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Abstract: In the current work, a fast θ scheme combined with the Legendre spectral method was
developed for solving a fractional Klein–Gordon equation (FKGE). The numerical scheme was
provided by the Legendre spectral method in the spatial direction, and for the temporal direction,
a θ scheme of order O(τ2) with a fast algorithm was taken into account. The fast algorithm could
decrease the computational cost from O(M2) to O(M log M), where M denotes the number of time
levels. In addition, correction terms could be employed to improve the convergence rate when the
solutions have weak regularity. We proved theoretically that the scheme is unconditionally stable
and obtained an error estimate. The numerical experiments demonstrated that our numerical scheme
is accurate and efficient.

Keywords: fractional Klein–Gordon equation; Legendre spectral method; θ scheme; unconditional
stability; error estimate; fast algorithm; regularity of solution

1. Introduction

Fractional differential equations (FDEs), as the evolution of integral differential equa-
tions, can more precisely describe phenomena with sophisticated dynamics [1–4]. In the
past few decades, FDEs have been investigated by a number of scholars because they
have practical applications in various fields, such as relativistic quantum mechanics [5],
hydromechanics [6], neuroscience [7], and materials science [8]. Due to it being virtu-
ally impossible to obtain an analytic solution to an FDE in most cases, many numerical
methods for solving FDEs have been developed rapidly. In particular, finite difference
methods (FDMs) [9,10], finite element methods (FEMs) [11–13], spectral methods [14–16],
and spectral element methods [17,18] have been extensively utilized.

In this article, we concentrate on the following FKGE:
∂αξ(x, t)

∂tα
+ ρ

∂ξ(x, t)
∂t

+ ξ(x, t) =
∂2ξ(x, t)

∂x2 + f (x, t), x ∈ (0, L), t ∈ (0, T]

ξ(x, 0) = φ(x),
∂ξ(x, 0)

∂t
= ϕ(x), x ∈ (0, L),

ξ(0, t) = 0, ξ(L, t) = 0, t ∈ [0, T],

(1)

When α = 2, (1) is a classical integer-order Klein–Gordon equation. Dα
0,tξ(t) is a

fractional derivative with respect to t in the Caputo sense, which is defined as
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Dα
0,tξ(x, t) =

∂αξ(x)
∂tα

=


1

Γ(2− α)

∫ t

0

∂2ξ(x, s)
∂s2

ds
(t− s)1−α

, 1 < α < 2

∂2ξ(x)
∂t2 . α = 2

If we set ρ = 0, then an FKGE can be obtained, and a fractional dissipative Klein–
Gordon equation can be obtained for ρ > 0 [19].

The application of FDEs has been extended to quantum mechanics, which has given
rise to fractional quantum mechanics [20,21]. Klein–Gordon equations, which are some of
the most fundamental equations in relativistic quantum mechanics, have been generalized
to FKGEs [19,22]. As a matter of fact, quite a few scholars have investigated FKGEs.
Vong et al. proposed a high-order finite difference scheme for a nonlinear FKGE, and the
convergence order of the proposed scheme was O(h4 + τ3−α) [23], where h and τ are the
spatial and temporal step sizes, respectively. Hashemizadeh et al. proposed an approach
that relied on the sparse operational matrix of the derivative to solve an FKGE, leading to
more efficient operation [19]. By combining the properties of Chebyshev approximations
with the FDM, Khadera et al. developed a method that reduced an FKGE to a system
of ODEs and then solved it using the FDM [24]. Recently, Saffarian et al. utilized the
ADI spectral element method to solve a nonlinear FKGE with a convergent order of
O(τ2 + N1−m) [25], where N is the polynomial degree and m represents the regularity
of the solution. As far as the authors’ knowledge is concerned, there have been few
reports on numerical methods utilizing fast algorithms for an FKGE. Motivated by the
above considerations, our main aim was developing a stable and fast numerical method
for FKGEs.

The structure of this paper is as follows: In Section 2, some crucial preliminaries are
provided for the subsequent analysis. In Section 3, to obtain the fully discrete scheme,
we introduce the θ scheme and the Legendre spectral method in the temporal and spa-
tial directions, respectively. Meanwhile, correction terms are considered to improve the
weak regularity of the solution. In Section 4, we attach importance to the stability anal-
ysis and the convergence analysis. To save on computational expenses for the fractional
operators, a fast algorithm is implemented in Section 5. In Section 6, several numerical ex-
periments are conducted to validate our theoretical analysis. In the final section, we present
our conclusions.

2. Preliminaries

In this section, some lemmas and definitions that were necessary for the following
analysis are presented.

The space PN(Ω) corresponds to the set of polynomials defined in the domain Ω,
encompassing polynomials with a degree lower than N. Moreover, within PN(Ω), we have
the subspace P0

N(Ω) that fulfills the boundary condition w(∂Ω) = 0 for w ∈ PN(Ω).
Let us denote π1,0

N (Ω) as the orthogonal projection operator from the Hilbert space
H1

0(Ω) to the subspace P0
N . For any w ∈ H1

0(Ω) and any v ∈ P0
N(Ω), the orthogonal

projection operator π1,0
N (Ω) exhibits the following property:

(∂xπ1,0
N w, ∂xυ) = (∂xw, ∂xυ).

Here, we make a crucial assumption that the solution to Equation (1) conforms to the
following form [11,17]:

ξ(x, t) = φ + ϕt + c2tσ2 + c3tσ3 + · · · = φ + ϕt +
n

∑
k=2

cjtσk + Φ(x, t), (2)

where σ1 = 1; σk < σk+1, k ≤ n − 1; ck ∈ H1
0(Ω) ∩ Hn(Ω); and Φ(x, t) is a function

that is sufficiently smooth with respect to both variables x and t. There exists ck 6= 0 for
k = 2, 3, · · · , n.



