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Abstract: The convergence and robustness rejecting parameters variations and external disturbance
of the system are crucial for repetitive processes. In this paper, a two-dimensional robust fractional-
order iterative learning control (FOILC) is proposed for the repetitive motion process to enhance
the convergence and robustness. A fractional-order proportional derivative function (FOPDF) is
designed as the control variable to replace the tracking error of the integer-order iterative learning
control (IOILC) algorithm. The required dynamic output fractional-order iterative learning controller
is constructed by solving a set of linear matrix inequalities (LMI), and the control parameters are
adjusted according to the given specifications. Simulation and experimental results in robot torque
control are given to prove the effectiveness and feasibility of the proposed design method.

Keywords: repetitive process; two-dimensional system; iterative learning control; linear matrix
inequalities; fractional calculus

1. Introduction

The motions of most manufacturing machines are repetitive; such as those of robots,
computer numerical (CNC) control machines, injection molding machines and so on.
Despite significant progresses in the repetitive process control in the past decade [1,2],
achieving high tracking performance remains a challenging problem, especially when the
process is subject to disturbance and time-varying uncertainties. Moreover, as the cycle
duration of process becomes increasingly shorter, the requirements for the convergence
rate and transient responses become more stringent. Thus, speeding up convergence and
achieving robustness to suppress parameters variations and external disturbance of the
system remain as challenges for repetitive processes [3].

Iterative learning control (ILC) is the most popular method for addressing the repeti-
tive process [4,5]. The controller learns from the repetitive motions and improves tracking
performance in each cycle. The ILC was firstly introduced to improve the robotic operations
by Arimoto et al. [6] and was found to be extremely useful in practical applications [7]. The
early works of ILC schemes considered an open-loop feed-forward compensator without
using the cycle feedback. It was sensitive to perturbation and the control systems converged
slowly [8]. Subsequently, Hybrid ILC algorithms were proposed to include the feedback in
the direction of cycles [9–11]. However, the convergence and robustness of the hybrid ILC
system were mainly focused on the cycle direction, with little analysis with time [12]. Two-
dimensional (2D) system theory was introduced to design the feed-forward feedback ILC
to improve the performance along the direction of cycles and the direction of time [13,14].
Since then, many batch control algorithms based on 2D frameworks have been proposed.
Han et al. propose a model predictive control algorithm for batch processes based on
a two-dimensional integration frame [15]. Zhang et al. design a predictive functional
control strategy for batch processes in the two-dimensional framework [16]. A PI-based
indirect type ILC based on the 2D model is proposed for batch processes with time-varying
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uncertainty [17]. Wang et al. analyze the control performance for ILC-controlled batch
processes in a 2-D system framework [18]. An integrated robust iterative learning control
strategy for batch processes based on a 2D system is reported in [19]. Hao et al. establish
the two-dimensional delay compensation-based iterative learning control scheme for batch
processes with both input and state delays [20]. A hybrid 2D fault-tolerant controller is
designed for multi-phase batch processes with time delay [21]. A model predictive control
method is presented for batch processes with 2D dynamics using extended non-minimal
state space structure [22]. A robust ILC algorithm is developed to control PMSM based on
2D system theory [23]. However, most of these works focus on the stability and steady-state
tracking error, with little consideration of the convergence rate and the robustness against
uncertainty. In addition, the previous works focus on the use of 2D system theory to design
integer-order iterative learning control (IOILC) solutions.

On the other hand, many theoretical and experimental results have been reported
in the literature showing that the fractional calculus ILC outperforms the integer-order
ILC in improving the transient and steady-state performances [24,25]. The fractional
calculus uses the derivatives and integrals of any arbitrary real or complex order, while the
fractional-order iterative learning control (FOILC) has benefited from the advantages of
the fractional order [26–29]. Considering the benefits of fractional order, numerous studies
have been conducted in this field. An ILC algorithm for fractional-order nonlinear systems
is proposed in [30]. Yan et al. propose an FOILC for the nonlinear systems with delay [31].
Fractional order iterative learning control with randomly varying trial lengths is proposed
by Liu. et al. [32]. An iterative learning control algorithm is proposed for fractional-order
multi-agent systems [33,34]. These studies have shown that the FOILC not only retains
the advantages of classic ILC, but also provides more degrees-of-freedom to achieve faster
convergence rate and more robustness.

