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Abstract: In recent years, the fractional Laplacian has attracted the attention of many researchers, the
corresponding fractional obstacle problems have been widely applied in mathematical finance, parti-
cle systems, and elastic theory. Furthermore, the monotonicity of the numerical scheme is beneficial
for numerical stability. The purpose of this work is to introduce a monotone discretization method for
addressing obstacle problems involving the integral fractional Laplacian with homogeneous Dirichlet
boundary conditions over bounded Lipschitz domains. Through successful monotone discretization
of the fractional Laplacian, the monotonicity is preserved for the fractional obstacle problem and the
uniform boundedness, existence, and uniqueness of the numerical solutions of the fractional obstacle
problems are proved. A policy iteration is adopted to solve the discrete nonlinear problems, and
the convergence after finite iterations can be proved through the monotonicity of the scheme. Our
improved policy iteration, adapted to solution regularity, demonstrates superior performance by
modifying discretization across different regions. Numerical examples underscore the efficacy of the
proposed method.

Keywords: obstacle problem; fractional Laplacian; bounded Lipschitz domain; monotone discretization;
policy iteration
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1. Introduction

In this work, we consider the obstacle problem associated with the integral form of
the fractional Laplacian, referred to as the fractional obstacle problem. For n ≥ 1, let Ω ⊂ Rn

be a bounded Lipschitz domain satisfying the exterior ball condition, with the boundary
denoted as ∂Ω. Additionally, Ωc represents the complement of Ω. The specific form of
the fractional obstacle problem is as follows: given two prescribed functions f : Ω → R
and the obstacle function ψ : Rn → R with the nondegeneracy condition ψ|Ωc < 0 and
s ∈ (0, 1), we seek a function u : Rn → R that satisfies the following nonlinear equation
with homogeneous Dirichlet boundary conditions:{

G[u] := min{(−∆)su− f , u− ψ} = 0, x ∈ Ω,

u = 0, x ∈ Ωc.
(1)

Here, the integral fractional Laplacian of order s ∈ (0, 1) is defined by

(−∆)su(x) := Cn,sP.V.
∫
Rn

u(x)− u(y)
|x− y|n+2s dy. (2)

The normalization constant is provided by Cn,s := 22ssΓ(s+ n
2 )

πn/2Γ(1−s) . According to Animasaun
et al., the fractional Laplacian captures nonlocal effects and is used to model a wide range
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of phenomena [1]. Consequently, the fractional obstacle problem finds applications in
various fields, such as mathematical finance theory, systems of particles, and elasticity
problems [2–6]. For a comprehensive overview of obstacle problems, including traditional
obstacle problems and those related to integral-differential operators (of which the fractional
obstacle problem is a particular case), we refer readers to the survey article in [7].

For fractional operators, it has been shown that the maximum principle holds [8]. In
terms of numerical stability, it is desirable to preserve this property at the discrete level,
known as the monotonicity of the scheme. Constructing monotone schemes is a natural
advantage of finite difference methods. For the Laplace operator (−∆), the monotone
difference scheme has been attended to by researchers for a long time, [9,10]. In the context
of the finite element method, achieving monotonicity in the discretization process depends
on specific grid conditions [11]. Furthermore, considering that the regularity of the solution
is essential for the convergence of numerical schemes, the fractional obstacle problem has
received significant attention in mathematics, particularly in the field of PDE regularity of
solutions and the free boundary. In this regard, a series of works [12–14] have established
the Hölder regularity of C1,s(Rn) for solutions to the s-order obstacle problem. For the case
of a bounded domain, the interior regularity is expected to exhibit the same C1,s Hölder
regularity. However, lower regularity may arise near the boundary of the domain. For
the fractional Laplace equation, a well-known result is that when the problem domain
satisfies the exterior ball condition and the right-hand side belongs to L∞, the solution
exhibits singularity near the boundary ∂Ω in terms of dist(x, ∂Ω)s, resulting in global
Cs Hölder regularity. This characteristic is observed widely in a large class of nonlocal
elliptic equations, as discussed in the survey article [8]. Therefore, the global regularity
(boundary regularity) of the fractional obstacle problem on bounded domains requires
careful investigation.

In recent years, numerous numerical algorithms have been developed for solving
fractional-order partial differential equations (PDEs). For the fractional Laplace equation,
the finite element method can be employed, utilizing the variational formulation and
accounting for the low regularity near the boundary [15]. Similarly, the fractional obstacle
problem can be formulated as a variational inequality problem, where the solution u is
sought in order to minimize a functional subject to the constraint u ≥ ψ [12]. To address
this variational inequality, [16] utilized the finite element method, establishing interior
and boundary regularity results for bounded fractional obstacle problems and providing
error estimates based on these regularity results. However, for fractional operators, due
to their non-local nature, it is challenging to establish general conditions that guarantee
the monotonicity of finite element discretization. This challenge is further amplified when
dealing with the finite element discretization of nonlinear problems.On the other hand,
several finite difference discretizations that satisfy monotonicity have been proposed [17–19]
for the fractional operator (−∆)s. However, most of these works focus on problems solved
on structured grids, and tend to make overly strong assumptions about the Hölder regularity
of the true solution. In our recent work [20], we proposed a monotone difference scheme
based on quadrature formulas, which can be applied to solve the fractional Laplace equation
on general bounded Lipschitz domains. This work provides a comprehensive analysis of the
scheme’s consistency, taking into account the actual regularity of the problem. Furthermore,
we obtain rigorous pointwise error estimates by utilizing discrete barrier functions.