Fractal Fract. 2023, 7, 635 3 of 17

We define σ as:

σ =

{
σ2, ϕ = 0

1, otherwise
(3)

which describes the regularity of (2).

Lemma 1 ([14,16]). Suppose ξ ∈ H1
0(Ω) ∩ Hm(Ω); then, we have

||ξ − π1,0
N ξ|| ≤ CN−m||ξ||. (4)

Lemma 2 ([11,19]). Let ξ(t) be a continuous function with a fractional derivative of order α; then,
we have

Iα
0,tD

α
0,tξ(t) = ξ(t)−

n−1

∑
i=0

ξ(k)
tk

k!
, n− 1 < α ≤ n, n ∈ N. (5)

Lemma 3 ([11]). Suppose ξ(t) ∈ Ck[0, T] for k ∈ N+. Let ε, γ > 0 with l ≤ k and γ, γ + ε ∈
[l − 1, l]. Then, we have

Dε
0,tD

γ
0,tξ = Dε+γξ. (6)

Integrating both sides of (1) with the operator Iα−1
0,t and combining Lemmas 2 and 3,

we obtain

ξt + ρD2−α
0,t ξ + Iα−1

0,t ξ = Iα−1
0,t ∆ξ + ϕ + ρ[D2−α

0,t ξ]t=0 + F(x, t), (7)

where F(x, t) = Iα−1
0,t f (x, t). Under the assumption of (2), ρ[D2−α

0,t ξ]t=0 = 0.

3. Fully Discrete Scheme

Let τ be a temporal step size and tn = nτ(0 ≤ n ≤ M), M = [1/τ]. ξk , ξ(tk) = ξ(kτ).
For the discretization of fractional operators (η ∈ (0, 1)) and the first-order derivative, we
utilize the θ schemes as follows [11,12]:

Dη
0,tξ(tn−θ) = Dn,θ

τ,ηu + E(1)
n−θ = τ−η

n

∑
k=0

ω
(η)
n−k(ξ

k − ξ0) + E(1)
n−θ ,

Iη
0,tξ(tn−θ) = In,θ

τ,ηu + E(2)
N−θ = τη

n

∑
k=0

ω
(−η)
n−k (ξk − ξ0) + I(η)0,tn−θ

+ E(2)
n−θ ,

ξt(tn−θ) = ξn
τ,θ + E(3)

n−θ

=


ξ1 − ξ0

τ
+ E(1)

1−θ , n = 1

3− 2θ

2τ
ξn − 2− 2θ

τ
ξn−1 +

1− 2θ

2τ
ξn−2 + E(3)

n−θ , n ≥ 2

(8)

where E(1)
n−θ = O(tσ−η−2

n−θ τ2), E(2)
n−θ = O(tσ+η−2

n−θ τ2), E(3)
n−θ = O(tσ−3

n−θτ2), σ = min{σ2, σ3, · · · }.
The following expression captures the relationship between the generating function ω(ξ, δ)

and its expansion coefficients ω
(δ)
k :

ω(ξ, δ) =
∞

∑
k=0

ω
(δ)
k ξk =

(1− ξ)δ

1− ( δ
2 − θ)(1− ξ)

, δ ∈ (−1, 0) ∪ (0, 1),
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where θ ∈ ( δ−1
2 , 1], and the choice of θ does not affect the convergence rate. When θ = α

2 , it
simplifies to a fractional Crank–Nicolson scheme [26]. We apply the following formula to
determine expansion coefficients ω

(δ)
k :

ω
(δ)
k =


2/[2(1 + θ)− δ], k = 0

4V1
1 /[2(1 + θ)− δ]2, k = 1

(V1
k ω

(δ)
k−1 + V2

k ω
(δ)
k−2)/(1 + θ − δ/2)/k, k ≥ 2

(9)

where

V1
k =

δ2

2
− (θ + k +

1
2
)δ + kθ + k− 1,

V2
k = − δ2

2
+ (θ +

k− 1
2

)δ + (1− k)θ.

The semi-discrete scheme of (7) is obtained in the temporal direction utilizing (8)
as follows:

ξn
τ,θ + ρDn,θ

τ,2−αξ + In,θ
τ,α−1ξ = In,θ

τ,α−1∆ξ + ϕ + Fn−θ + En−θ , (10)

where Fn−θ = F(x, tn−θ), and En−θ is

En−θ = O(tσ+α−4
n−θ τ2) + O(tσ̃−3

n−θτ2). (11)

The Legendre spectral method is applied for the discretization in the spatial direction
and used to find Z ∈ P0

N(Ω) for ∀ζ ∈ P0
N(Ω), such that

(Zn
τ,θ , ζ) + (ρDn,θ

τ,2−αZ, ζ) + (In,θ
τ,α−1Z, ζ) = (In,θ

τ,α−1∆Z, ζ) + (ϕ, ζ) + (Fn−θ , ζ),

with Z0 = π1,0
N ξ0.

(12)

We see from the truncation errors in (8) that if σ < 3, then the convergence order
in the temporal direction is lower than O(τ2). Generally, the solutions of FKGEs have
weak regularity. To improve the convergence rate, correction terms are added to the
approximation formulas as follows [17,27,28]:

Dδ
0,tξ(tn−θ) ≈ Dn,θ

τ,δ ξ + τ−δ
m

∑
j=1

w(δ)
n,j (ξ

j − ξ0),

Iδ
0,tξ(tn−θ) ≈ In,θ

τ,δ ξ + τδ
m

∑
j=1

w(−δ)
n,j (ξ j − ξ0),

ξt(tn−θ) ≈ ξn
τ,θ + τ−1

m

∑
j=1

w(1)
n,j (ξ

j − ξ0),

(13)

where w(δ)
n,j , w(−δ)

n,j , and w(1)
n,j are starting weights, and they can be derived by solving a

linear system of equations. Take an example for calculating w(−δ)
n,j in (13). Iδ