The FOILC has been demonstrated with improved performance in the transient and
steady-state responses compared to conventional ILC strategies in the integer-order systems.
However, as far as the authors know, the previous studies are limited to robust two-
dimensional ILC of integer orders [35,36], but the two-dimensional robust FOILC has not
been explored. This study aims to develop a robust FOILC method based on the 2D system
framework for the repetitive process to improve the convergence and robustness of the
system in the presence of the parameters variations and external disturbances.

The contributions of this paper include: (1) A robust fractional-order ILC algorithm
based on two-dimensional system theory; (2) The linear matrix inequalities to synthe-
size learning control gains, which ensure guaranteed robustness and convergence rate;
(3) The robustness to suppress parameter variations and external disturbance and improved
convergence speed are demonstrated by theoretical, simulation and experimental results.

The remainder of this paper is organized as follows. Preliminaries of fractional
calculus are given in Section 2. In Section 3, a robust FOILC scheme including fractional-
order control law is developed based on 2D-system theory. In Section 4, the parameters
tuning method for FOILC algorithm are proposed in Section 5. In Section 6, the control
performance is analyzed. Simulations and experiments are carried out to validate the
effectiveness of the proposed methods in Section 7. Concluding remarks and future work
suggestions are made in Section 8.

2. Preliminaries

Lemma 1 ([29]). The following autonomous system

0Dr
t x(t) = Ax(t), x(0) = x0 (1)

where x ∈ Rn, A ∈ Rn×n, 0 < r < 2, is asymptotically stable if and only if

|arg(spec(A))| > rπ/2 (2)
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In this case, the components of the state decay towards 0 in the rate of t−r.

Lemma 2 ([37,38]). Let G, H and ∆ be real matrices with appropriate dimensions with ∆T∆ ≤ I,
then for any scalar σ > 0, the following inequality holds

G∆H + (G∆H)T ≤ σGGT + σ−1HT H (3)

3. Robust FOILC Design
3.1. System Description

Considering the repetitive process described by a differential linear time-variant
system with state–space model as follow:{ .

xk(t) = (a + ∆a(t))xk(t) + (b + ∆b(t))uk(t) + d(t)
yk(t) = Cxk(t), 0 ≤ t ≤ Tp, k = 1, 2, 3, . . . n

(4)

where the subscribe k represents the trial index, t is the time, the Tp(>0) denotes the time
of the cycle, xk(t) is the state of system, yk(t) and uk(t) are, respectively, the output and
control input at time t in the kth trial. d(t) is unknown external disturbance. a and b
are both system parameters matrices with appropriate dimensions. Since the output is a
linear combination of states, the output matrix C is known exactly and not subject to any
uncertainty. ∆a(t) and ∆b(t) respectively denote admissible uncertain perturbation of a
and b. Note that, the system in continuous in the direction of time t, and is discrete in the
direction of cycles k.

For the convenience of discussion, a discrete-time state–space model is derived by the
zero-order-hold sampling of time with sampling time td from the continue-time state–space
model (4). The discrete-time model can be obtained as

∑
s

:
{

xk(td + 1) = (A + ∆A(td))xk(td) + (B + ∆B(td))uk(td) + d(td)
yk(td) = Cxk(td), 0 ≤ td ≤ Tp, k = 1, 2, 3, . . . n

(5)

where {
A + ∆A(td) = a− I + ∆a(td)

B + ∆B(td) = b + ∆b(td)
(6)

where ∆A(td) and ∆B(td) can be constrained as{
∆A(td) = G1∆H1
∆B(td) = G2∆H2

, |∆| < I (7)

where {G1, H1} and {G2, H2 } are given real constant matrices, I is unit matrix.