The objective of this study is to develop a monotone scheme for solving the problem
defined by Equation (1) on a bounded Lipschitz domain and to devise an efficient solution
solver. Building upon our previous work [20], we extend this discretization to the fractional
obstacle problem. A crucial aspect of our work is the introduction of the enhanced discrete
comparison principle, as demonstrated in Lemma 5, for the discrete fractional Laplacian
operator. By utilizing this result, we establish that the discretization scheme maintains
monotonicity and satisfies the discrete maximum principle, guaranteeing the uniqueness
of the discrete solution. Additionally, we employ the discrete Perron method to establish
the existence and uniform boundedness of the discrete solution. In addition, this study
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explores the policy iteration method for solving nonlinear discrete problems. Leveraging
the enhanced discrete comparison principle, we establish the finite convergence of the
standard policy iteration method. Furthermore, the paper provides an in-depth discussion
on the relationship between the discretization scheme for the fractional Laplace equation
and the regularity results of the problem. Based on this discussion, we propose an im-
proved policy iteration method that considers the low regularity near the contact set of
the problem and selects different discrete scales for different regions. Numerical results
demonstrate the superior performance of the improved method compared to the standard
policy iteration method.

The remaining parts of this paper are organized as follows. In Section 2, we introduce
necessary preliminary results. In Section 3, we present the monotone discretization for
the fractional obstacle problem and discuss the properties of the scheme. In Section 4, we
apply the policy iteration method for solving nonlinear discrete problems and prove the
convergence of the iteration. Additionally, taking into account the specific regularity of the
problem, we propose an improved policy iteration method that exhibits better numerical
performance in practical computations. Numerical examples are presented in Section 5 to
support our theoretical results. Furthermore, for the boundary Hölder regularity of the
problem, a simple proof is provided in Appendix A.

2. Preliminary Results

In this section, preliminary knowledge and results are introduced, including notation,
definitions of function spaces, and regularity results. Considering an open set U ⊂ Rn with
∂U 6= ∅, the Cβ(U) Hölder seminorm (with β > 0) is denoted by | · |Cβ(U). More precisely,
for β = k + t with k integer and t ∈ (0, 1], we define

|w|Cβ(U) = |w|Ck,t(U) := sup
x,y∈U,x 6=y

|Dkw(x)− Dkw(y)|
|x− y|t ,

‖w‖Cβ(U) :=
k

∑
l=0

(
sup
x∈U
|Dlw(x)|

)
+ |w|Cβ(U).

As usual, the nonessential constant denoted by C may vary from line to line; X . Y
means that there exists a constant C > 0 such that X ≤ CY, and X h Y means that X . Y
and Y . X.

2.1. The Regularity of the Solution for the Fractional Laplacian Problem

Here, we present a number of well-known conclusions regarding the regularity of the
integral fractional Laplacian:

(−∆)sw f = f in Ω, w f = 0 in Ωc. (3)

The first lemma pertains to the interior regularity of fractional harmonic functions.
This lemma, together with the forthcoming Section 2.2, establishes that the solution of
Equation (1) attains smoothness within the region not in contact with the obstacle.

Lemma 1 (balayage). Let w ∈ L∞(Rn) be such that (−∆)sw = 0 in BR. Then, w ∈ C∞(BR/2).

For the global regularity result, however, it can be proven that the solution belongs to
Cs(Rn) and this result is sharp [21]. This is due to the limited regularity at the boundary,
and suggests the need for a more comprehensive discussion using weighted Hölder spaces,
as discussed in [15,21].

2.2. The Regularity of the Solution for the Fractional Obstacle Problem

Next, regularity results for the fractional obstacle problem are presented. It is worth
noting that when discussing regularity the assumption that the forcing term f is zero can
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be made without loss of generality. This is because the general solution can be decomposed
as follows:

u = u1 + w f ,

where u1 solves Equation (1) with zero forcing ( f = 0) and obstacle ψ1 := ψ− w f . Here,
w f is the solution to the linear problem Equation (3).

The contact set is defined as follows:

Λ = {x ∈ Ω : u(x) = ψ(x)}.

The first result on the interior Hölder regularity of the fractional obstacle problem was
established by Silvester in Rn [12]. When considering the fractional obstacle problem in
bounded domains, Nochetto, Borthagaray, and Salgado in [16] derived a corresponding
result under the assumption that

dist(Λ, ∂Ω) = r0 > 0. (4)

The main technique employed in their work is the use of truncation functions. The
result is presented as follows.

Proposition 1 (interior Hölder regularity). Let Ω be a bounded Lipschitz domain and
let ψ ∈ C(Ω) ∩ C2,1(Ω) with tthe nondegeneracy condition ψ|Ωc < 0. Then, the solution u of
Equation (1) with f = 0 satisfying u ∈ C1,s(D) for all D ⊂ Ω is compact.

Similarly, utilizing truncation function techniques, [16] provided the following bound-
ary Hölder regularity result:

Proposition 2 (boundary Hölder regularity). Let Ω be a bounded Lipschitz domain satisfy-
ing the exterior ball condition, and let ψ ∈ C(Ω) ∩ C2,1(Ω) with the nondegeneracy condition
ψ|Ωc < 0. Let u solve Equation (1); then,

‖u‖Cs(Rn) ≤ C(Ω, f , ψ).

In fact, in the boundary Hölder regularity estimate, the smoothness assumption on ψ
can be relaxed to ψ ∈ L∞(Ω). The main idea is to revert back to the fundamental theoretical
framework of boundary regularity [21] and explore its extension to the fractional obstacle
problem. Additionally, compared to [16], the proof is more direct. The detailed proof of
this new approach is included in Appendix A.

Before concluding this section, we provide an intuitive summary of the implications
of the regularity results for the design of numerical schemes:

1. Lemma 1 (balayage) indicates that the solutions are smooth within both Λ and Ω \Λ
if ψ is smooth. Therefore, the standard discretization methods would be suitable for
these regions.

2. Combining the interior regularity discussed in Proposition 1 suggests that the smooth-
ness across the contact boundary decreases to C1,s. As a result, discretization methods
that rely on higher-order derivatives would be inappropriate for this region.

