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Abstract: A new fractional-order cellular neural network (CNN) system is solved using the Adomian
decomposition method (ADM) with the hyperbolic tangent activation function in this paper. The
equilibrium point is analyzed in this CNN system. The dynamical behaviors are studied as well, using
a phase diagram, bifurcation diagram, Lyapunov Exponent spectrum (LEs), and spectral entropy
(SE) complexity algorithm. Changing the template parameters and the order values has an impact
on the dynamical behaviors. The results indicate that rich dynamical properties exist in the system,
such as hyperchaotic attractors, chaotic attractors, asymptotic periodic loops, complex coexisting
attractors, and interesting state transition phenomena. In addition, the digital circuit implementation
of this fractional-order CNN system is completed on a digital signal processing (DSP) platform,
which proves the accuracy of ADM and the physical feasibility of the CNN system. The study in
this paper offers a fundamental theory for the fractional-order CNN system as it applies to secure
communication and image encryption.

Keywords: fractional-order chaotic system; cellular neural network; dynamical characteristics; coexisting
attractors; DSP circuit implementation

1. Introduction

The study of biological neural networks is extremely significant to explore human
brain thinking and intelligent activities. Artificial neural networks can simulate intelligent
activities based on the working principles of the human brain to solve practical problems.
Neural networks rely on the interaction of neurons to exhibit complex dynamical behav-
iors. Rich dynamical behaviors are found in a variety of neural networks and improved
models [1–5]. It is worth mentioning that the full names of terminology corresponding to
the abbreviations are shown in Table 1 for ease of reading and understanding the paper.
The circuit structure called the cellular neural network (CNN) was proposed by Chua [6].
CNN enables real-time signals to be handled in parallel at high speed, and the structure
can realize a Very Large-Scale Integration (VLSI) circuit due to local interconnectivity.
Marco and Forti found that the complex dynamical properties occurred in a third-order
CNN, which had a symmetric interconnection parameter matrix [7]. Meanwhile, many
classes of systems based on the original CNN model have been designed, and hyperchaotic
phenomena were found in certain systems [8–12]. In addition, different types of neural
networks are extensively applied in diverse fields, including image processing, secure
communications, and so on [13–19]. For example, Xiu et al. constructed a novel chaotic
memristive CNN system, which is applied for secure communications through chaotic
synchronization [13]. Norouzi et al. presented an improved approach to image encryption
with high sensitivity depending on DNA sequence and CNN [18]. On the basis of a CNN
hyperchaotic system, Zhang et al. put forward an image encryption scheme for achieving
high security [19]. CNN has a broad and profound application prospect, but most studies of
CNN are integer-order systems. There are a few studies about fractional-order CNN [20,21].
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However, fractional-order systems can simulate CNN systems more accurately. Thus, this
article concentrates on the construction and comprehensive analysis of fractional-order
CNN systems.

Table 1. Full name corresponding to the abbreviation.

Full Name Abbreviation

Cellular neural network CNN
Adomian decomposition method ADM

Lyapunov Exponent spectrum LEs
Spectral entropy SE

Digital signal processing DSP
Frequency-domain method FDM
Predictor-corrector method PCM

The memory property and overall importance enable fractional calculus to be more
accurate and efficient in describing models and dealing with problems [22–29]. Fractional-
order chaotic systems can exhibit more abundant dynamical behaviors compared with
integer-order systems. Meanwhile, the exact periodic solution does not exist in the
fractional-order dynamical system, but the long-time periodic solution may exist in the
fractional-order system [30]. In differential equations of fractional order, numerical solution
algorithms are basic to theoretical analysis and practical application. To solve fractional-
order chaotic systems, there are three common algorithms, which are the frequency-domain
method (FDM) [31], predictor-corrector method(PCM) [32], and Adomian decomposition
method (ADM) [33]. The FDM gives a basis in theory for fractional-order analog circuit
implementation, but it does not take into account the historical information in the approxi-
mation process [34]. The PCM is a time domain analysis algorithm in which the order of
the differential operator can calculate smaller steps. However, this method requires more
operation time and memory space since each iteration uses all the previous data. The ADM
is suitable for digital circuit implementation, which has been widely applied to various
fractional-order neural networks owing to its more accurate numerical solutions and faster
convergence [35–37]. Jahanshahi et al. studied dynamical behaviors and synchronization in
a fractional-order Hopfield-like neural network [38]. Huang et al. came up with a four-cell
fractional order CNN and found rich dynamical behaviors [39]. Therefore, the ADM is
used for solving the fractional-order CNN system accurately in this paper.