3.2. Control Law Design

Usually, the purpose of 2D ILC is to drive the tracking error converge monotonically
to a final admissible value with an acceptable transient response. The historical information
along two dimensions, that is the samples index td during a trial from step to step and the
trial index k from trial to trial, to update the control input. Therefore, a causal iterative
learning control input can be designed as

uk(td) = uk−1(td) + rk(td) (8)

where rk(td) denotes the control update law at time td and at the kth operation.
The discrete-time linear state–space process model (5) with time-varying model uncer-

tainty and disturbance d(td) is written in the 2D setting as{
x(td + 1, k) = (A + ∆A(td, k))x(td, k) + (B + ∆B(td, k))u(td, k) + d(td)

y(td, k) = Cx(td, k)
(9)
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Introducing a state error between batch directions as follow:

δ(x(td + 1, k)) = x(td + 1, k)− x(td + 1, k− 1) (10)

Then substituting (9) into (10), yield

δ(x(td + 1, k)) = (A + ∆A(td, k))δ(x(td, k)) + (B + ∆B(td, k))r(td, k) + ϕ(td, k) (11)

where

ϕ(td, k) = δ(∆A(td, k))x(td, k− 1) + δ(∆B(td, k))u(td, k− 1) + δ(d(td, k)) (12)

Considering the tracking error

e(td + 1, k) = yr(td + 1)− y(td + 1, k) (13)

where yr(td + 1) represents as the reference trajectory to be followed.
Substituting (9) and (11) into (12), the feed-forward tracking error can be rewritten as

e(td + 1, k) = e(td + 1, k− 1)− C(A + ∆A(td, k))δ(x(td, k)) + C(B + ∆B(td, k))r(td, k) + Cϕ(td, k) (14)

In this paper, a fractional order proportional derivative function E(td,k) is defined as

E(td, k) = e(td, k) + kp0Dr
t e(td, k) (15)

where kp ∈ R+ is the gain of fractional order operator. 0Dr
t g(.) is the Caputo fractional

derivative of function g(.) with respect to time t of order r [34].
According to (13) and (15), and after simple calculation, one can obtain

E(td + 1, k) = E(td + 1, k− 1)− C(A + ∆A(td, k))δ(x(td, k)) + C(B + ∆B(td, k))r(td, k) +∅(td, k) (16)

where

∅(td, k) = Cϕ(td, k)− kp0Dr
t ((A + ∆A(td, k))δ(x(td, k)) + C(B + ∆B(td, k))r(td, k)) (17)

Then, (11) and (16) can be presented as a particular 2D Roesser [12] system as follows(
δ(x(td + 1, k))

E(td + 1, k)

)
=

(
=
A + ∆

=
A
)(

δ(x(td, k))
E(td + 1, k− 1)

)
+

(
=
B + ∆

=
B
)

r(td, k) + Dϑ(td, k) (18)

where,

=
A =

(
A 0
−A I

)
,
=
B =

(
B
−CB

)
, ∆

=
A =

(
∆A 0
−∆A 0

)
, ∆

=
B =

(
∆B
−C∆B

)
,

ϑ(td, k) =
(

ϕ(td, k)
∅(td, k)

)
, D =

(
C 0
0 I

)
.

It is also shown that from (18) designing FOILC update law r(td, k) is equivalent to
designing a state feedback controller for the 2D system. In this paper, the update law can
be designed as

r(td, k) = P
(

δ(x(td, k))
E(td + 1, k− 1)

)
(19)

where P =
(

p1 p2
)

denote the learning gain vector.
Substituting (19) into (18), the 2D system can be described as follows(

δ(x(td + 1, k))
E(td + 1, k)

)
=

(
=
A +

=
BP + ∆

=
A + ∆

=
BP
)(

δ(x(td, k))
E(td + 1, k− 1)

)
+ Dϑ(td, k) (20)
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Substituting (15) into (19), the update law becomes

r(td, k) = p1δ(x(td, k)) + p2
(
e(td + 1, k− 1) + kp0Dr

t e(td + 1, k− 1)
)

(21)

It can be seen from the above update law that the FOILC output integrates the
feedback state error information δ(x(td, k)) and feed-forward tracking error information
e(td + 1, k− 1) and its fractional derivative 0Dr

t e(td + 1, k− 1). Therefore, the update law
design consists of obtaining a learning gain P and kp and the fractional order parameter r
that stabilize the batch process both during each trial and from cycle to cycle. The system
framework of FOILC is shown as Figure 1.
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4. Parameters Tuning
4.1. Fractional Order Parameters Tuning