3. The boundary regularity result, Proposition 2, is similar to that of linear problems.
Thus, the techniques used for linear problems, such as the regularity under weighted
norms, remain applicable. From a numerical perspective, this phenomenon motivates
the use of graded grids to enhance the convergence order, as explored in the work
by [15,20]. This issue is revisited in Section 5.

3. A Monotone Discretization

For simplicity, it is assumed that Ω is a polygon in 2D and a polyhedron in 3D. Let
Th be a triangulation of the computation domain Ω, i.e., ∪T∈Th T = Ω. For T ∈ Th, let
hT denote the diameter of element T and let ρT denote the radius of the largest inscribed
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ball contained in T. The triangulation is referred to as local quasi-uniform if there exists a
constant λ1 such that

hT ≤ λ1hT′ ∀T ∩ T′ 6= ∅.

Meanwhile, the triangulation Th is called shape regular if there is λ2 > 0 such that
hT ≤ λ2ρT . For n ≥ 2, the shape regularity property implies the local quasi-uniform
properties; see [22]. LetNh denote the node set of Th and letN b

h := {xi ∈ Nh : xi ∈ ∂Ω} be
the collection of boundary nodes; then, the interior node set is denoted by N 0

h := Nh \ N b
h .

Let Vh := {u ∈ C(Rn) : u|T ∈ P1(T), u|Ωc = 0}, where P1(T) denotes the linear func-
tion collection defined on element T. In [20], a monotone discretization for the integral
fractional Laplacian was proposed and a corresponding pointwise error estimate was
conducted under a realistic Hölder regularity assumption. In this work, the monotone
discretization for the integral fractional Laplacian is applied, denoted by (−∆)s

h:

(−∆)s
h[vh](xi) := −κn,s,i

∆FDvh(xi; Hi)

H2s
i︸ ︷︷ ︸

:=LS
h [vh ](xi)

+
∫

Ωc
i

vh(xi)− vh(y)
|xi − y|n+2s dy︸ ︷︷ ︸
:=LT

h [vh ](xi)

∀vh ∈ Vh. (5)

Here, Ωi ⊂ Ω is a star-shaped domain centered at xi satisfying some symmetrical
condition ([20] Equations (3.5) and (3.6)) with a typical scaling:

Hi := hαi
i δ

1−αi
i ∀xi ∈ N 0

h , (6)

where hi is the mesh size around xi and δi := dist(xi, ∂Ω). A concrete example that satisfies
the condition is the n-cubic domain Ωi = xi + [−Hi, Hi]

n, which is utilized in our numerical
experiments. The parameter αi is carefully selected to address the regularity concern of the
integral fractional Laplacian [20,21].

The singular integral within Ωi is approximated using the finite difference method,
denoted as ∆FDu(xi; Hi) := ∑n

j=1 u(xi + Hiej)− 2u(xi) + u(xi − Hiej), where ej represents
the unit vector of the jth coordinate. The coefficient κn,s,i is a known positive constant, and
is provided in ([20], Equation 3.10).

3.1. Properties of (−∆)s
h

In this subsection, several fundamental properties of the (−∆)s
h operator are revisited

and established. These properties are utilized in subsequent discussions. One of the
key features is its monotonicity, as proven in ([20], Lemma 3.4), which is closely related
to the matrix discretization being an M-matrix. An even stronger property of (−∆)s

h is
explored here, namely, that the discretization matrix exhibits strong diagonal dominance.
Additionally, the consistency of (−∆)s

h is discussed.
To begin, let us revisit the discrete barrier function and monotone property provided

in ([20], Lemmas 3.4 and 3.5).

Lemma 2 (discrete barrier function). Let bh ∈ Vh satisfy bh(xi) := 1 for all xi ∈ N 0
h . It

follows that
(−∆)s

h[bh](xi) ≥ Cδ−2s
i > 0 ∀xi ∈ N 0

h , (7)

where the constant C depends only on s and Ω.

Lemma 3 (monotonicity of (−∆)s
h). Let vh, wh ∈ Vh. If vh − wh attains a non-negative

maximum at an interior node xi ∈ N 0
h , then (−∆)s

h[vh](xi) ≥ (−∆)s
h[wh](xi).

The above monotonicity result is insufficient for the obstacle problem, as the fractional
order operator equation in the obstacle problem holds only in certain regions of the domain.
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Let us denote the resulting discrete matrix of (−∆)s
h as L ∈ RN×N , where N is the number

of interior nodes. Below, it is shown that L is a strongly diagonal dominant M-matrix.

Lemma 4 (strongly diagonal dominant M-matrix). The discrete matrix L ∈ RN×N satisfies

Lii > 0 ∀i; Lij ≤ 0 ∀i, j and i 6= j; (8a)

Lii >
N

∑
i 6=j
|Lij| ∀i. (8b)

Proof. The property in Equation (8a) follows directly from the definition of (−∆)s
h. In fact, for

Equation (5) at xi, it is straightforward to observe that Lii = 2nκn,s,i H−2s
i +

∫
Ωc

i
|xi − y|−(n+2s)dy.

Furthermore, all the other contributions to the off-diagonal terms are non-positive.
Utilizing Lemma 2, the discrete barrier function can be expressed as the vector B ∈ RN ,

where all entries are equal to one. Therefore, Equation (7) implies that

(LB)i = Lii +
N

∑
i 6=j

Lij = Lii −
N

∑
i 6=j
|Lij| ≥ Cδ−2s

i > 0,

which leads to Equation (8b).

Next, the enhanced discrete comparison principle applicable to the obstacle problem
is presented. This principle plays a crucial role in the subsequent analysis.

Lemma 5 (enhanced discrete comparison principle for (−∆)s
h). Let vh, wh ∈ Vh be such that

(−∆)s
h[vh](xi) ≥ (−∆)s

h[wh](xi) ∀xi ∈ Λh, (9a)

vh(xi) ≥ wh(xi) ∀xi ∈ N 0
h \Λh, (9b)

where Λh ⊂ N 0
h is an arbitrary subset. Then, vh ≥ wh in Ω.

