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Abstract: A class of generalized fractional Zener-type viscoelastic models with general fractional
derivatives is considered. Two integral representations are derived for the corresponding relaxation
modulus. The first representation is established by applying the Laplace transform to the constitutive
equation and using the Bernstein functions technique to justify the change of integration contour in the
complex Laplace inversion formula. The second integral representation for the relaxation modulus
is obtained by applying the subordination principle for the relaxation equation with generalized
fractional derivatives. Two particular examples of the considered class of models are discussed in
more detail: a model with fractional derivatives of uniformly distributed order and a model with
general fractional derivatives, the kernel of which is a multinomial Mittag-Leffler-type function. To
illustrate the analytical results, some numerical examples are presented.
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1. Introduction

Analytical methods play an essential role in the study of linear viscoelastic
models [1,2]: this is, in general, due to the fact that in such models the rheological properties
of a viscoelastic medium are described by a linear constitutive relation between stress σ
and strain ε. Such a stress–strain relation can be studied analytically by employing the
Laplace transform.

Let us consider the uniaxial case, in which σ = σ(x, t) and ε = ε(x, t), where x ∈ R
and t ≥ 0 are spatial and temporal variables, respectively. For systems that are at rest before
some starting time, t = 0, the relaxation modulus G(t) is defined via the convolutional
relation [2]

σ(x, t) =
∫ t

0
G(t− τ)

∂ε

∂τ
(x, τ)dτ, (1)

which allows us to study the relaxation modulus by the use of the Laplace transform with
respect to time.

Fractional calculus has been extensively employed in linear viscoelasticity, due to its
ability to model phenomena with memory [1–3]. For instance, incorporating non-integer
time derivatives in viscoelastic equations provides an appropriate framework for the
description of properties of polymer solution and melts [4]. One of the most used fractional
viscoelastic models of solid-like behavior is the fractional Zener model, which is defined by
the following stress–strain constitutive relation [1,2]:

(1 + aDα
t )σ(x, t) = (1 + bDα

t )ε(x, t), 0 < a < b, 0 < α < 1. (2)
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Here, Dα
t is the fractional Riemann–Liouville derivative of order α ∈ (0, 1), defined by

(see, e.g., [5])

(Dα
t f )(t) =

d
dt

∫ t

0
ω1−α(t− τ) f (τ)dτ, ωα(t) =

tα−1

Γ(α)
, t > 0. (3)

In the limiting case α = 1, the stress–strain relation (2) represents the classical Zener
model, which is also referred to as the Standard Linear Solid model [2].

The relaxation modulus G(t), in the case of the fractional Zener model (2), admits the
explicit representation

G(t) = 1 + (b/a− 1)Eα(−tα/a), (4)

where Eα(·) denotes the Mittag-Leffler function

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
. (5)

Different integral representations for the relaxation modulus (4) can be derived based
on such representations for the Mittag-Leffler function. First, the integral representation
formula for the Mittag-Leffler function in [6], Equation (A30), yields

G(t) = 1 +
∫ ∞

0
e−rtK(r)dr, t > 0, (6)

where the spectral function K(r) is defined as follows:

K(r) =
b− a

π

rα−1 sin(απ)

a2r2α + 2arα cos(απ) + 1
.

Since K(r) ≥ 0 under the restrictions on the parameters in (2), representation (6)
implies that the function G(t) is completely monotone.

Another type of integral representation follows from the formula (see, e.g., [2])

Eα(z) =
∫ ∞

0
ezr Mα(r)dr, 0 < α < 1, (7)

where Mα(·) is the following function of Wright type:

Mα(z) =
∞

∑
n=0

(−z)n

n!Γ(−αn + 1− α)
, 0 < α < 1. (8)

This function is usually referred to as the Mainardi function.
Inserting (7) into (4) yields the integral representation