Equation (15) describes a fractional-order proportional derivative(PD) controller. A
continues-time state–space model is derived by the zero-order-hold from the discrete-time
state–space model. Then, by applying the s-transforms to the continues-time state–space
model, it can be rewritten as the transfer function form:

Ek(s)
ek(s)

= P(s) = 1 + kpsr (22)

Then, Equation (22) can be represented in the frequency domain as

P(jω) =
(

1 + kpωrcos
rπ

2

)
+ jkpωrsin

rπ

2
(23)

Thus, the phase and gain of the fractional order PD controller are as follows:

Arg[P(jω)] = tan−1 sin (1−r)π
2 + kpωr

cos (1−r)π
2

− (1− r)π
2

(24)

|P(jω)| =
√(

1 + kpωrcos
rπ

2

)2
+
(

kpωrsin
rπ

2

)2
(25)

Here, two specifications to be met are given in the following.
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I. Phase margin specification

Arg[P(jωc)] = −π +∅m (26)

where ωc is the gain crossover frequency and ∅m is the phase margin required. The choice
of the gain crossover frequency and the phase margin depends on the experience. In this
paper, the feasible range is selected between 40 and 80.

II. Gain crossover frequency specification

|P(jωc)|dB = 0 (27)

It means that the amplitude of the transfer function should be zero at the gain crossover
frequency point.

According to specification 1, Equation (25) can be expressed as(
tan−1 sin (1−r)π

2 + kpωr

cos (1−r)π
2

− (1− r)π
2

)∣∣∣∣∣
ω=ωc

= −π +∅m (28)

Then, the relationship between kp and r can be established as

kp =
1

ωr
c

(
tan
(
∅m −

(1 + r)π
2

)
cos

(1− r)π
2

− sin
(1− r)π

2

)
(29)

According to specification 2, another relationship between kp and r can be established as√(
1 + kpωr

ccos
rπ

2

)2
+
(

kpωr
csin

rπ

2

)2
= 1 (30)

Therefore, by giving phase margin and gain margin, the values of kp and r can be
obtained by solving Equations (29) and (30). Note that the tuning procedure for the
fractional order proportional derivative function is limited to the continuous -time direction.
Once the parameters are obtained, the control of the fractional order system can be achieved
through discretization.

4.2. Learning Gain Synthesis Conditions

The sensitivity of the 2D system (18) to the external disturbance ϑ(td, k) and the
tuning error of fractional parameters (e.g., kp, r) directly affect the stability of the FOILC.
A robust two-dimensional FOILC can be designed to ensure that the closed-loop 2D
system (18) guarantee convergence rate and robustness suppressing model uncertainty and
external disturbance.

Theorem 1. For given scalars γ > 0, 0 < τ < 1 and 0 < θ < 1, the 2D discrete-time system
(20) is robust asymptotically stable with robust H∞ performance less than γ, robust convergence
index along the time direction less than τ and robust convergence index along the trial direction less
than θ, if there exist positive definite matrices Qb, Qt, J and positive scalars σ1,2 > 0, such that the
following LMIs condition is satisfied:

−Q(τ, θ)
(

AQ + BJ
)T

(H1Q)T (H2 J)T (CQ)T 0

AQ + BJ −Q + σ1G1GT
1 + σ2G2GT

2 0 0 0 D
H1Q 0 −σ1 I 0 0 0
H2 J 0 0 −σ2 I 0 0
CQ 0 0 0 −γI 0
0 DT 0 0 0 −γI


< 0 (31)
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where −Q(τ, θ) , diag{τQb, θQt} > 0, Q , diag{Qb, Qt} > 0, Q = QT .
If the above LMIs are feasible, the gain vector P can be obtained from

P =
(

p1 p2
)
= JQ−1 (32)

Proof of Theorem 1. The two-dimensional closed-loop system (20) has H∞ performance γ

if there exist positive definite matrices Qb and Qt satisfying (7) for any uncertain distur-
bance, the following LMIs hold [38]:

−Q Q
(−

Acl

)T
QCz

T 0
−
AclQ −Q 0 D
CzQ 0 −γI 0

0 DT 0 −γI

 < 0 (33)

where
−
Acl =

=
A +

=
BP + ∆

=
A + ∆

=
BP, Cz = C.