The nonlinear activation function is the center of neural networks. Between layers of
a neural network, the activation function is adapted to output values of the former layer
in a tolerable range to input values of the latter. The option of activation function can
have a huge effect on enhancing the efficiency and performance of neural networks [40].
Associative memory can be achieved through equilibrium point stability in CNN, Han et al.
used thresholding activation to study equilibrium points of CNN in different parameter
regions [41]. Masahiro Nakagawa proposed Chebyshev-type functions to act as activation
functions in the chaos neuron models [42]. Different types of activation functions have
different characteristics and apply to various classes of neural networks [43–45]. The hy-
perbolic tangent function has some similar properties to the segmented linear function
in the previous CNN. Further, its ideal steep derivative improves the efficiency of fast
learning [46,47]. Meanwhile, the smooth mathematical nature of the hyperbolic tangent
function makes it easier to complete hardware design and implementation than the ini-
tial segmented linear function. Therefore, the hyperbolic tangent function is utilized as
an activation function of the fractional-order CNN system. Furthermore, this system is
implemented using DSP for proving its physical feasibility. And it provides the digital
circuit foundation for practical application research based on the system.

Based on the above issues, this paper proposes a novel fractional-order cellular neural
network (CNN) system based on a hyperbolic tangent activation function and solves the
system using the Adomian decomposition method (ADM). The ideal steep derivative of
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the hyperbolic tangent activation function improves the efficiency of the previous CNN.
Various analytical approaches indicate the presence of rich dynamical behaviors in the
system, including diverse attractors, attractor coexistence, and state transition phenomena.

The rest of the manuscript is organized as follows. Section 2 demonstrates the con-
struction of the fractional-order CNN system with an activation function tanh and presents
its solution process of ADM. In Section 3, the stability of equilibrium points is analyzed.
The influences of the order and system parameters on the dynamical behaviors are also
studied. The complex dynamical characteristics of the system are investigated. Section 4
displays the DSP implementation. Lastly, some conclusions are obtained.

2. CNN System with Hyperbolic Tangent Activation Function
2.1. Adomian Decomposition Method

The ADM is broadly accepted for solving linear and nonlinear differential equations
which was proposed by Adomian. This approach can be applied to solving fractional-order
systems. The fractional-order system is represented as

∗Dq
t0

x(t) = Lx + Nx + g(t)
x(k)(t+0 ) = bk, k = 0, 1, · · · , n− 1
n ∈ N, n− 1 < q ≤ n

, (1)

where *Dq
t 0means Caputo differential operation about order q, bk means initial value. The

system equation generally consists of three parts: linear L, nonlinear N, and constant g(t).
After the integration of two sides in Equation (1), the result can be obtained as

x = Jq
t0

Lx + Jq
t0

Nx + Jq
t0

g + ϕ

ϕ =
m−1
∑

k=0
bk

(t−t0)
k

k!
, (2)

where Jq
t 0 refers to the Riemann–Liouville integral operator, ϕ is the initial value condition.

Jq
t0

integral calculation fulfills below fundamental properties
Jq
t0
(t− t0)

γ = Γ(γ+1)
Γ(γ+1+q) (t− t0)

γ+q

Jq
t0

C = C
Γ(q+1) (t− t0)

q

Jq
t0

Jr
t0

x(t) = Jq+r
t0

x(t)

. (3)

According to the ADM algorithm, the nonlinear part is decomposed into an equivalent
special polynomial through the following equation

Ai
j =

1
i!

[
di N(vi

j(λ))

dλi

]
λ=0

vi
j(λ) =

i
∑

k=0
(λ)kxk

j

, i = 0, 1, 2 . . . ∞; j = 1, 2 . . . ∞. (4)

The nonlinear polynomial is given as

Nx =
∞

∑
i=0

Ai(x0, x1, · · · , xi). (5)

Therefore, the solution of the fractional order system then is expressed as

x =
∞

∑
i=0

xi = Jq
t0

L
∞

∑
i=0

xi + Jq
t0

N
∞

∑
i=0

Ai + Jq
t0

g + ϕ. (6)
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The solution components can be further indicated as

x0 = ϕ

x1 = Jq
t0

Lx0 + Jq
t0

A0(x0)

. . .
xi = Jq

t0
Lxi−1 + Jq

t0
Ai−1(x0, x1, . . . , xi−1)

. . .

. (7)

2.2. Solution of the Fractional-Order CNN System

The CNN is an effective and flexible circuit structure, but it owns the essential features
of biological neural networks. CNNs can be viewed as multiple basic cellular circuits
connected in a neighborhood connection mode. The basic circuit is described as a cell.
When the cells are organized in u rows and v columns, the cell located in row i and column
j can be expressed as C(i, j). The simple CNN structure with two-dimensional arrangement
and 5 × 5 size is given in Figure 1, and its neighborhood value r = 2. The definition of
r-neighborhood is

Nr(i, j) = {C(k, l)|max{|k− i|, |k− i|}≤ r, 1 ≤ k ≤ u; 1 ≤ k ≤ v}. (8)
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pled to neighbor cells. The uij, yij, and xij denote the input, output, and state variables sep-
arately. Eij and I refer to independent voltage and current source, respectively. As the sin-
gle nonlinear component, Iyx is a segmented linear voltage-controlled current source in a 
unit. 

Figure 1. The construction of a two-dimensional 5 × 5 CNN.

The circuit architecture of each detailed cell is depicted in Figure 2. Each cell has
one capacitor C, two resistors Rx, Ry, and several linear voltage control current sources
coupled to neighbor cells. The uij, yij, and xij denote the input, output, and state variables
separately. Eij and I refer to independent voltage and current source, respectively. As the
single nonlinear component, Iyx is a segmented linear voltage-controlled current source in
a unit.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 5 of 21 
 

 

 

Figure 2. A detailed cell circuit structure for CNN. 