G(t) = 1 + (b/a− 1)
∫ ∞

0
ϕα(t, τ)e−τ/a dτ, t > 0, (9)

where ϕα(t, τ) = t−α Mα(τt−α).
Various types of generalizations of the classical fractional Zener constitutive model (2)

have been proposed and studied in the literature. In [7–12], different Zener-type models
of distributed order are studied. In [7], the following stress–strain relation of distributed
order was proposed: ∫ 1

0
pσ(α)Dα

t σ(x, t)dα =
∫ 1

0
pε(α)Dα

t ε(x, t)dα, (10)
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where the weight functions pσ(α) and pε(α) are non-negative. By setting

pσ(α) =
N

∑
n=0

anδ(α− αn), pε(α) =
N

∑
n=0

bnδ(α− αn),

where 0 ≤ α0 < α1 < ... < αN < 1 and an, bn > 0 for all n = 0, 1, ..., N, and δ(.) denotes the
Dirac delta function, the following constitutive equation is obtained:

N

∑
n=0

anDαn
t σ(x, t) =

N

∑
n=0

bnDαn
t ε(x, t). (11)

The multi-term stress–strain relation (11) was studied in [8], and restrictions on the
parameters an, bn were found, which guarantee thermodynamic compatibility. When the
weight functions in (10) have the form

pσ(α) = aα, pε(α) = bα, a, b > 0, (12)

then the model is the so-called power-type distributed-order model. It was proved in [7]
that the rheological model (10) with power weight functions (12) is thermodynamically
compatible, provided a < b. The constitutive Equation (10) and the related mechanical
models are studied in [9,10]. Integral representations of the relaxation moduli, which
generalize representation (6), were deduced in [11] for the model (11) and the model with
continuous power-type distribution (10)–(12) under the above-mentioned thermodynamic
restrictions on the parameters. The obtained representations imply that the corresponding
relaxation moduli are completely monotone functions. In [12], restrictions on the parame-
ters guaranteeing thermodynamic compatibility were formulated for the distributed-order
model (10), with weight functions of a more general form:

pσ(α) = aα A(α), pε(α) = bαB(α),

where A(α) and B(α) are non-negative integrable functions defined for α ∈ [0, 1]. In recent
works [13,14], constitutive models of the Zener type, containing both fractional integrals
and derivatives, have been formulated and their thermodynamical consistency has been
studied. Relaxation moduli were calculated, and restrictions on model parameters narrow-
ing thermodynamical constraints were posed, in order to ensure complete monotonicity.

A Zener-type model with general fractional derivatives was proposed in [15], and re-
strictions on the coefficients were derived that followed from the dissipation inequality. Gen-
eral fractional differential operators are a subject of increasing interest—see, e.g., [16–18],
to mention only a few of many recent publications.

Motivated by [15], where a generalization of model (2) was proposed, with frac-
tional derivative Dα

t replaced by a general convolutional derivative D(k)
t , we consider the

generalized fractional Zener model with the constitutive equation(
1 + aD(k)

t

)
σ(x, t) =

(
1 + bD(k)

t

)
ε(x, t), 0 < a < b. (13)

Here, D(k)
t is the convolutional derivative in the Riemann–Liouville sense, defined by

(D(k)
t f )(t) =

d
dt

∫ t

0
k(t− τ) f (τ)dτ, t > 0, (14)

where k(t) is a locally integrable memory kernel. Further assumptions on the kernel k(t)
are specified later in Section 3.

Based on the properties of completely monotone, Stieltjes, and complete Bernstein
functions, in [19] the complete monotonicity of the relaxation modulus for the generalized
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Zener model (13) was proved and the subordination principle for the corresponding Zener-
type wave equation was established.

Integral representations for the relaxation moduli of viscoelastic models have proven
useful for the analytical and numerical study of the corresponding models. Therefore,
the aim of the present work is to establish integral representations for the relaxation
modulus G(t) of the Zener model (13), which generalize representations (6) and (9).

First, we establish a representation of the form (6), based on deforming the contour of
integration in the complex inversion formula for the Laplace transform. Such a technique
has been extensively used in the literature. In [20], sufficient conditions were formulated
under which the change of integration contour to the so-called Hankel path was justified.
In [1,10], the method was applied to different fractional evolution equations. Applications
to distributed-order relaxation equations can be found in [21,22].