The robust asymptotical stability is proven firstly.
Pre- and post-multiply diag

(
Q−1, Q−1) on both sides of (34), and use the Schur Com-

plement Lemma, one can easily obtain (35).−Q(ϑ, θ) Q
(−

Acl

)T

−
AclQ −Q

 < 0 (34)

AT
clQ
−1 Acl −

[
ϑ 0
0 θ

]
Q−1 < 0 (35)

Considering the Lyapunov function of tracking error dynamics in the direction of time,

V(td, k) = E(td, k)TQb
−1E(td, k)

then

V(td + 1, k) = E(td + 1, k)TQb
−1E(td + 1, k) = E(td, k)T AT

clQb
−1 AclE(td, k) < ϑV(td, k)

Similarly, in the direction of cycle k,

V(td, k + 1) < θV(td, k)

Since 0 < ϑ < 1 and 0 < θ < 1,

V(td, k) < ϑtV(0, k), V(td, k) < θkV(0, k)
Lim

td→∞
V(td, k) = 0→ E(∞, k) = 0

Lim
k→∞

V(td, k) = 0→ E(td, ∞) = 0

Therefore, the closed-loop system is robust asymptotic stability under uncertainty.
Next, the robust H∞ performance will be proved.
Since 0 < ϑ < 1 and 0 < θ < 1, then
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−Q Q

(−
Acl

)T

QCz
T 0

−
AclQ −Q 0 D
CzQ

0
0

DT
−γI

0
0
−γI

 <


−Q(ϑ, θ) Q

(−
Acl

)T

QCz
T 0

−
AclQ −Q 0 D
CzQ

0
0

DT
−γI

0
0
−γI



=


−Q(ϑ, θ) ∗ ∗ ∗(−
A +

−
BK
)

Q −Q ∗ ∗

CzQ
0

0
DT

−γI
0

0
−γI

+


0

G1
0
0

∇[H1Q 0 0 0
]
+


(H1Q)T

0
0
0

∇T[0 G1
T 0 0

]
+


0

G2
0
0

∇[H2KQ 0 0 0
]
+


(H2KQ)T

0
0
0

∇T[0 G2
T 0 0

]

(36)

Using the Lemma 2, the following LMI hold with constant positive scalar σ1,σ2:
−Q(ϑ, θ) ∗ ∗ ∗(−
A +

−
BK
)

Q −Q ∗ ∗

CzQ
0

0
DT

−γI
0

0
−γI

+ σ1


0

G1
0
0

[0 G1
T 0 0

]
+ σ1

−1


(H1Q)T

0
0
0

[H1Q 0 0 0
]

+σ2


0

G2
0
0

[0 G2
T 0 0

]
+ σ2

−1


(H2KQ)T

0
0
0

[H2KQ 0 0 0
]
=

[
N M

MT −E

]
< 0

(37)

where

N =

−Q(ϑ, θ) + σ1
−1(H1Q)T H1Q + σ2

−1(H2KQ)T H2KQ ∗(−
A +

−
BK
)

Q −Q + σ1G1G1
T + σ2G2G2

T


M =

[
CzQ 0

0 DT

]
,−E =

[
−γI 0

0 −γI

]
By the Schur Complement, (37) is equivalent to

−Q(ϑ, θ) (H1Q)T (H2KQ)T [(
A + BK

)
Q
]T

(CzQ)T 0
∗ −σ1 I 0 0 0 0
∗ 0 −σ2 I 0 0 0
∗ ∗ ∗ −Q + σ1G1GT

1 + σ2G2GT
2 0 D

∗ ∗ ∗ ∗ −γI ∗
∗ ∗ ∗ ∗ 0 −γI


< 0 (38)

Setting PQ = J, and reordering the LMI items by similar matrix transformation. Then
(31) is obtained and the controller can be obtained as P = JQ−1.

The proof is completed. �

Remark 1. Theorem 1 provides a sufficient condition for the 2D system to have robust H∞ performance,
where the parameter γ is regarded as the upper limit of robustness H∞ performance. Thus, the
control law (21) with the least upper limit for the closed-loop 2D system (20) can be obtained by
solving the following eigenvalue problem.