The circuit state equation of a cell is 

r r

ij ij
i j k l kl i j k l kl

C k l i j C k l i jx

dx t x t
c A y t B u t I

dt R ( , ; , ) ( , ; , )
( , )∈Ν ( , ) ( , )∈Ν ( , )

( ) ( )
= − + ( ) + ( ) +  , (9)

where 

) )xy i j k l i j k l kl xu i j k l i j k l klI A y t I B u t( , ; , ( , ; , ) ( , ; , ( , ; , )= ( ), = ( ) . (10)

In Equation (10), A(i,j;k,l) is called an interactive parameter. And it affects the output 
feedback of CNN. B(i,j;k,l) is the control parameter, which has an impact on the input control 
effect of CNN. 

The output equation in the CNN unit circuit is 

1 1 1
2kl ij ijy t x t x t( ) = (| ( ) + | − | ( ) − |) . (11)

The output equation affects Ixy(i,j;k,l) as presented in Equation (10), and it can be viewed 
as the activation function of CNN. The activation function controlling neuron output af-
fects the properties of the neuron in the neural network. Neural networks can be used 
with multiple types of activation functions. The hyperbolic tangent function tanh(x) has a 
fast convergence rate. The zero mean property of function tanh brings the artificial neural 
network even closer to the biological state. In practice, the tanh(x) function can be used 
for better sparsity. Compared with the original segmented linear function, the smooth 
mathematical property of the hyperbolic tangent function is easier to design and imple-
ment in hardware. The function tanh(x) is used as the activation function in this system 
due to its advantages. Therefore, the segmented linear output equation ykl(t) in the original 
CNN cell circuit is replaced by 

tanhkl ijy t x t( ) = ( ( )) . (12)

The forms of simplified models of CNN are various. To make research more conven-
ient, a simplified equation model of a fully interconnected CNN system is introduced as 
follows 

5 5

1, 1
1 4 5, , , , ,j

j j k jk k jk k j
k k j k

dx
x p y t A y t S x I j

dt = ≠ =
= − + ( ) + ( ) + + = 2 3  , (13)

where xj and yk, refer to the state variable and output, Ajkyk(t) and Sjkxk represent the output 
and state variable in connected cells, Ij represents the bias current. Based on three gener-
alized cells models [48] and lots of experiments with coefficients, the appropriate coeffi-
cients are chosen. 

Setting Pj = 0(j ≠ 0), P4 = b, Ij = 0, Ajk = 0, 

Figure 2. A detailed cell circuit structure for CNN.

The circuit state equation of a cell is

c
dxij(t)

dt
= −

xij(t)
Rx

+ ∑
C(k,l)∈Nr(i,j)

A(i,j;k,l)ykl(t) + ∑
C(k,l)∈Nr(i,j)

B(i,j;k,l)ukl(t) + I, (9)
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where
Ixy(i,j;k,l) = A(i,j;k,l)ykl(t), Ixu(i,j;k,l) = B(i,j;k,l)ukl(t). (10)

In Equation (10), A(i,j;k,l) is called an interactive parameter. And it affects the output
feedback of CNN. B(i,j;k,l) is the control parameter, which has an impact on the input control
effect of CNN.

The output equation in the CNN unit circuit is

ykl(t) =
1
2
(|xij(t) + 1| − |xij(t)− 1|). (11)

The output equation affects Ixy(i,j;k,l) as presented in Equation (10), and it can be viewed
as the activation function of CNN. The activation function controlling neuron output affects
the properties of the neuron in the neural network. Neural networks can be used with
multiple types of activation functions. The hyperbolic tangent function tanh(x) has a fast
convergence rate. The zero mean property of function tanh brings the artificial neural
network even closer to the biological state. In practice, the tanh(x) function can be used
for better sparsity. Compared with the original segmented linear function, the smooth
mathematical property of the hyperbolic tangent function is easier to design and implement
in hardware. The function tanh(x) is used as the activation function in this system due to
its advantages. Therefore, the segmented linear output equation ykl(t) in the original CNN
cell circuit is replaced by

ykl(t) = tan h(xij(t)). (12)

The forms of simplified models of CNN are various. To make research more conve-
nient, a simplified equation model of a fully interconnected CNN system is introduced
as follows

dxj

dt
= −xj + pjyk(t) +

5

∑
k=1,k 6=j

Ajkyk(t) +
5

∑
k=1

Sjkxk + Ij, j = 1, 2, 3, 4, 5, (13)

where xj and yk, refer to the state variable and output, Ajkyk(t) and Sjkxk represent the
output and state variable in connected cells, Ij represents the bias current. Based on three
generalized cells models [48] and lots of experiments with coefficients, the appropriate
coefficients are chosen.