Proof. Because vh, wh are piecewise linear functions, it suffices to prove vh(xi) ≥ wh(xi)
for all xi ∈ N 0

h . Let zh := vh − wh and let Z ∈ RN denote its coefficient under the basis
function. Our objective is to demonstrate that Z ≥ 0. Note that the resulting discrete matrix
of (−∆)s

h, denoted as L, exhibits strong diagonal dominance. Then, Equation (9) has the
matrix representation

LZ =

(
L11 L12
0 I

)(
Z1

Z2

)
≥ 0.

Here, the indices of all interior points in Λh are combined into the first group. The
remaining indices form the second group. This implies that L11Z1 + L12Z2 ≥ 0 and Z2 ≥ 0.

Per the above lemma (strongly diagonal dominant M-matrix), the entries in the off-
diagonal block L12 are non-positive, which yields

L11Z1 ≥ −L12Z2 ≥ 0.

Because L is a strongly diagonal dominant M-matrix, so is L11, that is (L−1
11 )ij ≥ 0.

Therefore, it can be deduced that Z1 ≥ 0 and Z ≥ 0, which completes the proof.

3.2. Numerical Scheme

Now, the numerical scheme for solving the fractional obstacle problem is proposed.
Find uh ∈ Vh such that

Gh[uh](xi) := min
{
(−∆)s

h[uh](xi)− f (xi), uh(xi)− ψ(xi)
}
= 0 ∀xi ∈ N 0

h . (10)
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It should be noted that, although not explicitly stated, there is a parameter α in the
discretization of the integral fractional Laplacian that is influenced by the regularity of
the solution u. The discrete comparison principle for Gh is demonstrated, from which the
uniqueness of Equation (10) follows directly.

Lemma 6 (discrete comparison principle for Gh). Let vh, wh ∈ Vh be such that

Gh[vh](xi) ≥ Gh[wh](xi) ∀xi ∈ N 0
h .

Then, vh ≥ wh in Ω.

Proof. Because vh, wh ∈ Vh, it suffices to prove that vh(xi) ≥ wh(xi) for all xi ∈ N 0
h . The

interior points are classified into two sets based on the values of Gh[wh]:

Λw
h := {xi ∈ N 0

h : (−∆)s
h[wh](xi)− f (xi) ≥ wh(xi)− φ(xi)}.

For any xi ∈ Λw
h , the following holds:

vh(xi)− ψ(xi) ≥ Gh[vh](xi) ≥ Gh[wh](xi) = wh(xi)− ψ(xi),

Furthermore, for any xi ∈ N 0
h \Λw

h , the following inequalities are true:

(−∆)s
h[vh](xi)− f (xi) ≥ Gh[vh](xi) ≥ Gh[wh](xi) = (−∆)s

h[wh](xi)− f (xi).

This leads to the desired result by taking Λh = Λw
h in Lemma 5 (enhanced discrete

comparison principle for (−∆)s
h).

Corollary 1 (uniqueness). For the problem Equation (10), the discrete solution is unique.

3.3. Stability and Existence

The existence and stability of Equation (10) is shown in this section.

Theorem 1 (existence and stability). There exists a unique uh ∈ Vh that solves Equation (10).
The solution uh is stable in the sense that ‖uh‖L∞(Ω) ≤ C, where the constant C is independent of h.

Proof. To establish existence, a monotone sequence of discrete functions {uk
h}

∞
k=0 is con-

structed starting with an initial guess u0
h ∈ Vh that satisfies the following condition:

Gh[u0
h](xi) ≥ 0 ∀xi ∈ N 0

h . (11)

Step 1 (existence of u0
h). Let u0

h := Ebh ∈ Vh, where the discrete barrier function bh is
defined in Equation (7); the constant E > 0 is specified later. Per Lemma 2 (discrete barrier
function), the following relation holds:

(−∆)s
h[Ebh](xi)− f (xi) ≥ CEδ−2s

i − f (xi) ≥ CEdiam(Ω)−2s − ‖ f ‖L∞(Ω)

Ebh(xi)− ψ(xi) ≥ E− ‖ψ‖L∞(Ω).

By setting E = max{‖ψ‖L∞(Ω), C−1diam(Ω)2s‖ f ‖L∞(Ω)}, Equation (11) is ensured.
Step 2 (Perron construction). Here, induction is employed. Suppose that there already

exists a discrete function uk
h ∈ Vh that satisfies

Gh[uk
h](xi) ≥ 0 ∀xi ∈ N 0

h . (12)

The construction of uk+1
h ∈ Vh with the properties uk+1

h ≤ uk
h while satisfying

Equation (12) is as follows. All interior nodes are considered sequentially, and auxiliary
functions uk,i−1

h ∈ Vh are constructed using the first i− 1 nodes, starting with uk,0
h := uk

h. At
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xi ∈ N 0
h , whether or not Gh[u

k,i−1
h ] > 0 is checked. If this is the case, the value of uk,i−1

h (xi)

is decreased, resulting in the function uk,i
h , until

Gh[u
k,i
h ](xi) = 0.

This is achievable because the discrete matrix of (−∆)s
h satisfies Lii > 0, as stated in

Equation (8a). Moreover, at other nodes we have xj 6= xi, Lij ≤ 0, which implies that

Gh[u
k,i
h ](xj) ≥ Gh[u

k,i−1
h ](xj) ≥ 0 ∀xj 6= xi.

This process is repeated with the remaining nodes xj for i < j ≤ N, with uk+1
h := uk,N

h
set as the last intermediate function. By construction, we obtain the following:

Gh[uk+1
h ](xi) ≥ 0, uk+1

h (xi) ≥ uk
h(xi) ∀xi ∈ N 0

h .