γmin = Minimize γ



Fractal Fract. 2023, 7, 624 9 of 19

while subject to (31).

Note that if there is a feasible solution for given 0 < τ < 1 and 0 < θ < 1, the control
law (21) can be designed by P =

(
p1 p2

)
= JQ−1. Otherwise, the sufficient condition is

not leading to a solution and one just needs to tune the robust convergence index 0 < τ < 1
and 0 < θ < 1.

5. Control Performance Analysis
5.1. Convergence Analysis

According to Theorem 1, the fractional order proportional derivative function E(td,k)
can converges to zero with guaranteed convergence rate. Namely, the following equa-
tion holds:

E(td, k) = e(td, k) + kp0Dr
t e(td, k) = 0 (39)

According to Lemma 1, if kp > 0 holds, the tracking error e(td, k) converges to zero.
Therefore, the control law (21) can drive the tracking error e(td,k) converge to 0 in a

limited time.

5.2. Robustness Analysis

For ease of discussion, the following equation is introduced:

E(td, k) ∼= E(x(td, k)) = 0 (40)

Then, the following Theorem 2 on the robustness rejecting the parameters variation
and external disturbance holds.

Remark 2. The fractional-order ILC leads to stronger robustness than theH∞ 2D control. This
is why fractional-order ILC is introduced into 2D control. Below, Theorem 2 give a theory to
prove robustness.

Theorem 2. If the fractional order proportional derivative function E(td,k) converges to zero, that is,
(40) is true, then the close-loop system (5) is invariant with regard to the multiplicative uncertainty
∆a(t) and ∆b(t) and disturbance d(t).

Note that for better discussion, Theorem 2 is proposed and proved in continuous-time
domains, but the same applies to discrete-time domains.

Proof of Theorem 2. When the fractional order proportional derivative function E(t,k)
converges to zero, one can represent the close-loop system (5) and (40) as follow:{ .

x(t) = (a + ∆a(t))x(t) + (b + ∆b(t))u(t) + d(t)
E(x) = 0

(41)

According to (7), it is not difficult to find∇1,2,3 ∈ R to satisfy the following conditions
∆a(t) = b∇1
∆b(t) = b∇2
d(t) = b∇3

(42)

Taking the time derivative of Equations (39) and (41) can be rewritten as{ .
x(t) = (a + ∆a(t))x(t) + (b + ∆b(t))u(t) + d(t)

.
E(x) = 0

(43)
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Then, yields,

∂E
∂x

[(a + ∆a(t))x(t) + (b + ∆b(t))u(t) + d(t)] = 0 (44)

By simple calculations, one obtains,

u(t) = −
[

∂E
∂x

(b + ∆b(t))
]−1 ∂E

∂x
[(a + ∆a(t))x(t) + d(t)] (45)

Substituting (45) into (5), one can obtain:

.
x(t) = (a + ∆a(t))x(t)− (b + ∆b(t))

[
∂E
∂x

(b + ∆b(t))
]−1 ∂E

∂x
[(a + ∆a(t))x(t) + d(t)] + d(t) (46)

Substituting (42) into (46), yields

.
x(t) = (a + b∇1)x(t)− (b + b∇2)

[
∂E
∂x (b + b∇2)

]−1
∂E
∂x [(a + b∇1)x(t) + b∇3] + b∇3

= (a + b∇1)x(t)− b(1 +∇2)[(1 +∇2)]
−1
(

∂E
∂x b
)−1

∂E
∂x − b(1 +∇2)[(1 +∇2)]

−1
(

∂E
∂x b
)−1(

∂E
∂x b
)
(∇1x(t) +∇3) + b∇3

= (a + b∇1)x(t)− b
[

∂E
∂x b
]−1

∂E
∂x a− b∇1x(t)− b∇3 + b∇3= ax(t)− b

[
∂E
∂x b
]−1

∂E
∂x

(47)

Hence, it can be seen from (47) that the system is invariant with regard to ∆a(t), ∆b(t), d(t),
when the fractional order proportional derivative function E(t,k) converges to zero. The proof
is achieved completely. �

6. Simulation Results

Some simulation studies on velocity control for simulating repetitive motion processes
of robots are carried out using the “Matlab/Simulink” software package to illustrate the
feasibility of the proposed control method and to provide comparison results with previous
method [36]. The robot model expressed as state–space equation is identified using a
data fitting technology: step changes in the robot motion input are introduced to excite
the corresponding robot joint, and then velocity responses are recorded and fitted. The
state–space model is converted as below:{ .

xk(t) = (−1.23 + ∆a(t))xk(t) + (1.68 + ∆b(t))uk(t) + d(t)
yk(t) = Cxk(t), 0 ≤ t ≤ Tp, k = 1, 2, 3, . . . n

(48)

The set-point profile used in these simulations is as follow:

Yr =

{
1, 0 < t ≤ 10 s

0, 10 < t ≤ 20 s
(49)

Given τ = θ = 0.868, ωc = 70, ∅m = 70.
Then, using the proposed tuning algorithm can obtain the following control parame-

ters under ideal conditions.
The control parameters of FOILC are obtained as below:

P =

{
p1 = 0.2366

p2 =
(
0.6386 0.6835

) (50)

{
kp = 2.6315
r = 1.0778

(51)

Some simulations are designed to demonstrate the effectiveness of the proposed
control scheme. Figure 2 depicts the comparison of control performance between the
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proposed FOILC and previous IOILC [36] for the robot model (48). The step response for
the speed control of the robot model with the proposed FOILC is shown on the left of
Figure 2a. We can see the set-point profile after the 2nd cycle from the output track. There is
a little tracking error in both the first and the second phase of the set-point profile. However,
the tracking error is expected to taper off from cycle 1 to cycle 4. In addition, the system
output jitters when the perturbation is added starting from the fifth cycle, but decays to
almost zero after the third cycle, as shown on the left of Figure 2c. The disturbance is added
from the fifth cycle, as shown in Figure 3.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 11 of 19 
 

 

  
(a) 

  
(b) 

  
(c) 

Figure 2. Comparison of control performance between the proposed FOILC and previous IOILC 

[36]. (a) Step responses for the speed control of the robot model with FOILC (left) or IOILC (right); 

(b) Control output of the FOILC (left) or IOILC (right); (c) Tracking error for response with the 

FOILC (left) or IOILC (right). 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.5

0

0.5

1

1.5

Time(s)

S
pe

ed
(r

/m
in

)

 

 

System output

Reference input

cycle1 cycle2 cycle3 cycle4 cycle5 cycle6 cycle7 cycle8 cycle9 cycle10

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-3

-2

-1

0

1

2

3

4

5

Time(s)

C
on

tro
l o

ut
pu

t(v
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1.5

-1

-0.5

0

0.5

1

1.5

Time(s)

Tr
ac

ki
ng

 e
rr

or
(r

/m
in

)

Figure 2. Comparison of control performance between the proposed FOILC and previous IOILC [36].
(a) Step responses for the speed control of the robot model with FOILC (left) or IOILC (right);
(b) Control output of the FOILC (left) or IOILC (right); (c) Tracking error for response with the FOILC
(left) or IOILC (right).
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The step response for the speed control of the robot model with the proposed FOILC
is shown on the right of Figure 2a. It can be seen that the outputs track the set-point profile
require more than 3 cycles. Overshoot in the dynamic response is expected to increase
gradually from cycle 1 to cycle 4. When the disturbance is added from the fifth cycle, the
system output jitters. Although the jitter is reduced, the overshoot continues, as shown on
the right of Figure 2a,c.

These simulation results by comparing the proposed FOILC with the previous IOILC
show that the FOILC algorithm can drive the output of the system to track the set-point
profile quickly and stably in the 3th cycles, but the IOILC algorithm requires more than
4 cycles. These comparative results show that the proposed FOILC has better transient
performance than the IOILC algorithm. In addition, the proposed FOILC exhibits better
robust performance than the IOILC.

7. Experimental Results

The FOILC scheme proposed in this paper have been experimentally validated using
the robot system and compared with IOILC algorithm proposed in reference [36]. The con-
figuration of the four degrees-of-freedom SCARA robot is shown in Figure 4. Experiments
are focused on controlling one of the axes depicted in Figure 4 denoted by “controlled
axis”, which is driven by a permanent magnet synchronous motor (PMSM). The motion
controller and servo driver are both based on “TMSC320F28335” DSP. The motion con-
troller sets a reference value, and the servo driver receives the given value through field
bus communication. The speed of controlled axis is obtained by differentiating angular
displacement, which is detected by the resolver.