Setting Pj = 0(j 6= 0), P4 = b, Ij = 0, Ajk = 0,

Sjk =


1 0 −1 −1 0
0 3 1 0 0
12 −a 1 0 0
96 0 0 −89 0
0 0 15 0 −1

, (14)

the differential equation for the fractional-order CNN system is denoted in

∗Dq
t0

x1(t) = −x3 − x4

∗Dq
t0

x2(t) = 2x2 + x3

∗Dq
t0

x3(t) = 12x1 − ax2

∗Dq
t0

x4(t) = 96x1 − 90x4 + btanh(x4)

∗Dq
t0

x5(t) = 15x3 − 2x5

. (15)
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According to Equation (6), the linear and nonlinear terms can be decomposed into
Lx1
Lx2
Lx3
Lx4
Lx5

 =


−x3 − x4
2x2 + x3

12x1 − ax2
96x1 − 90x4
15x3 − 2x5

,


Nx1
Nx2
Nx3
Nx4
Nx5

 =


0
0
0

btanh(x4)
0

,


g1
g2
g3
g4
g5

 =


0
0
0
0
0

. (16)

It is clear that the nonlinear term of the system has only one hyperbolic tangent func-
tion tanh(x4). The nonlinear term tanh(x4) is decomposed in accordance with Equation (4)
as follows

A0
4 = tanh(x0

4)

A1
4 = x1

4sech2(x0
4)

A2
4 = x2

4sech2(x0
4)− (x1

4)
2sech2(x0

4)tanh(x0
4) .

A3
4 = x3

4sech2(x0
4)− 2x2

4x1
4sech2(x0

4)tanh(x0
4)

+ 1
3 (x1

4)
3(4sech3(x0

4)tanh2(x0
4)− sech4(x0

4))

(17)

In this system, the initial value can be defined as
x0

1 = x1(t0)
x0

2 = x2(t0)
x0

3 = x3(t0)
x0

4 = x4(t0)
x0

5 = x5(t0)

. (18)

Setting c0
1= x0

1, c0 2 = x0
2, c0 3 = x0

3, c0 4 = x0
4, c0 5 = x0

5, according to the integral
properties Equation (3), the second state variable can be denoted as

x1
1 = (−c0

3 − c0
4)

(t−t0)
q

Γ(q+1)

x1
2 = (2c0

2 + c0
3)

(t−t0)
q

Γ(q+1)

x1
3 = (12c0

1 − ac0
2)

(t−t0)
q

Γ(q+1) .

x1
4 = (96c0

1 − 90c0
4 + btanh(c0

4))
(t−t0)

q

Γ(q+1)

x1
5 = (15c0

3 − 2c0
5)

(t−t0)
q

Γ(q+1)

(19)

And then assign the coefficient to the relevant variable, obtaining
c1

1 = −c0
3 − c0

4
c1

2 = 2c0
2 + c0

3
c1

3 = 12c0
1 − ac0

2.
c1

4 = 96c0
1 − 90c0

4 + btanh(c0
4)

c1
5 = 15c0

3 − 2c0
5

(20)

It is obvious that x1 can be expressed as c1(t − t0)/r(q + 1). The coefficients corre-
sponding to other terms also can be solved in the same way. The results are presented in
Appendix A.

Eventually, the approximate solution of the CNN fractional-order system is repre-
sented as

x̃j(t) = c0
j + c1

j
(t− t0)

q

Γ(q + 1)
+ c2

j
(t− t0)

q

Γ(2q + 1)
+ c3

j
(t− t0)

q

Γ(3q + 1)
+ c4

j
(t− t0)

q

Γ(4q + 1)
, (21)

where j = 1, 2, 3, 4, 5.
During the above iterative calculation, the entire interval is segmented into subinter-

vals with an iteration step of h. Meanwhile, the values acquired in the former subinterval
are regarded as initial values of the next subinterval. In this paper, the computer with
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a 64-bit win10 operating system and Intel(R) Core(TM) i7-8550U CPU @1.80 GHz pro-
cessor is used for the experiment. The system solution and analysis are carried out on
the MATLAB platform, version R2018a. Setting h = 0.01, a = 7, b = 100, q = 0.86, and
initial values x0 = (0.1, 0.01, 0.1, 1, 0.1). The Lyapunov exponents of the CNN system are
L1 = 1.3400, L2 = 0, L3 = −1.6721, L4 = −6.2974, L5 = −80.6484. With one positive Lyapunov
exponent, the CNN system can generate the chaotic attractor as its phase diagram is shown
in Figure 3.
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3. Analysis of Dynamical Characteristics of the CNN System
3.1. Stability of Equilibrium Points

In high-dimensional dynamical systems, the stability of equilibrium points is related
to the eigenvalues character of the Jacobian matrix. Remarkably, unlike the integer system,
the fractional-order system is stable when its Jacobian eigenvalues satisfied Equation (22).
According to the characteristics of the equilibrium point eigenvalues, the stability of equi-
librium points can be easily determined. The stable region is a sector of a complex plane in
normal fractional-order systems, and the stability distribution is shown in Figure 4.

arg(λ) ≥ πα

2
, α = max(qj, j = 1, 2, 3, 4, 5). (22)
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To acquire equilibrium points, let
−x3 − x4 = 0
2x2 + x3 = 0
12x1 − ax2 = 0.
96x1 − 90x4 + btanh(x4) = 0
15x3 − 2x5 = 0