0,tξ(tn−θ) =

In,θ
τ,δ ξ + τδ ∑m

j=1 w(−δ)
n,j (ξ j − ξ0) is exact for ξ(t) = tσr (σr < 2− δ). Then, it can be solved

through the following linear system:

m

∑
j=1

w(−δ)
n,j tσr

j = τ−δ Γ(σr + 1)
Γ(σr + 1 + δ)

tσr+δ
n−θ −

n

∑
k=1

ω
(−δ)
n−k tσr

k . (14)
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4. Stability and Convergence Analysis

Lemma 4 ([11]). For any vector (ξ1, .., ξM) ∈ RM with M ≥ 1, ω
(δ)
k is defined in (8) (δ ∈

(−1, 0) ∪ (0, 1)) and θ ∈ ( δ−1
2 , 1]. Thus, we have

M

∑
k=1

k

∑
i=1

ω
(δ)
k−iξ

iξk ≥ 0. (15)

Lemma 5 ([11]). For any vector (ξ1, ..., ξM) ∈ RM with M ≥ 2, ξ0 = 0 and ξ
j
τ,θ are defined

in (8), and we have
M

∑
j=1

ξ jξ
j
τ,θ ≥

1
4τ

(ξM)2 − 1
2τ

(ξ1)2 (16)

with θ ∈ [0, 1].

Theorem 1. The scheme in (12) is unconditionally stable, and we have the following estimate:

||ZM|| ≤ C(||φ||+ ||4φ||+ ||ϕ||+ max
0≤j≤M

||Fj||). (17)

Proof. Z0 is the proper approximation of φ that satisfies ||Z0|| ≤ ||φ|| and ||∇Z0|| ≤ ||∇φ||.
Defining Λn , Zn − Z0 and considering (8), we can obtain

Zn
τ,θ = Λn

τ,θ ,

Dn,θ
τ,αZ = Dn,θ

τ,αΛ,

In,θ
τ,α Z = In,θ

τ,αΛ + Iα
0,tn−θ

Z0,

In,θ
τ,α∇Z = In,θ

τ,α∇Λ + Iα
0,tn−θ

∇Z0.

(18)

Replacing ζ with Λn in (12) and using (18), we obtain

(Λn
τ,θ , Λn) + (ρDn,θ

τ,2−αΛ, Λn) + (In,θ
τ,α−1Λ, Λn) + (In,θ

τ,α−1∇Λ,∇Λn)

= (ϕ, Λn) + (Fn−θ , Λn)− (Iα−1
0,tn−θ

Z0, Λn)− (Iα−1
0,tn−θ

∇Z0,∇Λn).
(19)

By substituting n with j and taking the summation of both sides for j ranging from 1
to M (M ≥ 2), we can derive

M

∑
j=1

(Λj
τ,θ , Λj) +

M

∑
j=1

(ρDj,θ
τ,2−αΛ, Λj) +

M

∑
j=1

(I j,θ
τ,α−1Λ, Λj) +

M

∑
j=1

(I j,θ
τ,α−1∇Λ,∇Λj)

=
M

∑
j=1

(ϕ, Λj) +
M

∑
j=1

(Fj−θ , Λj)−
M

∑
j=1

(Iα−1
0,tj−θ

Z0, Λj)−
M

∑
j=1

(Iα−1
0,tj−θ
∇Z0,∇Λj).

(20)

Combining Lemmas 4 and 5, we derive the following inequality:

M

∑
j=1

(Λj
τ,θ , Λj) ≥ 1

4τ
||ΛM||2 − 1

2τ
||Λ1||2,

M

∑
j=1

(ρDj,θ
τ,2−αΛ, Λj) = τα−2

∫ 1

0
ρ

M

∑
j=1

Λj
j

∑
k=1

ω
(2−α)
j−k Λkdx ≥ 0,

M

∑
j=1

(I j,θ
τ,α−1Λ, Λj) = τα−1

∫ 1

0

M

∑
j=1

Λj
j

∑
k=1

ω
(1−α)
j−k Λkdx ≥ 0,

M

∑
j=1

(I j,θ
τ,α−1∇Λ,∇Λj) = τα−1

∫ 1

0

M

∑
j=1
∇Λj

j

∑
k=1

ω
(1−α)
j−k ∇Λkdx ≥ 0,

(21)
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M

∑
j=1

(ϕ, Λj) ≤ 1
2

M

∑
j=1

(||ϕ||2 + ||Λj||2) = M
2
||ϕ||2 + 1

2

M

∑
j=1
||Λj||2, (22)

M

∑
j=1

(Fj−θ , Λj) ≤1
2

M

∑
j=1

(||Fj−θ ||2 + ||Λj||2)

≤1
2

M

∑
j=1
||Λj||2 + C

M

∑
j=1

(||Fj||2 + ||Fj−1||2)

≤1
2

M

∑
j=1
||Λj||2 + C

M

∑
j=0
||Fj||2,

(23)

M

∑
j=1

(Iα−1
0,tj−θ

Z0, Λj) =
M

∑
j=1

(Iα−1
0,tj−θ

1)(Z0, Λj) ≤ 1
Γ(α)

M

∑
j=1
|(Z0, Λj)|

≤ M
2Γ(α)

||Z0||2 + 1
2Γ(α)

M

∑
j=1
||Λj||2

≤ M
2Γ(α)

||φ||2 + 1
2Γ(α)

M

∑
j=1
||Λj||2.