The state–space equation of the controlled axis is modeled based on step response tests,
which is converted as (48). The performance parameters are given the same as simulations
parameters, which result in the same control parameters with simulations. The set-point
profiles are as follows:

Yr =


400, 0 < t ≤ 3000

0.2× (t− 3000) + 400, 3000 < t ≤ 4000
600, 4000 < t ≤ 6000

(52)

Given τ = θ = 0.868, ωc = 70, ∅m = 70.



Fractal Fract. 2023, 7, 624 13 of 19

Using the proposed tuning algorithm can obtain the following control parameters
under ideal conditions.

The control parameters of FOILC are obtained as (50) and (51).
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Figure 4. SCARA robot plant.

The experimental result of step and slope responses by the FOILC for the speed control
of the robot are depicted in Figure 5. It can be observed from Figure 5a that the outputs of
the system converge quickly, and the control performance is optimized from cycle 1 to cycle
4. Figure 5c,d show that the velocity response can quickly follow the set-point profile when
the trial number increases to 30. In Figure 5e, the sum-of-squares error (SSE) standards is
used to measure the output tracking error along the batch direction. It can be seen from
Figure 5 that perfect tracking has reached nearly the fifth cycles. In addition, there is no
steady-state output tracking error from the first cycle.

The results of velocity responses by the IOILC designed following the reference [36]
procedure are illustrated in Figure 6a, and the corresponding control inputs are plotted in
Figure 6b. These experiments results show that the system output of the first cycle is far
from the set point. The system output response converges rapidly after the fourth cycle,
and the acceptable control performance is obtained in the 30th cycle, while the output
tracking error in terms of SSE along the batch direction is plotted in Figure 6e. It can be
seen from Figure 6 that there is no steady-state output tracking error from the fifth cycle.

Both of simulations and experiments results demonstrate the effectiveness of the
proposed control schemes. Due to the ideal condition for the simulations, the design control
approaches can obtain excellent control performance. Furthermore, experimental results
with velocity response of robot show that the outputs can track the reference input quickly
and stably despite existent nonlinear and time varying characteristics. These obtained
results by comparing the proposed FOILC scheme with the previous IOILC indicate that
the proposed FOILC has better control performance than that of the IOILC algorithm.
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Figure 5. Step and slope responses for the speed control of the robot with FOILC: (a) outputs of the
robot from cycle 1 to cycle 4; (b) output of the FOILC from cycle 1 to cycle 4; (c) output of the robot in
the cycle 30; (d) tracking error in the 30cycle; (e) Sum-of-squares error of the output following the
input in the 30 cycles.
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Figure 6. Step and slope responses for the speed control of the robot with IOILC [36]: (a) outputs of
the robot from cycle 1 to cycle 4; (b) outputs of the IOILC from cycle 1 to cycle 4; (c) output of the
robot in the cycle 30; (d) tracking error in the 30cycle; (e) Sum-of-squares error of the output following
input in the 30 cycles.

8. Conclusions

The FOILC scheme has been developed based on 2D system theory for the batch
motion process in this paper. Moreover, the control parameters are tuned by LMIs and
given specifications. The simulations and experimental results show that the proposed
control scheme can achieve favorable performance for the speed control of robots. A
comparison with an IOILC method clearly illustrates that the FOILC can track the set point
in the 30th cycles to obtain very small tracking error, but the IOILC requires more than
four cycles to reach favorable control performance. Importantly, FOILC exhibits better
robust performance than IOILC. These obtained results further prove that FOILC adopts the
proposed enhanced error function to replace the error of IOILC, which not only has faster
response, but also has stronger robustness to reject the parameter variations and external
disturbance. It should be further noted that the results obtained by the method proposed
in this paper are limited to the variations of system parameters and external disturbances
satisfying certain conditions. Therefore, our future work is to broaden the applicability of
the proposed method to system parameter changes and external disturbances.
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