(23)

After calculating, whatever the value of a and b, the equilibrium point, which is the
original point O(0, 0, 0, 0, 0) must exist in this system. The Jacobian matrix of the CNN
system is

J =


0 0 −1 −1 0
0 2 1 0 0

12 −a 0 0 0
96 0 0 −90 + bsech2(x4) 0
0 0 15 0 −2

. (24)

The equilibrium point situation is various for different system parameter values.
For example, when a = 7, the characteristic function of the system equilibrium point is
denoted as

λ5 + (90− bsech2(x4))λ
4 + 111λ3 + (1364− 15bsech2(x4))λ

2

+(1500− 14bsech2(x4))λ + 48bsech2(x4)− 2976 = 0
(25)

90− bsech2(x4) > 0.1364− 15bsech2(x4) > 0
1500− 14bsech2(x4) > 0.48bsech2(x4)− 2976 > 0

(26)

According to the Routh–Hurwitz rule, the system is stable as terms in Equation (26)
are met. Due to 0 ≤ sech2(x4) ≤ 1, it can be clearly known if b < 107.14, the characteristic
function of the system is a positive real root. When q ∈ [0, 1], the corresponding equilibrium
point is an instable saddle point. Keeping the parameter value a to 7, the equilibrium point
characteristics are analyzed as b = 100 and b = 90, respectively. When b = 100, the equilibrium
points are obtained in Equation (27) with relevant eigenvalues listed in Equation (28).

Xp0 = [0, 0, 0, 0, 0]T

Xp1 = [0.4206, 0.7211,−1.4421, 1.4421,−10.8161]T

Xp2 = [−0.4206,−0.7211, 1.4421,−1.4421, 10.8161]T
. (27)


X0 : −2, 1.6804± 2.5740i, 4.3196± 8.8237i
X1 : −2, 0.8797,−68.5481,−0.1383± 4.0835i
X2 : −2, 0.8797,−68.5481,−0.1383± 4.0835i

. (28)

According to Equation (22), equilibrium Xp0 is a stable point as q≤ 0.7101. Meanwhile,
the equilibrium Xp1 and Xp2 are unstable saddle points and |arg(λ4)| = 1.5369.

In the same way, when b = 90, the equilibrium points are solved in Equation (29) and
the corresponding eigenvalues are calculated in Equation (30).

Xp0 = [0, 0, 0, 0, 0]T

Xp1 = [0.3553, 0.6090,−1.2180, 1.2180,−9.1349]T

Xp2 = [−0.3553,−0.6090, 1.2180,−1.2180, 9.1349]T
. (29)


X0 : −2, 0.99232± 2.27863i, 0.00771± 10.43038i
X1 : −2, 0.83122,−61.81427,−0.18972± 4.05989i
X2 : −2, 0.83122,−61.81427,−0.18972± 4.05989i

. (30)

The results show that the equilibrium Xp1 and Xp2 are unstable saddle points in
this fractional-order CNN system. The saddle point is the key to generating chaotic
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attractors. The above method can be used to analyze the equilibrium point when the
template parameters are set to other values.

3.2. Influence of Different System Parameters
3.2.1. Influence of the Order q

Some methods are used to study the dynamical characteristics of this system on the
MATLAB R2018a platform. With q at a range of [0.86, 1], setting parameter a = 12, b = 201,
initial values x0 = (1, 0.1, 1, 1, 0.1), the bifurcation diagram along with the corresponding
Lyapunov exponential spectrum are consistently depicted in Figure 5. The fourth and
fifth Lyapunov exponents of the system are small negative numbers, which are hidden in
the following analysis for showing more clearly how Lyapunov exponents vary with the
order and parameters. As q ∈ [0.86, 0.96], the system is hyperchaotic since possessing two
positive Lyapunov exponents. In particular, the fractional-order differential equation cannot
exist in an exact periodic solution. When q ∈ [0.96, 1], the CNN fractional order system
converts to an asymptotic periodic state. For example, when q = 0.98, the system converges
an asymptotic periodic attractor in Figure 6b. The time series represents the asymptotic
periodic solution of the system time in Figure 6a. However, the long-time solution is
periodic in the system after 40 s. To clearly observe the system state, the various attractors
selecting different order q are presented in Figure 7. The asymptotic periodic attractor in
Figure 7 is the orbit corresponding to the long-time solution. As the order q becomes larger,
the attractor gradually changes from a hyperchaotic attractor to an asymptotic periodic
loop in a long-time mode.
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3.2.2. Influence of the Parameter a