(24)

Let ∆N be the operator from P0
N into P0

N , such that

(∆NΨ, υ) = −(∇Ψ,∇υ), ∀Ψ, υ ∈ P0
N . (25)

For a properly defined Z0, it holds that ||∆N Z0|| ≤ ||∆φ||; thus, we have the follow-
ing inequality:

−
M

∑
j=1

(Iα−1
0,tj−θ
∇Z0,∇Λj) =

M

∑
j=1

tα−1
j−θ

Γ(α)
(∆N Z0, Λj) ≤ 1

Γ(α)

M

∑
j=1

(∆N Z0, Λj)

≤ M
2Γ(α)

||∆N Z0||2 + 1
2Γ(α)

M

∑
j=1
||Λj||2

≤ M
2Γ(α)

||∆φ||2 + 1
2Γ(α)

M

∑
j=1
||Λj||2.

(26)

Combining (20)–(26) and ignoring the non-negative terms, we obtain

||ΛM||2 ≤2||Λ1||2 + 4τ

(
1 +

1
Γ(α)

) M

∑
j=1
||Λj||2 + CtM||φ||2

+
2tM
Γ(α)

||∆φ||2 + 2tM||ϕ||2 + Cτ
M

∑
j=0
||Fj||2.

(27)

For Λ1, let n = 1 and θ = 1
2 in (20); then, we obtain

τ−1(Λ1 −Λ0, Λ1) + (ρτα−2ω
(2−α)
0 Λ1, Λ1) + (τα−1ω

(1−α)
0 Λ1, Λ1)

+(τα−1ω
(1−α)
0 ∇Λ1,∇Λ1) = (ϕ, Λ1) + (F

1
2 , Λ1)−

tα−1
1
2

Γ(α)
(Z0, Λ1) +

tα−1
1
2

Γ(α)
(∆N Z0, Λ1).

(28)
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Similarly, for n = 1, we have the following inequality:(
1
τ
− 1− 1

Γ(α)

)
||Λ1||2 ≤ 1

2
||ϕ||2 + 1

2Γ(α)
||φ||2 + 1

2Γ(α)
||∆φ||2 + C(||F0||2 + ||F1||2). (29)

So, if τ ≤ 1
1+ 1

Γ(α)
, we can derive

||Λ1||2 ≤ C(||φ||2 + ||∆φ||2 + ||ϕ||2 + τ||F0||2 + τ||F1||2). (30)

By employing Grönwall’s inequality, we can deduce

||ΛM||2 ≤ C(||φ||2 + ||∆φ||2 + ||ϕ||2 + τ
M

∑
j=0
||Fj||2), (31)

where C represents a constant that does not depend on the variables n, τ, and N.
Finally, using the triangular inequality ||ZM|| ≤ ||ΛM||+ ||Z0||, we derive Theorem 1.

Next, we discuss the convergence of (12).

Theorem 2. Suppose that ξ and Z are solutions of (1) and (12), respectively, where ξ ∈ H1([0, 1])×
(Hm(Ω) × H1

0(Ω)), m > 1, ξ0 = π1,0
N ξ0. Then, for a small enough τ, we have the follow-

ing estimate:

||Zn − ξn|| ≤ C̃τ2 + Cτσ̃− 1
2 + Cτσ+α− 3

2 + CN−m.

Proof. Defining ξn − Zn = (ξn − π1,0
N ξn) + (π1,0

N ξn − Zn) , χn + rn and noting that
χ0 = r0 = 0, we integrate both sides of (7) with ζ ∈ P0

N to obtain

(ξn
τ,θ , ζ) + (ρDn,θ

τ,2−αξ, ζ) + (In,θ
τ,α−1ξ, ζ) + (In,θ

τ,α−1∇ξ,∇ζ)

=(ϕ, ζ) + (Fn−θ , ζ) + (En−θ , ζ).
(32)

Subtracting (12) from (32) and setting ζ to rn, we substitute n with j and sum j from 1
to n (n ≥ 2):

n

∑
j=1

(rj
τ,θ , rj) +

n

∑
j=1

(ρDj,θ
τ,2−αr, rj) +

n

∑
j=1

(I j,θ
τ,α−1r, rj) +

n

∑
j=1

(I j,θ
τ,α−1∇r,∇rj)

=−
n

∑
j=1

(χ
j
τ,θ , rj)−

n

∑
j=1

(ρDj,θ
τ,2−αχ, rj)−

n

∑
j=1

(I j,θ
τ,α−1χ, rj) +

n

∑
j=1

(Ej−θ , rj).
(33)

Utilizing Lemmas 4 and 5, we obtain the following inequalities:

n

∑
j=1

(rj, rj) ≥ 1
4τ
||rn||2 − 1

2τ
||r1||2, n ≥ 2

n

∑
j=1

(ρDj,θ
τ,2−αr, rj) ≥ 0,

n

∑
j=1

(I j,θ
τ,α−1r, rj) ≥ 0, n ≥ 1

n

∑
j=1

(I j,θ
τ,α−1∇r,∇rj) ≥ 0. n ≥ 1

(34)

Combining this with (2), we derive

χ(t) = (φ−Π1,0
N φ) + (ϕ−Π1,0

N ϕ)t +
n

∑
j=2

(cj −Π1,0
N cj)t

σj + (Φ−Π1,0
N Φ). (35)
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Thus, we know ||χt||+ ||ρD2−α
0,t χ||+ ||Iα−1

0,t χ|| ≤ CN−m according to (4). Moreover,
we have

χn
τ,θ − χt(tn−θ) = O(tσ̃−3

n−θτ2),

Dn,θ
τ,2−αχ− D2−α

0,t χ(tn−θ) = O(tσ+α−4
n−θ τ2),

In,θ
τ,α−1χ− Iα−1

0,t χtn−θ
= O(tσ+α−3

n−θ τ2).