To obtain an alternative integral representation for G(t), which generalises (9), we
use the relation of this function and the solution of a relaxation equation with a general
fractional Caputo derivative with kernel k(t), and we apply the subordination principle for
this equation [16,23,24]. The concept of subordination, originally introduced by Bochner in
the theory of stochastic processes, has developed recently into a powerful tool in the study
of anomalous relaxation and diffusion processes and the physics of complex systems (see,
e.g., [25–27] and the recent review paper [28]).

The present work is organized as follows. Section 2 contains preliminaries on com-
pletely monotone, Stieltjes and complete Bernstein functions. In Section 3, the generalized
fractional Zener model is formulated and some basic properties are discussed. In Section 4,
the first integral representation for the relaxation modulus is derived. Section 5 contains
two particular examples: the Zener model with fractional derivatives of uniformly dis-
tributed order and the one with general fractional derivatives, the kernel of which is a
multinomial Mittag-Leffler-type function. Numerical results, based on the first integral rep-
resentation, are given. Applying the subordination principle for the generalized fractional
relaxation equation, a second integral representation for the relaxation modulus is obtained
in Section 6. Concluding remarks are given in Section 7.

2. Preliminaries

The sets of real and complex numbers are denoted by R and C, respectively, and
R+ = (0, ∞), C+ = {z ∈ C, <z > 0}.

The Laplace transform of a function f (t) is denoted by f̂ or L{ f }:

f̂ (s) = L{ f (t)}(s) =
∫ ∞

0
e−st f (t)dt.

The class of completely monotone functions, which we denote by CMF , consists of
all real-valued functions f (t), defined on the half-line R+, such that f (t) ∈ C∞(R+) and

(−1)n f (n)(t) ≥ 0, t > 0, n = 0, 1, 2, .... (15)

According to Bernstein’s theorem, a function is completely monotone if and only if it
can be represented as the Laplace transform of a measure on R+.

The class SF of Stieltjes functions consists of all non-negative functions ϕ defined
on R+ that admit the representation (see [16])

ϕ(s) =
A
s
+ B +

∫ ∞

0
e−st f (t)dt, s > 0, (16)

where A ≥ 0, B ≥ 0, f (t) ∈ CMF and the Laplace transform of f exists for any s > 0.
The constants A and B in (16) are determined by the identities

A = lim
s→0+

sϕ(s), B = lim
s→+∞

ϕ(s). (17)
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Any Stieltjes function is completely monotone.
The class CBF of complete Bernstein functions consists of all non-negative functions

ϕ defined on R+, which admit the representation [29]

ϕ(s) = A + Bs +
∫ ∞

0
(1− e−st)m(t)dt, s > 0, (18)

where A ≥ 0, B ≥ 0, and m(t) is a completely monotone function, such that∫ ∞

0
min{1, t}m(t)dt < ∞.

The constants A and B in (18) are defined as follows:

A = lim
s→0+

ϕ(s), B = lim
s→+∞

ϕ(s)
s

. (19)

Any complete Bernstein function is a Bernstein function: that is, ϕ ∈ C∞(R+), ϕ ≥ 0
and ϕ′ ∈ CMF .

Next, some properties of the above special classes of functions are summarized for
further use in this work.

Theorem 1 ([29]). Suppose that ϕ is a non-negative function on R+ and s > 0. The following
statements hold true:

(P1) The sets CMF , SF , and CBF are convex cones, closed under pointwise limits.
(P2) ϕ ∈ SF if and only if sϕ(s) ∈ CBF .
(P3) Let ϕ 6= 0. Then, ϕ(s) ∈ SF if and only if (ϕ(s))−1 ∈ CBF .
(P4) Any function ϕ ∈ CBF has an analytic continuation to the upper half-plane,

H = {z ∈ C : =z > 0},

which is defined by the expression

ϕ(z) = A + Bz +
∫ ∞

0

z
z + t

ν(dt), (20)

where A, B ≥ 0 are the constants defined in (19) and ν is a Borel measure on R+ satisfying∫ ∞
0 (1 + t)−1 ν(dt) < ∞.