The template parameters have a certain influence on the dynamical properties of
the system as well. According to Figure 8, when the order q = 0.88, parameter b = 200,
initial values x0 = (1, 0.1, 1, 1, 0.1), the system is in a global hyperchaotic state as the range
of a is [12, 14]. Moreover, fixing the order q = 0.95, parameter b = 100, initial values
x0 = (0.1, 0.01, 0.1, 1, 0.1), as a varies from 7.2 to 7.8, the bifurcation diagram along with
Lyapunov exponential spectrum is displayed in Figure 9. The system is first chaotic
with a ∈ (7.2, 7.36). When a = 7.36, the bifurcation area jumps unsteadily. Afterwards,
the system turns into an asymptotic periodic state from a = 7.46 through reverse-period-
doubling bifurcation. When a = 7.65, the time sequences and asymptotic periodic attractor
are presented in Figure 10. As a increases, the system state transforms from chaotic to
asymptotic periodic in a long-time pattern. For clearly studying dynamical behaviors, the
attractor trajectory is depicted in Figure 11 as a varies. The attractor types corresponding to
different parameters a are shown in Table 2.
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Table 2. System state of different parameter a in a long-time pattern when q = 0.95, b = 100.

a System State a System State

[7.2, 7.36] Chaos-I [7.44, 7.46) Asymptotic Period-II
(7.36, 7.4] Chaos-II 7.46 Asymptotic Period-IV
(7.4, 7.43) Asymptotic Period-VI [7.47, 7.51] Asymptotic Period-II

7.43 Asymptotic Period-IV (7.51, 7.8] Asymptotic Period-I

3.2.3. Influence of the Parameter b

Setting the order q = 0.985, parameter a = 6, initial values x0 = (0.1, 0.1, 0.1, 1.5,
0.1), analyzing dynamical characteristics of the system when b changes from 91.5 to 93.3,
the bifurcation diagram compared with Lyapunov exponential spectrum is portrayed
in Figure 12. The system maintains an asymptotic period state at the beginning when
b ∈ (91.5, 91.8). As b = 91.6, asymptotic periodic behavior is shown in Figure 13. Then, the
system gradually behaves as a chaotic state after period-doubling bifurcation. A narrow
period window appears at b = 92.4. The other wide period window is b ∈ (92.8, 93.1). In
addition, when b is given other values, the system keeps in a chaotic state. The attractor for
different b values is shown in Figure 14. It can be found that the structure of the chaotic
attractor is distinctive when b changes. As parameter b grows, the fractional order CNN
system exhibits abundant dynamical characteristics.
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3.3. Coexistence of Attractors
3.3.1. Coexisting Attractors Changing with Template Parameter a

The high sensitivity to initial conditions is an essential feature of chaos. The attractor
varies if the initial values are changed, and it is a significant factor in producing attractor
coexistence. The coexistence of diverse attractors was discovered in the fractional order
CNN system through dynamical analysis. It is worth mentioning that the coexistence under
consideration here is in the long-time mode. Setting parameter q = 0.985, b = 100, selecting
initial values x0 as (0.1, 0.1, 0.1, 1, 0.01) and (−0.1,−0.1,−0.1,−1,−0.01) separately, various
attractor coexistence phase diagram and time sequence diagram are displayed in Figure 15.
When a = 7.35, two similar chaotic attractors blend with each other. As a increases to 7.48,
the chaotic attractor degenerates into the coexistence of two pairs of limit loops. When a
grows to 7.65, attractor coexistence turns into a pair of limit loops. It can be demonstrated
that there is a conversion from a chaotic attractor coexistence state gradually to asymptotic
periodic attractor coexistence as an increasing a within a certain range.
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Figure 15. Attractor coexistence about template parameter a with q = 0.95, b = 100. Pink represents
x0 = (0.1, 0.1, 0.1, 1, 0.01) and blue represents x0 = (−0.1, −0.1, −0.1, −1, −0.01): (a–c) x1-x3 phase
plane; (d–f) time sequences.

3.3.2. Coexisting Attractors Changing with Template Parameter b

Similarly, changing parameter b, interesting shifts of attractor coexistence arise. Fixing
parameter a = 6, q = 0.95, and choosing initial values x0 as (0.1, 0.1, 0.1, 1, 0.1) and (−0.1,−0.1,
−0.1, −1, −0.1), respectively, as template parameter b is altered, the attractor coexistence
phase diagram and time sequence diagram are depicted in Figure 16. When b = 90.5,
coexisting limit loops symmetric about the origin are partially twisted. Correspondingly,
the time series are regular, and the magnitudes of limit loops are in symmetry with the
time axis. As b increases to 91.5, two pairs of limit loops coexist. When b grows to 92.5, two
twisted scroll chaotic attractors coupled symmetrically coexist. In the meantime, the time
series corresponding to the two initial values are irregularly merged.
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Figure 16. Attractor coexistence about template parameter b with q = 0.985, a = 6. Pink represents
x0 = (0.1, 0.1, 0.1, 1, 0.01) and blue represents x0 = (−0.1, −0.1, −0.1, −1, −0.1): (a–c) x1 − x3 phase
plane; (d–f) time sequences.