(36)

Taking into account the fact that

τ
n

∑
j=1

tk
j−θ =


O(τ1+s). k < −1

O(log n), k = −1

O(1), k > −1

(37)

and combining (36) and (37), we obtain

τ
n

∑
j=1
||χj

τ,θ − χt(tj−θ)||2

≤Ẽ(3)
n−θ , Cτ5

n

∑
j=1

t2σ−6
j−θ =


O(τ2σ−1). σ < 2.5

O(τ4 log n), σ = 2.5

O(τ4), σ > 2.5

(38)

τ
n

∑
j=1
||Dj,θ

τ,2−αχ− D2−α
0,t χ(tj−θ)||2

≤Ẽ(1)
n−θ , Cτ5

n

∑
j=1

t2σ+2α−8
j−θ =


O(τ2σ+2α−3), σ < −α + 3.5

O(τ4 log n), σ = −α + 3.5

O(τ4), σ > −α + 3.5

(39)

τ
n

∑
j=1
||I j,θ

τ,α−1χ− Iα−1
0,t χ(tj−θ)||2

≤Ẽ(2)
n−θ , Cτ5

n

∑
j=1

t2σ+2α−6
j−θ =


O(τ2σ+2α−1), σ < −α + 2.5

O(τ4 log n), σ = −α + 2.5

O(τ4), σ > −α + 2.5

(40)

By multiplying both sides of Equation (33) by τ, we can obtain

τ
n

∑
j=1

(ρDj,θ
τ,2−αχ, rj) ≤ Cτ

n

∑
j=1
||Dj,θ

τ,2−αχ||2 + τ

2

n

∑
j=1
||rj||2

≤τ

2

n

∑
j=1
||rj||2 + Cτ

n

∑
j=1

(||Dj,θ
τ,2−αχ− D2−α

0,t χ(tj−θ)||2 + ||D2−α
0,t χ(tj−θ)||2) (41)

≤Ẽ(1)
n−θ + CN−2m +

τ

2

n

∑
j=1
||rj||2,
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τ
n

∑
j=1

(I j,θ
τ,α−1χ, rj) ≤ τ

2

n

∑
j=1
||I j,θ

τ,α−1χ||2 + τ

2

n

∑
j=1
||rj||2

≤τ
n

∑
j=1

(||I j,θ
τ,α−1χ− Iα−1

0,t χ(tj−θ)||2 + ||Iα−1
0,t χ(tj−θ)||2) +

τ

2

n

∑
j=1
||rj||2 (42)

≤Ẽ(2)
n−θ + CN−2m +

τ

2

n

∑
j=1
||rj||2,

τ
n

∑
j=1

(χ
j
τ,θ , rj) ≤ τ

2

n

∑
j=1
||χj

τ,θ ||
2 +

τ

2

n

∑
j=1
||rj||2

≤τ
n

∑
j=1

(||χj
τ,θ − χt(tj−θ)||2 + ||χt(tj−θ)||2) +

τ

2

n

∑
j=1
||rj||2 (43)

≤Ẽ(3)
n−θ + CN−2m +

τ

2

n

∑
j=1
||rj||2,

τ
n

∑
j=1

(Ej−θ , rj) ≤ Ẽ(1)
n−θ + Ẽ(3)

n−θ +
τ

2

n

∑
j=1
||rj||2. (44)

Combining (34) and (41)–(44), for n ≥ 2, we obtain

1
4
||rn||2 ≤ 1

2
||r1||2 + Ẽ(1)

n−θ + Ẽ(2)
n−θ + Ẽ(3)

n−θ + 2τ
n

∑
j=1
||rj||2 + CN−2m. (45)

Similarly, let n = 1 and θ = 1
2 ; thus, we can easily obtain the following inequality:

||r1||2 ≤ Ẽ(1)
1
2

+ Ẽ(2)
1
2

+ Ẽ(3)
1
2

+ CN−2m. (46)

We derive the following inequality using Grönwall’s inequality:

||rn||2 ≤ C̃τ4 + Cτ2σ−1 + Cτ2σ+2α−3 + CN−2m, (47)

where C is independent of n and τ. C̃ is defined by

C̃ =

{
O(
√

log n), σ = 2.5, and σ = −α + 3.5

O(1). else
(48)

Finally, we can prove Theorem 2 by applying the triangle inequality and utilizing
Equation (4).

5. Fast Algorithm

The expansion coefficients ω
(δ)
n (δ ∈ (−1, 0) ∪ (0, 1)) in (9) can be represented as

integrals by [11,29,30]

τ−δ
∞

∑
n=0

ω
(δ)
n ξn =τ−δω(ξ, δ) = F−δ

(
1− ξ

τ

)
κ(ξ, θ)

=
κ(ξ, θ)

2πi

∫
c

(
1− ξ

τ
− λ

)−1
Fδ(λ)dλ,

(49)

where
κ(ξ, θ) =

1
1− ( δ

2 − θ)(1− ξ)
. (50)
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If we define
∞

∑
n=0

e(κ)n (z)ξn , κ(ξ, θ)(1− ξ − z)−1, (51)

then

ω
(δ)
n =

τ1+δ

2πi

∫
c

e(κ)n (τλ)Fδ(λ)dλ, (52)

where Fδ(λ) = λδ. From (51), we can derive

e(κ)n (z) =

[
(1− z)−n−1 −

(
−δ + 2θ

2− δ + 2θ

)n+1
]

/
[

1 +
1
2
(−δ + 2θ)z

]
, (53)

and so we can rewrite e(κ)n as

e(κ)n (z) = r1(z)nq1(z)− r2(z)nq2(z) = e(1)n (z)− e(2)n (z), (54)

where r1(z) = (1− z)−1, r2(z) = −δ+2θ
2−δ+2θ , and

q1(z) = (1− z)−1
[

1 +
1
2
(−δ + 2θ)z

]−1
,

q2(z) =
−δ + 2θ

2− δ + 2θ

[
1 +

1
2
(−δ + 2θ)z

]−1
,

(55)

The key to the fast algorithm is that we divide the time domain into a series of fast
growing intervals,

Il = [Bl−1τ, (2Bl − 2)τ], (56)

where B is a basis chosen satisfying B ∈ N+, B > 1, and Il is overlapping.
In Equation (49), we select a Talbot contour Γ as our chosen path of integration [31].