(P5) Any function ϕ from the classes CBF or SF admits an analytic extension to the complex
plane cut along the negative real axis C\(−∞, 0], such that

(ϕ(z))∗ = ϕ(z∗), (21)

where ∗ stands for complex conjugate. Moreover, if z ∈ C\(−∞, 0], then

| arg ϕ(z)| ≤ | arg z| (22)

and

=ϕ(z) · =z ≥ 0 if ϕ ∈ CBF ; (23)

=ϕ(z) · =z ≤ 0 if ϕ ∈ SF . (24)

(P6) Let ϕ be the analytic extension of a complete Bernstein function to C\(−∞, 0]. Then, the limit

ϕ(0+) = lim
(0,∞)3s→0

ϕ(s)

exists and is real.
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(P7) If α ∈ [0, 1], then
s−α ∈ SF , sα ∈ CBF . (25)

For details on the proofs, we refer to [29].
The following result is usually referred to as the Karamata–Feller theorem.

Theorem 2 ([30]). Let L : R+ → R+ be a slowly varying function at ∞, i.e., for every fixed
x > 0 it holds L(tx)/L(t)→ 1 as t→ ∞. Let α > 0 and f : R+ → R+ be such that its Laplace
transform f̂ (s) exists for all s ∈ C+. Then,

f̂ (s) ∼ s−αL
(

s−1
)

as s→ 0

if and only if

f (t) ∼ ωα(t)L(t) as t→ +∞,

where ωα(t) is the function defined in (3).

Here, and later in this work, the notation f (t) ∼ g(t) as t→ t∗ stands for

lim
t→t∗

f (t)
g(t)

= 1.

3. Model Formulation

We consider the generalized fractional Zener model defined by constitutive
Equation (13) with the convolutional derivative in the Riemann–Liouville sense (14). We
assume that the Laplace transform of the kernel k(t) exists for all s > 0 and

k̂(s) ∈ SF , (26)

where SF denotes the class of Stieltjes functions (see (16)). Moreover, we suppose

lim
s→+∞

sk̂(s) = +∞ (27)

in the Laplace domain (1), yielding

sĜ(s) =
σ̂(x, s)
ε̂(x, s)

.

Here, σ̂(x, s) and ε̂(x, s) denote the Laplace transforms of the functions σ(x, t) and
ε(x, t) with respect to t, while x is considered as a parameter. Applying the Laplace
transform to constitutive Equation (13), and using the identity

L{D(k)
t f }(s) = sk̂(s) f̂ (s), (28)

we deduce the relation

σ̂(x, s)
ε̂(x, s)

=
1 + bsk̂(s)
1 + ask̂(s)

.

In this way, we obtain

Ĝ(s) =
1
s
· 1 + bsk̂(s)

1 + ask̂(s)
. (29)
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Let us mention some basic characteristics of the model. Based on (29) and
assumption (27) in [19] we found that

lim
t→0+

G(t) =
b
a

. (30)

Furthermore, assumption (26) is equivalent to (see (P2))

g(s) = sk̂(s) ∈ CBF , s > 0, (31)

which, according to property (P6), implies

lim
s→0+

sk̂(s) = k0 ≥ 0, (32)

where s→ 0+ denotes (0, ∞) 3 s→ 0. Therefore, applying the final value theorem for the
Laplace transform, we obtain

G(+∞) = lim
t→+∞

G(t) = lim
s→0+

sĜ(s) = lim
s→0+

1 + bsk̂(s)
1 + ask̂(s)

=
1 + bk0

1 + ak0
. (33)

Since G(+∞) > 0, i.e., there is no full relaxation, constitutive Equation (13) is a model
for solid-like viscoelastic behavior as the classical fractional one (2).