3.3.3. Coexisting Hyperchaotic Attractor with Order q

In addition to the coexistence of chaotic attractors found in the system, hyperchaotic
attractor coexistence has been discovered as well. Setting parameter a = 12, b = 201, selecting
initial values x0 as (0.2, 0.1, −0.1, −0.3, 1) and (−0.2, −0.1, −0.01, −1, −0.1), respectively,
as the value of q changes in the hyperchaotic range, the hyperchaotic attractor coexistence
occurs. When q = 0.9, two hyperchaotic attractors of different sizes coexist in Figure 17a. As
q increases to 9.25, a pair of similar hyperchaotic attractors coexist in the diagram Figure 17b.
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Then, when q = 0.94 and q = 0.92, setting parameter a = 13, b = 200, and selecting initial
values x0 as (−0.04, −0.01, −0.01, −1, −0.1) and (2, −0.01, 0.1, −5, −1), the hyperchaotic
attractor coexistence phase diagram are displayed in Figure 17c,d. Clearly, hyperchaotic
attractor coexistence varies with the change of order q.
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transition. When the parameters are modified as the order q = 0.985, a = 6, b = 93.093, and 
the initial value is (0.1, 0.1, 0.1, 1.5, 0.1), state transitions between different dynamical states 
have occurred in the system.  

With a sampling time h = 0.01 and a total number of samples N = 100,000, the time 
sequence about variable x1 is presented in Figure 18a. Obviously, two episodes of transient 
chaos have appeared in the system during these 1000 s. When 0 s < t < 200 s, the system 
behaves as its first temporary chaotic state. As 200 s < t < 500 s, there is an asymptotic 
periodic state (Asymptotic Period-I) that undergoes a transition from the chaotic condi-
tion. When 500 s < t < 725 s, the chaotic attractor reappears in the form of Figure 18c. When 
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Figure 17. Hyperchaotic attractor coexistence: (a) q = 0.9, when a = 12, b = 201,orange represents
x0 = (0.2, 0.1, −0.1, −0.3, 1) and pink represents x0 = (−0.2, −0.1, −0.01, −1, −0.1); (b) q = 0.925,
when a = 12, b = 201; (c) q = 0.94, when a = 13,b = 200; (d) q = 0.92, when a = 13, b = 200, yellow
represents x0 = (−0.04, −0.01, −0.01, −1, −0.1) and blue represents x0 = (2, −0.01, 0.1, −5, −1).

3.4. State Transition

The state transition is a common phenomenon in systems that are capable of generating
chaos. The state transition is associated with a shift of dynamical behaviors. Chaotic and
asymptotic periodic states of fractional order systems are interchanged in this process.
Transient chaos lasts for a relatively short time, and it can occur in the course of a state
transition. When the parameters are modified as the order q = 0.985, a = 6, b = 93.093, and
the initial value is (0.1, 0.1, 0.1, 1.5, 0.1), state transitions between different dynamical states
have occurred in the system.

With a sampling time h = 0.01 and a total number of samples N = 100,000, the time
sequence about variable x1 is presented in Figure 18a. Obviously, two episodes of transient
chaos have appeared in the system during these 1000 s. When 0 s < t < 200 s, the system
behaves as its first temporary chaotic state. As 200 s < t < 500 s, there is an asymptotic
periodic state (Asymptotic Period-I) that undergoes a transition from the chaotic condition.
When 500 s < t < 725 s, the chaotic attractor reappears in the form of Figure 18c. When
725 s < t < 1000 s, the system transforms into another asymptotic periodic state (Asymptotic
Period-II). The attractor phase diagrams for the two asymptotic periodic states are drawn
in Figure 18b,d, observing the attractor at asymptotic period-I is apparently different from
asymptotic period-II.
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Figure 18. State transition in CNN system: (a) Time sequence of x1; (b) Asymptotic period-I attrac-
tor trajectory about the x1 − x3 plane; (c) The chaos attractor trajectory about the x1 − x3 plane;
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3.5. Complexity of CNN System

Complexity is another common way to describe the dynamical behaviors of chaotic
systems. The value of complexity can be obtained by a multitude of algorithms for mea-
suring the degree to how near chaotic sequences are to random sequences. The spectral
entropy (SE) method calculates complexity values by combining the energy distribution
and the Shannon entropy. The SE is a fast and real-time method of calculation. The
three-dimensional SE complexity diagram is directly illustrated in Figure 19.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 18. State transition in CNN system: (a) Time sequence of x1; (b) Asymptotic period-I attractor 
trajectory about the x1 − x3 plane; (c) The chaos attractor trajectory about the x1 − x3 plane; (d) Asymp-
totic period-II attractor trajectory about the x1 − x3 plane. 

3.5. Complexity of CNN System 
Complexity is another common way to describe the dynamical behaviors of chaotic 

systems. The value of complexity can be obtained by a multitude of algorithms for meas-
uring the degree to how near chaotic sequences are to random sequences. The spectral 
entropy (SE) method calculates complexity values by combining the energy distribution 
and the Shannon entropy. The SE is a fast and real-time method of calculation. The three-
dimensional SE complexity diagram is directly illustrated in Figure 19. 

The parameter a, b, initial value x4 or order q value ranges form a numerical plane 
region, with complexity values expressed as colored height levels. When the color of the 
region is closer to red, the complexity is higher, indicating that chaotic series gets closer 
to random number sequences. In contrast, when the color becomes more blue, the com-
plexity is lower. Three-dimensional diagrams reflect the complexity corresponding to any 
point in the numerical plane in the CNN system. To a certain extent, it offers a guideline 
for picking the suitable system parameter and order. In practice, sequences of larger com-
plexity are chosen for encryption applications. 