Then, we can obtain

ω
(δ)
n ≈ τδ+1

K

∑
j=−K

w(l)
j [e(1)n (τλ

(l)
j )− e(2)n (τλ

(l)
j )]Fδ(λ

(l)
j ), nτ ∈ Il , (57)

where w(l)
j and λ

(l)
j are

w(l)
j = − i

2(K + 1)
$′(ϑj), λ

(l)
j = $(ϑj), ϑj =

jπ
K + 1

. (58)

To demonstrate the effectiveness of the approximation, we subtract (57) from (9) and
obtain the absolute value, which represents the absolute approximation error. Setting B = 5,
Il(l = 1, 2, 3, 4, 5), and K = 10 and 30, we plot the absolute approximation error in Figure 1.

Figure 1 shows that the approximate effect of the first few weights is poor, so in the
calculation process, we calculate the first few weights by (9) and find that the approximate
effect of K = 30 is generally better than that of K = 10, which will be verified in Example 4.
Referring to [32], we determine L and obtain n = b0 > b1 > · · · > bL−1 > bL = 0.
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Figure 1. (a) Absolute error for ω
(0.3)
n with τ = 10−3, (b) absolute error for ω

(−0.3)
n with τ = 10−3.

Now, we rewrite (8) as

Dn,θ
τ,ηξ = τ−ηω

(η)
0 (ξn − ξ0) + τ−η

L

∑
l=1

bl−1−1

∑
k=bl

ω
(η)
n−k(ξ

k − ξ0),

In,θ
τ,ηξ = τηω

(−η)
0 (ξn − ξ0) + τη

L

∑
l=1

bl−1−1

∑
k=bl

ω
(−η)
n−k (ξk − ξ0).

(59)

We define u(l)
n,δ as

u(l)
n,δ =


τ−δω

(δ)
0 (ξn − ξ0), l = 0

τ−δ
bl−1−1

∑
k=bl

ω
(δ)
n−k(ξ

k − ξ0). l = 1, 2, · · · , L
(60)

Then, utilizing (57), (60), and the definitions for e(i)n (z)(i = 1, 2), we obtain (for l > 0)

u(l)
n,δ ≈

K

∑
j=−K

w(l)
j

[
τ

bl−1−1

∑
k=bl

e(κ)n−k(τλ
(l)
j )(ξk − ξ0)

]
Fδ(λ

(l)
j )

=
K

∑
j=−K

w(l)
j τ

[
bl−1−1

∑
k=bl

e(1)n−k(τλ
(l)
j )(ξk − ξ0)−

bl−1−1

∑
k=bl

e(2)n−k(τλ
(l)
j )(ξk − ξ0)

]
Fδ(λ

(l)
j )

=
K

∑
j=−K

w(l)
j

[
rn−(bl−1−1)

1 (τλ
(l)
j )v(1)j − rn−(bl−1−1)

2 (τλ
(l)
j )v(2)j

]
Fδ(λ

(l)
j )

(61)

where v(i)j (i = 1, 2) is as follows

v(i)j = v(i)j (bl , bl−1, λ
(l)
j ) = τ

bl−1−1

∑
k=bl

e(i)
(bl−1−1)−k(τλ

(l)
j )(ξk − ξ0). (62)

We notice that v(i)j (bl , bl−1, λ
(l)
j ) has a recursive structure, which can be utilized to

enhance the computation speed:

v(i)j (bl , bs, λ
(l)
j ) =τ

bm−1

∑
k=bl

e(i)
(bs−1)−k(τλ

(l)
j )(uk − u0) + v(i)j (bm, bs, λ

(l)
j )

=ri(τλ
(l)
j )bs−bm v(i)j (bl , bm, λ

(l)
j ) + v(i)j (bm, bs, λ

(l)
j ).

(63)
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The first few weights are not described well by (57) (refer to Figure 1). Thus, for
l = 0, 1, 2, · · · , k, we calculate the weights according to (9), and for l = k + 1, · · · , L, we
calculate the weights according to (57). Combining (59)–(61), we can obtain

Dn,θ
τ,ηξ =

k

∑
l=0

u(l)
n,η +

L

∑
l=k+1

u(l)
n,η

≈
k

∑
l=0

u(l)
n,η +

L

∑
l=k+1

K

∑
j=−K

w(l)
j

[
rn−(bl−1−1)

1 (τλ
(l)
j )v(1)j − rn−(bl−1−1)

2 (τλ
(l)
j )v(2)j

]
Fη(λ

(l)
j ).

In,θ
τ,ηξ =

k

∑
l=0

u(l)
n,−η +

L

∑
l=k+1

u(l)
n,−η

≈
k

∑
l=0

u(l)
n,−η +

L

∑
l=k+1

K

∑
j=−K

w(l)
j

[
rn−(bl−1−1)

1 (τλ
(l)
j )v(1)j − rn−(bl−1−1)

2 (τλ
(l)
j )v(2)j

]
F−η(λ

(l)
j ).

(64)

Below are listed the steps for implementing the fast algorithm:

1. Input parameters B, K, λ
(l)
j , w(l)

j , ϑj.

2. Compute bl and obtain n = b0 > b1 > · · · > bL−1 > bL = 0.
3. For l = 0, 1, 2, · · · , k, compute the weights using (9), and calculate the weights us-

ing (57) for l = k + 1, · · · , L.
4. From step 3, compute (64).