It was proven in [15] that condition 0 < a < b is sufficient for the thermodynamic
compatibility of model (13). In [19], it was established that this condition implies a stronger
property of complete monotonicity of the relaxation modulus. Moreover, it appears that the
constraint a < b is also a necessary condition for the physical acceptability of model (13).
Indeed, in a physically meaningful model, the function G(t) should be monotonically
decreasing, in particular G(0+) > G(+∞): this, by taking into account (30) and (33),
implies a < b.

In the rest of this work, we assume k0 = 0, where k0 is defined in (32). This is a normal
assumption for the kernels of general fractional derivatives (see [16]). In the present work,
this restriction is posed only for technical convenience.

4. First Integral Representation

To derive an integral representation for G(t), we use the derived Laplace
transform Ĝ(s), given in (29), which we rewrite in the form

Ĝ(s) =
1
s
+ F(s), s > 0, (34)

where

F(s) = (b/a− 1) · k̂(s)
sk̂(s) + 1/a

= (b/a− 1) · g(s)
s[g(s) + 1/a]

, s > 0, (35)

with g(s) = sk̂(s), as defined in (31). Since g(s) ∈ CBF , g(s) admits an analytic extension
to C\(−∞, 0]—see (P5)—and g(s) is a non-negative and monotonically non-decreasing
function for s > 0. Therefore, g(s) > 0 for s > 0, and (35) can be written in the form

F(s) = (b/a− 1) · 1
s[1 + (ag(s))−1]

, s > 0. (36)

Applying properties (P1) and (P3), it follows that 1 + (ag(s))−1 ∈ SF . Then, by (P2),

s[1 + (ag(s))−1] ∈ CBF .

Applying again (P3), we obtain F(s) ∈ SF . This, by (P5), in particular, implies that
the function F(s) admits an analytic extension to the complex plane cut along the negative
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real axis C\(−∞, 0]. Therefore, to derive a representation for G(t), we can apply the
inverse Laplace integral formula to (34) and change the integration contour in the complex
plane. The result is given in the next theorem. As usual, the notation φ → π− stands
for φ→ π, φ < π.

Theorem 3. Assume 0 < a < b and let the kernel k ∈ L1
loc(R+) be such that k̂(s) ∈ SF and

lim
s→0+

sk̂(s) = 0, lim
s→+∞

sk̂(s) = +∞. (37)

Suppose, moreover, that there exists ε > 0, such that∣∣∣F(re±iφ
)∣∣∣ ≤ p(r), π − ε < φ < π, (38)

where p(r) is a function, which does not depend on φ and p(r)e−ωr ∈ L1(R+) for any ω > 0.
Assume the limit limφ→π− k̂(reiφ) exists for almost all r > 0. Then, the relaxation modulus G(t)
for constitutive model (13) is a continuous function for t ≥ 0, infinitely differentiable and completely
monotone for t > 0, and admits the integral representation

G(t) = 1 +
∫ ∞

0
e−rtK(r) dr, t > 0. (39)

Here, the function K(r) ≥ 0 is defined by the identity

K(r) =
1
π

(a− b)k2(r)
(1− ark1(r))2 + (ark2(r))2 , r > 0, (40)

with k1(r) = <
{

limφ→π− k̂(reiφ)
}

, k2(r) = =
{

limφ→π− k̂(reiφ)
}

.

Proof. Applying the inversion formula for the Laplace transform to (34), and taking into
account that L{1} = 1/s, we obtain

G(t) = 1 +
1

2πi

∫ c+i∞

c−i∞
estF(s)ds, c > 0, (41)

where function F(s) is defined in (35). The function F(s) has the Stieltjes function rep-
resentation (16) with A = B = 0, calculated by applying (17) and (37). Therefore, F(s)
is the Laplace transform of a completely monotone function, denoted by f (t)—that is,
F(s) = f̂ (s). Then, G(t) = 1 + f (t) ∈ CMF and, in particular, it is infinitely differentiable
for t > 0. It follows from (37) that

k̂(s)
sk̂(s) + 1/a

∼ 1
s

, s→ ∞.