 
Figure 19. Complexity of different parameters plane: (a) 3D complexity diagram for q ∈ [0.75, 1], a ∈ 
[6, 8], b = 100; (b) 3D complexity diagram for q ∈ [0.75, 1], b ∈ [92, 95], a = 6; (c) 3D complexity diagram 
for initial value x4 ∈ [−1, 1], a = 6, b = 95. 

4. DSP Implementation of the Fractional-Order CNN System 
There is a growing trend to implement fractional-order chaotic systems using digital 

processing techniques in integrated circuits [23,49,50]. DSP implementation of chaotic sys-
tems is relatively easy and inexpensive. The DSP core chip type used is 32-bit 
TMS320F28335, which has an internal floating-point computing unit. Powerful digital 

Figure 19. Complexity of different parameters plane: (a) 3D complexity diagram for q ∈ [0.75, 1],
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diagram for initial value x4 ∈ [−1, 1], a = 6, b = 95.

The parameter a, b, initial value x4 or order q value ranges form a numerical plane
region, with complexity values expressed as colored height levels. When the color of the
region is closer to red, the complexity is higher, indicating that chaotic series gets closer to
random number sequences. In contrast, when the color becomes more blue, the complexity
is lower. Three-dimensional diagrams reflect the complexity corresponding to any point in
the numerical plane in the CNN system. To a certain extent, it offers a guideline for picking
the suitable system parameter and order. In practice, sequences of larger complexity are
chosen for encryption applications.

4. DSP Implementation of the Fractional-Order CNN System

There is a growing trend to implement fractional-order chaotic systems using digital
processing techniques in integrated circuits [23,49,50]. DSP implementation of chaotic sys-
tems is relatively easy and inexpensive. The DSP core chip type used is 32-bit TMS320F28335,
which has an internal floating-point computing unit. Powerful digital signal processing
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capability makes it a great advantage in implementing fractional-order dynamical systems.
The design of the system hardware structure follows the module as shown in Figure 20.
Dual-channel DA converter DAC8552 converts DSP-generated chaotic sequences to analog
signals. The analog signal output is displayed as an attractor phase diagram in the oscillo-
scope UTD7102H. The communication interface MAX3232 is responsible for connecting the
DSP to the computer. The integrated development environment for DSP implementation
on the computer is Code Composer Studio 6.0.0.
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Figure 20. Hardware block diagram of DSP implementation.

The concrete software design process is depicted in Figure 21. First of all, DSP is
initialized and with parameters and initial values properly set. Subsequently, the result of
each computation is pushed into the stack for iterative operation. The data go through the
processing of adding positive integers and amplifying. Then, data results are transferred to
the DA converter and displayed in the form of attractor phase diagrams in oscilloscope.
According to Figure 20, the physical diagram of the hardware connection for this experiment
is shown in Figure 22. During this experiment, the same parameters and initial conditions
are set as the Figure 11. After debugging, chaotic and asymptotic periodic attractors in a
long-time mode are presented in the oscilloscope as is shown in Figure 23. It is evident that
the DSP realization results of the system are in accordance with simulation results.
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5. Conclusions 
In this paper, a new fractional-order CNN system with a hyperbolic tangent activa-
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stability of the system. The phase diagram, bifurcation diagram, Lyapunov Exponent 
spectrum (LEs), and spectral entropy (SE) complexity algorithm are used to analyze the 
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secure communications and image encryption. The results of the SE complexity algorithm 
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and implementation is finished based on DSP development board, which confirms the 
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5. Conclusions

In this paper, a new fractional-order CNN system with a hyperbolic tangent activation
function is constructed and analyzed. ADM is used to solve this system accurately and
efficiently. The equilibrium point is also calculated and clarified to demonstrate the stability
of the system. The phase diagram, bifurcation diagram, Lyapunov Exponent spectrum
(LEs), and spectral entropy (SE) complexity algorithm are used to analyze the dynamical
characteristics of the fractional-order CNN system. As the order q, template parameters
a,b, and initial values x0 are varied, the study results indicate the system exhibits complex
dynamical behaviors. The hyperchaotic attractor occurs in the process of changing the order.
Changing the template parameters in the system, various kinds of asymptotic periodic
and chaotic attractors appear. The influence of different parameters on the system state
is different. Many types of coexistence phenomena have also been discovered, including
symmetric attractor coexistence about the origin and hyperchaotic attractor coexistence.
Surprisingly, when adjusting parameters, state transition phenomena appear as well. The
three-dimensional complexity is altered when parameters are adjusted, indicating that
the system can generate chaotic pseudo-random sequences with large complexity. This
feature ensures high security and reliability in the application of secure communications
and image encryption. The results of the SE complexity algorithm provide a theoretical
basis for selecting the appropriate parameters. Digital circuit design and implementation
is finished based on DSP development board, which confirms the digital feasibility of the
fractional-order CNN system. In the following work, the system can be applied to the
encryption field such as image, audio and video.
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