Step 3 (convergence). The sequence {uk
h(xi)}∞

k=1 is monotonically decreasing and clearly
bounded from below by ψ(xi). Hence, the sequence converges, and the limit

uh(xi) := lim
k→∞

uk
h(xi) ∀xi ∈ N 0

h

defines uh ∈ Vh, which satisfies the desired equality

Gh[uh](xi) = 0 ∀xi ∈ N 0
h ,

because Gh[uh](xi) = lim
k→∞
Gh[uk

h](xi) ≥ 0. If the last inequality were strict, Step 2 could be

applied to further improve uh. This demonstrates the existence of a discrete solution to
Equation (10). Furthermore, the above proof implies

‖uh‖L∞(Ω) ≤ max{‖ψ‖L∞(Ω), C−1diam(Ω)2s‖ f ‖L∞(Ω)},

which is the uniform bound, as was asserted.

Remark 1 (discussion on consistency and convergence). An important concept in numerical
methods is consistency, which involves investigating the property of |G[v](x) − Gh[Ihv](xh

i )|
tending to zero as the mesh size decreases. In fact, for the integral fractional Laplacian operator,
the detailed analysis provided in [20] reveals that the discretization achieves consistency at interior
points that are a constant number of mesh sizes away from the boundary. The inconsistency near
boundary points can be addressed by incorporating the discrete barrier function in Equation (7).
This analysis technique is commonly used in the convergence analysis of semi-Lagrangian or two-
scale methods [23,24], and can be viewed as an extension of the Barles–Souganidis [25] analytical
framework for nonlinear problems. Due to space limitations, elaboration of the corresponding results
is not provided here.

4. An Efficient Solver for the Discrete Nonlinear Problem

In this section, the policy iteration (Howard’s algorithm) is employed to solve the
discrete fractional obstacle problem Equation (10). It is worth noting that policy iteration is
a well-established and extensively studied technique in dynamic control problems. For the
problem Equation (10), the convergence of the policy iteration is established by leveraging
the monotonicity of the discrete operator. Furthermore, an improved policy iteration is
proposed by incorporating prior knowledge, such as the regularity of the solution to the
fractional obstacle problem discussed in Section 2.

4.1. Policy Iteration

Policy iteration is utilized to solve the discrete problem Equation (10). The algorithm
is outlined as Algorithm 1.
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Algorithm 1: Policy iteration for the fractional obstacle problem Equation (10)
Input: right hand side f , obstacle function ψ.
Output: solution uh.

Initialize u(0)
h (xi) = ψ(xi) ∀xi ∈ N 0

h ;
Iterate for k ≥ 0:
1. Update discrete contact set C(k+1)

h :

C(k+1)
h := {xi : (−∆)s

h[u
(k)
h ](xi)− f (xi) ≥ u(k)

h (xi)− ψ(xi)}.
2. Update solution u(k+1)

h such that

u(k+1)
h (xi)− ψ(xi) = 0 ∀xi ∈ C

(k+1)
h ,

(−∆)s
h[u

(k+1)
h ](xi)− f (xi) = 0 ∀xi ∈ N 0

h \ C
(k+1)
h .

(13)

3. If u(k+1)
h = u(k)

h , then stop; Otherwise, continue to Step 1.

There exists a convergence result for policy iteration when solving the nonlinear
problem Equation (10), which was initially proven in [26]. Here, a brief overview of the
proof using our notation is provided for clarity. It is worth noting that the monotonicity
property plays a crucial role in the convergence analysis.

Theorem 2 (convergence of policy iteration). The sequence {u(k)
h }

∞
k=0 provided by the above

algorithm satisfies the following:

1. u(k)
h (xi) ≤ u(k+1)

h (xi) for all k ≥ 0 and xi ∈ N 0
h .

2. The algorithm converges in at most N iterations.

Proof. With u(0)
h (xi) = ψ(xi) for all xi ∈ N 0

h , C(0)h can be defined as N 0
h to ensure that

Equation (13) holds for the initialization.
Step 1 (increasing sequence). Equation (13) implies that, for k ≥ 0,

Gh[u
(k)
h ](xi) = min{(−∆)s

h[u
(k)
h ](xi)− f (xi), u(k)

h (xi)− ψ(xi)} ≤ 0 ∀xi ∈ N 0
h .

Then, the definition of C(k+1)
h in Step 1 implies

u(k)
h (xi)− ψ(xi) ≤ 0 ∀xi ∈ C

(k+1)
h ,

(−∆)s
h[u

(k)
h ](xi)− f (xi) ≤ 0 ∀xi ∈ N 0

h \ C
(k+1)
h .

Next, using the update condition in Equation (13), the following relation holds:

u(k)
h (xi)− ψ(xi) ≤ u(k+1)

h (xi)− ψ(xi) ∀xi ∈ C
(k+1)
h ,

(−∆)s
h[u

(k)
h ](xi)− f (xi) ≤ (−∆)s

h[u
(k)
h ](xi)− f (xi) ∀xi ∈ N 0

h \ C
(k+1)
h .

By combining Lemma 5 (enhanced discrete comparison principle for (−∆)s
h), the

increasing sequence is shown as follows:

u(k)
h (xi) ≤ u(k+1)

h (xi) ∀xi ∈ N 0
h .

Step 2 (strictly decreasing discrete contact set). First, the increasing sequence
{u(k)

h }
∞
k=0 implies

u(k)
h (xi)− ψ(xi) ≥ 0, ∀xi ∈ Nh, ∀k ≥ 0.
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Now, for any xj ∈ N 0
h \ C

(k)
h , the update condition Equation (13) and the above

property imply
(−∆)s

h[u
(k)
h ](xj)− f (xj) = 0 ≤ u(k)

h (xj)− ψ(xj),

whence we have xj ∈ N 0
h \ C

(k+1)
h for the definition of C(k+1)

h in Step 1. This means that

N 0
h \ C

(k)
h ⊂ N 0

h \ C(k+1)
h , or C(k+1)

h ⊂ C(k)h ∀k ≥ 0.

