 + αn/2)
n!

sin(
αnπ

2
)

(
4
x2

) αn
2 +κ+1

.

• x = 0, K α,κ(0) = Γ( 2(κ+1)
α )

α .

2. For κ ≥ −1/2 and α > 1, we have

K α,κ(x) =
1

α2κ

∞

∑
n=0

(−1)n

n!
Γ( 2

α (n + κ + 1))
Γ(κ + 1 + n)

(
x2

4

)n

. (31)
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Lemma 1. Let v be an even function of class C∞ with compact support in [−1, 1], which is positive
and satisfies ‖v‖1,κ = 1. For any ε ∈ (0, 1], define the function vε(x) = ε−2κ−2v

( x
ε

)
. Then, vε

has compact support in [−ε, ε] and ‖vε‖1,κ = 1. Furthermore,

|v̂ε(λ)− 1| ≤ ελ for all λ ≥ 0.

Proof. First, we note that vε has compact support in [−ε, ε] since v has compact support in
[−1, 1]. To show ‖vε‖1,κ = 1, we compute

‖vε‖1,κ =
∫ ε

0
vε(x)σκ(dx) =

∫ 1

0
v(x)σκ(dx) = ‖v‖1,κ = 1.

It follows

v̂ε(λ)− 1 =
∫ ε

0
vε(x)(Jκ(λx)− 1)σκ(dx)

Since
|Jκ(x)− 1| ≤ x for all x ≥ 0,

we have

|v̂ε(λ)− 1| ≤ ελ
∫ ε

0
vε(x)σκ(dx) = ελ.

Therefore, the lemma holds.

Proposition 3. A continuous bounded function on [0, ∞) is positive definite if and only if for
every even function h in the Schwartz space S(R), the inequality ĥ(x) ≥ 0 for all x ≥ 0 implies
ĥ f (x) ≥ 0 for all x ≥ 0.

For the proof of this proposition, refer to the last remark in [4].
The following theorem represents the main result of this section:

Theorem 7. For κ ≥ −1/2 and 0 < α ≤ 2, we have G α,κ(x, t) ≥ 0.

Proof. Since the function e−λα
is completely monotone for 0 < α < 2, it follows from

Theorem 6 that it is positive definite for all κ ≥ −1/2. Using the notation of Lemma 1,
we have

vε(x) =
∫ ∞

0
v̂ε(λ)σκ(dλ).

Since v̂ε(λ) ∈ S(R) is even and positive, and the function e−λα
is positive definite

according to the above proposition, we have∫ ∞

0
v̂ε(λ)e−λα

Jκ(λx)σκ(dλ) ≥ 0.

Lemma 1 shows that this integral converges to K α,κ
t (x), as ε→ 0. This completes the

proof of the theorem.

7. Concluding Remarks

In conclusion, this study has made significant contributions to the field by investigating
the continuation and characterization of radial positive definite functions beyond integer
dimensions. By utilizing fractional derivatives and exploring their relationship with non-
integer continuation, a deeper understanding of these functions has been achieved.

The practical relevance of the findings has been demonstrated through the investiga-
tion of the space fractional diffusion equation. By applying the obtained characterizations,
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the positivity of the fundamental solution has been established. This showcases the practical
implications and real-world applications of continued radial positive definite functions.

Overall, this research expands the knowledge and understanding of radial positive
definite functions, paving the way for further advancements in the field. The insights
gained from this study have the potential to impact various mathematical disciplines, as
well as practical domains such as image processing, data analysis, and machine learning. By
extending the study beyond integer dimensions, new avenues for research and applications
open, contributing to the advancement of the field as a whole.
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