6. Numerical Examples

In this section, we provide four examples of solving an FKGE utilizing our proposed
scheme, and the results verify our theoretical analysis and the effectiveness of our method.
The basis function was chosen as ψ(x) = Lj(x) − Lj+2(x), j = 0, 1, · · · , N for ∀vk

N ∈
P0

N , vk
N = ∑N−2

j=0 v̂k
Nψj(x), where v̂k

N is the frequency coefficient. The codes were developed
in MATLAB 2022a and executed on a Windows 10 operating system. The computer used
for running these codes had a processor speed of 2.60 GHz and 8 GB of RAM.

Example 1. Let ρ = 1 in (1). We considered the following fractional dissipative Klein–Gordon
equation with homogeneous initial condition φ(x) = 0, ϕ(x) = 0:

∂αξ(x, t)
∂tα

+
∂ξ(x, t)

∂t
+ ξ(x, t) =

∂2ξ(x, t)
∂x2 + f (x, t). (65)

Assuming that the exact solution of Equation (65) is ξ(x, t) = t4 sin(πx), the corresponding
forcing term is given by

f (x, t) =
[

Γ(5)
Γ(5− α)

t4−α + 4t3 + (1 + π2)t4
]

sin(πx).

For N = 100, the results are presented in Tables 1–3. It can be observed that our
numerical scheme exhibited second-order convergence accuracy in the temporal direction,
which aligned with the theoretical expectations.

Table 1. The L2 error and L∞ error at α = 1.5, θ = 0.3, and T = 1.

τ L2 Error Rate L∞ Error Rate Time (s)

2−6 5.044987 × 10−3 8.532442 × 10−4 0.306217
2−7 1.280432 × 10−3 1.98 2.165557 × 10−4 1.98 0.766249
2−8 3.225111 × 10−4 1.99 5.454538 × 10−5 1.99 3.059746
2−9 8.092851 × 10−5 1.99 1.368721 × 10−5 1.99 15.242314
2−10 2.026974 × 10−5 2.00 3.428163 × 10−6 2.00 78.373508
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Table 2. Temporal convergence rates at α = 1.2, θ = 0.5, and T = 1.

τ L2 Error Rate L∞ Error Rate Time (s)

2−6 6.613273 × 10−3 1.118484 × 10−3 0.279892
2−7 1.674942 × 10−3 1.98 2.832782 × 10−4 1.98 0.749574
2−8 4.214538 × 10−4 1.99 7.127927 × 10−5 1.99 3.058692
2−9 1.057042 × 10−4 2.00 1.787745 × 10−5 2.00 14.168706
2−10 2.646869 × 10−5 2.00 4.476574 × 10−6 2.00 78.849718

Table 3. The L2 error and L∞ error at α = 1.8, θ = 0.8, and T = 1.

τ L2 Error Rate L∞ Error Rate Time (s)

2−6 1.584784 × 10−2 2.680300 × 10−3 0.267496
2−7 4.066127 × 10−3 1.96 6.876924 × 10−4 1.96 0.729302
2−8 1.029638 × 10−3 1.98 1.741398 × 10−4 1.98 3.289171
2−9 2.590520 × 10−4 1.99 4.381272 × 10−5 1.99 14.103777
2−10 6.496853 × 10−5 2.00 1.098794 × 10−5 2.00 77.813919

To analyze the spatial accuracy, we set τ = 0.001 to eliminate temporal direction errors.
In Figure 2, it can be observed that when α = 1.8 and θ = 0.3, the error exhibited an
exponential decrease. This behavior confirmed the spectral accuracy of the method, which
in turn confirmed the validity of our theoretical analysis.
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L
2
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Figure 2. α = 1.8, θ = 0.8 for Example 1 at T = 1.

Example 2. Let ρ = 0 in (1). We investigated the fractional linear Klein–Gordon equation with
the non-homogeneous initial conditions φ(x) = sin(πx), ϕ(x) = 0,

∂αξ(x, t)
∂tα

+ ξ(x, t) =
∂2ξ(x, t)

∂x2 + f (x, t). (66)

Assuming that the exact solution of Equation (66) is ξ(x, t) = (t4 + 1) sin(πx), the corre-
sponding forcing term is

f (x, t) =
[

Γ(5)
Γ(5− α)

t4−α +
1

Γ(1− α)
t−α + (t4 + 1)(1 + π2)

]
sin(πx).

For N = 100, the results are illustrated in Tables 4–6. Notably, even when considering
non-homogeneous initial conditions, it was evident that our numerical scheme remained
applicable. The results indicated the adaptability and flexibility of our method.
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Table 4. The L2 error and L∞ error at α = 1.5, θ = 0.9, and T = 1.

τ L2 Error Rate L∞ Error Rate Time (s)

2−6 1.637673 × 10−2 2.769750 × 10−3 0.271781
2−7 4.181892 × 10−3 1.97 7.072714 × 10−4 1.97 0.695502
2−8 1.056485 × 10−3 1.98 1.786803 × 10−4 1.98 2.756914
2−9 2.655010 × 10−4 1.99 4.490342 × 10−5 1.99 12.633774
2−10 6.654790 × 10−5 2.00 1.125506 × 10−5 2.00 59.670061

Table 5. The L2 error and L∞ error at α = 1.2, θ = 0.7, and T = 1.

τ L2 Error Rate L∞ Error Rate Time (s)

2−6 1.012134 × 10−2 1.711793 × 10−3 0.275343
2−7 2.568689 × 10−3 1.98 4.344350 × 10−4 1.98 0.765448
2−8 6.469977 × 10−4 1.99 1.094249 × 10−4 1.99 2.744447
2−9 1.623546 × 10−4 1.99 2.745857 × 10−5 1.99 13.364513
2−10 4.066441 × 10−5 2.00 6.877456 × 10−6 2.00 60.118435

Table 6. The L2 error and L∞ error at α = 1.8, θ = 0.3, and T = 1.