Further, if C(k+1)
h = C(k)h , then the iteration clearly stops at the (k + 1)-th step due to

the update condition in Equation (13); that is, the discrete contact set is strictly decreasing
unless the iteration stops, which makes for at most N iterations.

Remark 2 (convergence profile of Algorithm 1). The N-step iteration is proven to be sharp in
the general case, as demonstrated by a specific example presented in [27]. However, in numerical
experiments convergence is often observed within only a few iterations.

4.2. An Improved Policy Iteration

Next, improvements are introduced to the discrete operator in the policy iteration
algorithm. It is observed that the scaling Hi of the singular integral part of (−∆)s

h over
the region Ωi can be adjusted, as shown by the expression in Equation (6). In the policy
iteration, modifications are made to the selection of Hi, primarily for the following reasons:

1. During the updating of uh in Step 3, if the discrete contact set Ch has been updated,
Equation (13) can be seen as the discrete fractional Laplacian on the non-contact points
N 0

h \ Ch. Instead, the values at the contact points Ch can be viewed as the Dirichlet
“boundary” data.

2. In the discretization of the fractional Laplacian, the singular part is approximated by
a scaled Laplace operator [20]. However, it is important to note that the regularity
estimate for the obstacle problem, Proposition 1, indicates that the true solution has
only C1,s continuity over the boundary of the contact set. This limitation restricts the
accuracy of such approximation.

Based on the above, when discretizing the fractional Laplacian on N 0
h \ Ch, it is neces-

sary to restrict the size of Hi to ensure that Ωi does not intersect with the region relating to
the discrete contact set Ch. Therefore, the following improved strategy is proposed:

Hi = min{hαi
i δ

1−αi
i , θdist(xi, Ch)} ∀xi ∈ N 0

h , (14)

where θ is a constant that depends on the shape regularity of the mesh. In the numerical
experiments, θ is set to 1/4.

Because the discrete contact set in policy iteration is continuously updated, the im-
provement in the algorithm primarily lies in updating the discretization of the fractional
Laplacian through Equation (14) after updating the contact set. The improved algorithm is
outlined as follows.

Remark 3 (convergence profile of Algorithm 2). In the improved algorithm, it is important to
note that the solutions in the consecutive steps correspond to different discretized fractional Laplacian
operators, as seen in Equation (15). Therefore, it is not possible to directly apply Theorem 2 to
provide a rigorous convergence analysis. However, it is worth noting that although the discretized
fractional Laplacian operators vary across steps, they are all appropriate discretizations of the
continuous operator and maintain monotonicity. From this perspective, the convergence behavior
of the improved policy iteration algorithm should be similar to the original version. Indeed, this
observation has been confirmed in numerical experiments; the improved algorithm exhibits better
performance, particularly near the contact interface.
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Algorithm 2: Improved policy iteration for the fractional obstacle problem Equation (10)
Input: right hand side f , obstacle function ψ.
Output: solution uh.

Initialize u(0)
h (xi) = ψ(xi) ∀xi ∈ N 0

h ;

Initialize discrete fractional Laplacian: (−∆)s,(0)
h = (−∆)s

h.
Iterate for k ≥ 0:
1. Update discrete contact set C(k+1)

h :

C(k+1)
h := {xi : (−∆)s,(0)

h [u(k)
h ](xi)− f (xi) ≥ u(k)

h (xi)− ψ(xi)}.
2. Update discrete fractional Laplacian:

(−∆)s,(k+1)
h by choosing Hi = min{hαi

i δ
1−αi
i , θdist(xi, C

(k+1)
h )}.

3. Update solution u(k+1)
h such that

u(k+1)
h (xi)− ψ(xi) = 0 ∀xi ∈ C

(k+1)
h ,

(−∆)s,(k+1)
h [u(k+1)

h ](xi)− f (xi) = 0 ∀xi ∈ N 0
h \ C

(k+1)
h .

(15)

4. If u(k+1)
h = u(k)

h , then stop; Otherwise, continue to Step 1.

5. Numerical Experiments

In this section, several numerical experiments are conducted to test the stability and
effectiveness of the methods along with the convergence of the improved policy iteration.

According to the discussion in Section 2.2, the fractional obstacle problem exhibits low
regularity at the domain boundary, which is consistent with the fractional linear problem.
Various approaches have been proposed to address this issue, including the use of graded
grids. In this context, as discussed in [15,16,20], the concept of graded grids is introduced
with a parameter h. Let µ ≥ 1 be a constant such that for any T ∈ Th,

hTh

hµ if T ∩ ∂Ω 6= ∅,

hdist(T, ∂Ω)
µ−1

µ if T ∩ ∂Ω = ∅.
(16)

It is worth noting that the quasi-uniform grid corresponds to the case where µ = 1.
Additionally, the choice of µ has an impact on both the grid quality and the overall compu-
tational complexity. The value of µ is specified in each experiment.

In the discretization of the fractional Laplacian operator, the scale Hi of the singular
approximation part depends on both the grid and on αi, as shown in Equation (6). The
optimal choice of α depends on the local smoothness of the solution or the smoothness of
the forcing term f , as discussed in [20]. In the tests conducted in this section, a smooth f is
assumed; based on the findings in ([20], Theorem 6.1), the optimal choice of α is used, i.e.,
α = 1

2 .

5.1. Convergence Order Test

In this 1D test, the convergence rate is tested on both uniform and graded grids. The
domain considered is Ω = (−1, 1), and an explicit solution for problem Equation (1) is
constructed as follows:

u(x) =
2−2sΓ(n/2)

Γ(n/2 + s)Γ(1 + s)
(1− |x|2)s

+.

A direct calculation shows that

(−∆)su = 1 x ∈ Ω, u = 0 x ∈ Ωc.
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Next, the following forcing and obstacle terms are considered:

f (x) = 1− 5(
1
2
− |x|)+ and ψ = u(x)− 1

2
(x2 − 1

4
)+,

such that (−∆)su− f > 0 in B 1
2
(0) and (−∆)su− f = 0 outside of this set. Consequently,

u represents the solution of problem Equation (1), and the contact set is B 1
2
(0).

Figure 1 illustrates the convergence rates for both uniform and graded grids. Accord-
ing to ([20], Section 7.1), the optimal choice for the pointwise estimate of the linear fractional
Laplacian is µ = 2−s

s , which is used in this test as well. The convergence rate over uniform
grids is observed to be approximately s, which is consistent with the behavior observed in
the quasi-uniform grids for the linear case. Moreover, the graded grid yields a significantly
improved convergence rate. It is worth noting that the convergence order under the optimal
choice is 2− s for the linear case, which is observed for certain nonlinear cases as well (e.g.,
s = 0.6). However, for other cases, the strategy of choosing Hi in Equation (14) based on
the local distance to the contact set may lead to different convergence rates compared to
those for the linear case.

Figure 1. Experiment 1: Observed convergence rates for the discrete solutions of the fractional
obstacle problem with s = 0.3, 0.6, 0.9 computed over uniform and graded grids with µ = 2−s

s .

5.2. Quantitative Behavior and Comparison of Different Policy Iterations

In this section, the problem Equation (1) is investigated over the domain Ω = (−1, 1).
The force is set as f = 0, and the obstacle function is provided by

ψ = 1− 4|x− 1/4|.

In Figure 2, the numerical solutions uh obtained for different values of s are presented
below. A clear qualitative difference is observed between the solutions for different choices
of s. When s = 0.9, the discrete solution resembles the expected solution of the classical
obstacle problem, where the operator (−∆)s is effectively replaced by −∆. As s decreases,
the solution approaches ψ+. Throughout the experiments, a consistent observation is made
that as s increases, the contact set decreases, and always contains the point x0.

The difference between the improved method and the original method is remarkable.
Observations reveal that when using the original method with larger values of s, oscillations
occur near the free boundary due to the handling of the singular part across it. On the other
hand, the improved method yields a numerically smoother solution without oscillations.
As s decreases, the solutions obtained by the two methods become closer to each other, and
the differences diminish.
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Figure 2. Numerical solutions to the fractional obstacle problem for s = 0.3, 0.6, 0.9 computed using
the standard policy iteration (Algorithm 1) and its improved version (Algorithm 2).

5.3. Convergence History of Improved Policy Iteration

Next, the convergence history of the improved policy iteration (Algorithm 2) is ex-
amined. The experiment is conducted with f = 1, and the obstacle function is defined
as follows:

ψ(x) = 3− 6|x− 1/4|.

As mentioned in Remark 3, it is highly likely that the improved algorithm possesses
the property of an increasing solution sequence (or decreasing discrete contact set), as
stated in Theorem 2 for the standard algorithm. In this experiment, as demonstrated in
Figure 3, the convergence profile is observed through the values of |C(k)h |.

Figure 3. Convergence history of the improved policy iteration (Algorithm 2) with s = 0.6 and 953
free vertices, including residual decay versus iterations (last picture). The red points indicate the
contact set and the blue points represent the non-contact set.
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Furthermore, the actual number of iterations obtained in the experiments is presented
in Table 1. It can be observed that the actual number of iterations required is significantly
smaller than the theoretical upper bound N. Additionally, as the grid is refined, the
algorithm’s performance remains stable. This demonstrates the efficiency of our algorithm.

Table 1. Number of iterations for s = 0.3, 0.6, 0.9 using graded grids (µ = 2−s
s ) with a different

number of degrees of freedom (DOFs).

s = 0.3 s = 0.6 s = 0.9

N 126 254 510 1022 118 237 476 953 77 155 311 623

iterations 4 5 5 6 5 6 7 8 6 7 9 11

5.4. Two-Dimensional Test

Finally, the problem Equation (1) is considered in the domain B1(0) ⊂ R2 with f = 0
and the obstacle function provided by

ψ =
1
2
− |x− x0|, where x0 = (

1
4

,
1
4
).

For s = 0.1, the numerical solution requires 13,395 degrees of freedom and the number
of improved policy iterations is 4. Conversely, for s = 0.9 the numerical solution involves
4253 degrees of freedom and the number of improved policy iterations is 10. The number
of iterations increases as s grows, though significantly less than N, as observed in the 1D
case. As expected, the 2D numerical results (Figure 4) demonstrate similar qualitative
characteristics as observed in the 1D case.

Figure 4. Discrete solutions to the fractional obstacle problem for s = 0.1 (left) and s = 0.9 (right).
Top: lateral view. Bottom: top view, with the discrete contact set highlighted.

6. Conclusions

In this paper, a discrete scheme for the fractional obstacle problem is proposed based
on the monotone discretization for the fractional Laplace operator. Utilizing the distinctive
structure of the problem Equation (10) and conducting a comprehensive study of the
discrete operator, this study reveals that the nonlinear discrete operator Gh upholds the
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discrete comparison principle. Based on this property, the existence, uniqueness, and
uniform boundedness of numerical solutions are established.

Due to the limited regularity of the true solution near the domain boundary, a graded
grid is introduced to capture this behavior. The policy iteration method is used to solve non-
linear problems. Benefiting from the monotonicity of the discrete scheme of the fractional
Laplace operator, the policy iterative process can converge in finite iterations. Moreover,
considering the reduced regularity of the actual solution near the contact set boundary,
the discretization of the fractional Laplacian is adaptively refined by iteratively updating
contact nodes. This refinement leads to an improved policy iteration approach. In con-
trast to the conventional policy iteration, this improved method demonstrates superior
numerical performance across a range of numerical experiments. One-dimensional and
two-dimensional examples are provided to support the theoretical results.
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Appendix A. Proof of Proposition 2 under a Weak Assumption of ψ

Proposition 2 is proven, assuming ψ ∈ L∞(Ω). As the proof closely follows the global
Hölder estimate for the linear problem [21], only the main thread is sketched. First, several
elementary tools are recalled.