τ L2 Error Rate L∞ Error Rate Time (s)

2−6 6.314916 × 10−3 1.068024 × 10−3 0.273913
2−7 1.612247 × 10−3 1.97 2.726746 × 10−4 1.97 0.709604
2−8 4.072641 × 10−4 1.99 6.887941 × 10−5 1.99 2.833458
2−9 1.023419 × 10−4 1.99 1.730879 × 10−5 1.99 12.073551
2−10 2.565123 × 10−5 2.00 4.338319 × 10−6 2.00 58.882522

Example 3. Let ρ = 1 in (1). The non-smooth solution ξ(x, t) = (t4 + tmin{2−α,α−1}) sin(πx)
was considered, with the corresponding forcing term

f (x, t) =
[

Γ(min{3− α, α})
Γ(min{3− 2α, 0}) tmin{2−2α,−1} +

Γ(5)
Γ(5− α)

t4−α + 4t3+

min{2− α, α− 1}tmin{1−α,α−2} + (t4 + tmin{2−α,α−1})(1 + π2)

]
sin(πx).

Assuming N = 100, it is worth mentioning that due to the weak regularity of the
solution, it was not possible to achieve the optimal convergence rate of O(τ2). Referring
to Table 7, we can observe that the inclusion of correction terms led to an improved
convergence rate. This result serves as evidence for the efficiency of our method.

Table 7. Temporal convergence rates at T = 1.

(α, θ) τ Direct Method Rate Correction Rate

(1.2, 0.1) 2−4 1.154038 × 10−3 4.645596 × 10−4

2−5 3.103449 × 10−4 1.89 1.184401 × 10−4 1.97
2−6 8.260221 × 10−5 1.91 2.815017 × 10−5 2.07
2−7 2.255211 × 10−5 1.87 7.023850 × 10−6 2.00

(1.8, 0.3) 2−4 1.538917 × 10−2 1.124338 × 10−2

2−5 4.237714 × 10−3 1.86 2.942242 × 10−3 1.93
2−6 1.171468 × 10−3 1.85 7.246667 × 10−4 2.02
2−7 3.333848 × 10−4 1.81 1.757115 × 10−4 2.04

(1.5, 0) 2−4 1.457736 × 10−3 5.482971 × 10−4

2−5 4.355394 × 10−4 1.74 1.518084 × 10−4 1.85
2−6 1.323356 × 10−4 1.72 3.868906 × 10−5 1.97
2−7 4.106669 × 10−5 1.69 9.639184e × 10−6 2.00
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Example 4. Let ρ = 0 in (1). We utilized the fast algorithm to solve the Equation (66). Assuming
that the exact solution of Equation (66) is ξ(x, t) = t4 sin(πx), the corresponding forcing term is

f (x, t) =
[

Γ(5)
Γ(5− α)

t4−α + (1 + π2)t4
]

sin(πx).

We set B = 5 and N = 100. To simplify the notation, we denoted the approximation of
Equation (57) with 2K + 1 points as FastK. We had two sets of solutions: ZS, which were
obtained using the direct method, and ZF, which was obtained using the fast algorithm.
We set θ = 1−α

2 and defined the pointwise error as

e(α, M) = max
t=t0,··· ,tM ,x=x1,··· ,xN

|ZS − ZF|. (67)

According to Table 8, it is evident that the fast algorithm significantly accelerated the
computation process. Moreover, our approach not only attained exceptional precision, but
also effectively reduced the computational cost. For example, for K = 30, the pointwise
error was around 10−15, which was close to the machine accuracy. Figure 3a displays
the exact solutions for M = 1000, α = 1.8. Figure 3b shows the numerical solutions for
the given parameters: M = 1000, α = 1.8, and K = 30. Furthermore, in order to obtain
the error contour plot shown in Figure 4a, we subtracted the corresponding solutions
from Figure 3a,b. In Figure 4b, it is evident that the computational complexity of the fast
algorithm was O(M log M), while the direct method had a computational complexity of
O(M2). This result in Figure 4 aligned with the theoretical expectations and confirmed that
the algorithms’ performances matched the expected efficiencies.

(a) (b)

Figure 3. (a) Exact solution, (b) numerical solution.
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Figure 4. (a) Error contour, (b) computational complexity.
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Table 8. Pointwise error with θ = 1−α
2 .

α M Direct Method Fast10 e(α, M) Fast30 e(α, M)

1.8 1× 103 56.29 s 6.96 s 2.11210 × 10−8 16.08 s 3.16414 × 10−15

2× 103 307.52 s 18.44 s 2.22114 × 10−8 42.53 s 7.16094 × 10−14

3× 103 909.11 s 36.25 s 5.83438 × 10−8 84.64 s 1.33227 × 10−15

1.5 1× 103 57.41 s 6.51 s 3.94038 × 10−7 16.55 s 5.62052 × 10−16

2× 103 310.38 s 18.48 s 4.21263 × 10−7 44.76 s 2.57572 × 10−14

3× 103 998.17 s 37.36 s 3.67259 × 10−7 87.23 s 1.52101 × 10−14

1.2 1× 103 57.25 s 6.94 s 2.54602 × 10−7 16.55 s 1.85407 × 10−14

2× 103 308.97 s 18.45 s 5.35331 × 10−7 44.76 s 7.86038 × 10−14

3× 103 1014.26 s 35.09 s 7.14741 × 10−8 83.61 s 5.17364 × 10−14

7. Conclusions

In this study, we developed a stable and efficient numerical method to solve an FKGE.
A stability analysis and the convergence of the discrete scheme were provided in our
method. Considering the weak regularity of the solutions, we improved the convergence
order by incorporating correction terms into our approach. To optimize the computational
complexity, we implemented a fast algorithm, which significantly reduced the runtime
required for solving an FKGE. This allowed for quicker computations without sacrificing
accuracy. We note the method can be extended to higher-dimensional cases.
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