Proposition A1 (Corollary 2.5 in [21]). Assume that w ∈ C∞(Rn) is a solution of (−∆)sw = h
in B2. Then, for every β ∈ (0, 2s),

‖w‖Cβ(B1/2)
≤ C

(
‖(1 + |x|)−n−2sw(x)‖L1(Rn) + ‖w‖L∞(B2)

+ ‖h‖L∞(B2)

)
where the constant C depends only on n, s, and β.

Lemma A1 (L∞ estimate of obstacle problem, [28]). For ψ ∈ L∞(Ω) and f = 0, the solution
u of Equation (1) satisfies u ∈ L∞(Ω) with the following bounds:

max{ψ, 0} ≤ u ≤ ‖max{ψ, 0}‖L∞(Ω).

The proof of Lemma A1 follows from the comparison principle. As a direct conse-
quence, the L∞ estimate of the fractional Laplace equation implies the following inequality
for f ∈ L∞(Ω) and ψ ∈ L∞(Ω):

‖u‖L∞(Ω) ≤ C
(
‖ f ‖L∞(Ω) + ‖ψ‖L∞(Ω)

)
.

Lemma A2 (supersolution, Lemma 2.6 in [21]). There exist C1 > 0 and a radial continuous
function ϕ1 satisfying 

(−∆)s ϕ1 ≥ 1 x ∈ B4 \ B1,

ϕ1 ≡ 0 x ∈ B1,

0 ≤ ϕ1 ≤ C1(|x| − 1)s x ∈ B4 \ B1,

1 ≤ ϕ1 ≤ C x ∈ Rn \ B4.
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Per Lemmas A1 and A2, it is possible to construct an upper barrier for |u| by scaling
and translating the supersolution. The proof of Lemma A3 is similar to that of Lemma 2.7
in [21]. The only difference is that for each point x0 ∈ ∂Ω, when constructing the upper
barrier on the ball touched x0 from outside, the radius of the ball not only depends on
the exterior ball condition of Ω, it depends on r0, which appears in the assumption in
Equation (4) for the contact set.

Lemma A3 (δ(x)s-boundary behavior). Let Ω be bounded satisfying the exterior ball condition
and let f ∈ L∞(Ω), ψ ∈ L∞(Ω), u be the solution of Equation (1). Then,

|u(x)| ≤ C(‖ f ‖L∞(Ω) + ‖ψ‖L∞(Ω))δ
s(x),

where C is a constant depending only on Ω, s, and r0. Here, δ(x) := dist(x, ∂Ω).

The following Hölder seminorm estimate is provided by the above Lemma, which
plays a vital role in the proof of Proposition 2.

Proposition A2 (improved interior Hölder estimate). Let Ω satisfy the exterior ball condition
and let f , ψ ∈ L∞(Ω), u by the solution of Equation (1); then, u ∈ Cβ(Ω \Λ), β ∈ (0, 2s), and
for all x0 ∈ Ω \Λ wa have the following seminorm estimate in BR(x0) := Bδ∗(x0)/2(x0):

|u|Cβ(BR(x0))
≤ C(‖ψ‖L∞(Ω) + ‖ f ‖L∞(Ω))Rs−β,

where δ∗(x) := min{δ(x), dist(x, Λ)} and the constant C depends only on Ω, s, β, and r0.

Proof. Using the standard mollifier technique, it can be assumed that u is smooth. Note
that BR(x0) ⊂ B2R(x0) ⊂ Ω. Let ũ(y) := u(x0 + Ry). The equation for ũ is provided by

(−∆)sũ(y) = R2s f (x0 + Ry) ∀y ∈ B1. (A1)

Furthermore, by employing the inequality |u(x)| ≤ C(|u|L∞(Rn) + | f |L∞(Ω))δs(x)
in Ω (see Lemma A3), the following result can be deduced:

‖ũ‖L∞(B1)
≤ C

(
‖u‖L∞(Rn) + ‖ f ‖L∞(Ω)

)
Rs. (A2)

In addition, Equation (A2) and Lemma A3 imply that

|ũ(y)| ≤ C
(
‖u‖L∞(Rn) + ‖ f ‖L∞(Ω) + ‖ψ‖L∞(Ω)

)
Rs(1 + |y|s) ∀y ∈ Rn,

hence
‖(1 + |y|)−n−2sũ(y)‖L1(Rn) ≤ C

(
‖u‖L∞(Ω) + ‖ f ‖L∞(Ω)

)
Rs. (A3)

Now, we can use Proposition A1, in which the Cβ seminorm of ũ can be bounded by
Equations (A1)–(A3), and obtain

‖ũ‖Cβ(B1/4)
≤ C(‖ψ‖L∞(Ω) + ‖ f ‖L∞(Ω))Rs

for all β ∈ (0, 2s), where C = C(Ω, s, β, r0) and Lemma A1 is used to bound ‖u‖L∞(Ω).
Finally, the relationship

|u|Cβ(BR/4(x0))
= R−β|ũ|Cβ(B1/4)

implies that
|u|Cβ(BR/4(x0))

≤ C(‖ψ‖L∞(Ω) + ‖ f ‖L∞(Ω))Rs−β.

Hence, by a standard covering argument, we can find the Cβ seminorm of u in
BR(x0).
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With Proposition A2 (improved interior Hölder estimate), the desired Proposition 2
can be proved using the same technique was used in the proof of Proposition 1.1 in [21],
provided that β = s.
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