Applying Theorem 2, (35) implies

lim
t→0+

f (t) = b/a− 1.

In this way, we prove that G(t) is continuous for t ≥ 0 and limt→0+ G(t) = b/a. Next,
our aim is to find a representation for f (t).

By applying Cauchy’s theorem, the integration contour in (41) can be replaced by the
composite contour Γ = Γ+

1 ∪Γ+
2 ∪Γ+

3 ∪Γ4∪Γ−3 ∪Γ−2 ∪Γ−1 with appropriate orientation, where

Γ±1 = {s = q± iR, q ∈ (0, c)}, Γ±2 = {s = Re±iθ , θ ∈ (π/2, φ)},
Γ±3 = {s = re±iφ, r ∈ (ε, R)}, Γ4 = {s = εeiθ , θ ∈ (−φ, φ)},

with φ ∈ (π/2, π) and letting R→ ∞, ε→ 0.
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We first prove that

|F(s)| ≤ C
|s| (42)

uniformly on | arg s| ≤ π − δ for any δ ∈ (0, π/2). This follows from the fact that for any
real constant λ > 0 and δ ∈ (0, π/2),∣∣∣∣ g(s)

g(s) + λ

∣∣∣∣ ≤ (sin δ)−1, | arg s| ≤ π − δ. (43)

Indeed, since g(s) ∈ CBF , it satisfies (22), which yields

| arg g(s)| ≤ | arg s| ≤ π − δ.

Therefore, g(s) = reiθ for some r > 0, |θ| ≤ π− δ. Applying the elementary inequality

1 + 2y cos θ + y2 ≥ sin2 θ, y ∈ R,

it follows that ∣∣∣∣ g(s)
g(s) + λ

∣∣∣∣2 =
r2

r2 + 2λr cos θ + λ2 ≤
1

sin2 θ
,

which implies (43). This, together with (35), yields the estimate (42).
By the use of (42), we prove that the integrals on the contours Γ±1 and Γ±2 vanish as

R→ ∞. Indeed, for the integral on the contour Γ+
1 we obtain∣∣∣∣∫Γ+

1

estF(s)ds
∣∣∣∣ ≤ ∫ c

0
eqt|F(q + iR)|dq ≤ C

∫ c

0
eqt|q + iR|−1 dq→ 0, R→ ∞. (44)

The integral on Γ−1 is evaluated analogously. For the integration on Γ+
2 , (42) implies∣∣∣∣∫Γ+

2

estF(s)ds
∣∣∣∣ ≤ ∫ φ

π/2
eRt cos θ |F(Reiθ)|R dθ ≤ C

∫ φ

π/2
eRt cos θ dθ → 0, R→ ∞, (45)

where we have used the fact that cos θ < 0. The integral on Γ−2 is evaluated analogously.
In order to prove that the integral over Γ4 vanishes as ε→ 0, we show first that

lim
|s|→0

g(s) = 0, s ∈ C\(−∞, 0]. (46)

To this end, we use representation (20) in the upper half-plane H for the complete
Bernstein function g(s). As lims→0+ g(s) = 0, the constant A defined in (20) vanishes,
A = 0. Since, for s = η + iκ ∈ C\(−∞, 0] and t ≥ 0∣∣∣∣ 1

s + t

∣∣∣∣ = 1
((η + t)2 + κ2)1/2 ≤

c
t + 1

,

it follows by the integration properties of the measure ν

lim
H3s→0

∫ ∞

0

s
s + t

ν(dt) = 0.

Plugging this limit in representation (20) implies that (46) is satisfied in the upper half-
plane H. For s ∈ (0, ∞), the function g(s) is real-valued and satisfies (46) by assumption.
Since for s in the lower half-plane g(s) is defined by the Schwarz reflection principle
(see (21)), it follows that (46) is satisfied for all s ∈ C\(−∞, 0].
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Limit (46) implies that there exists ca ∈ (0, 1), such that |g(s)| ≤ 1/2a for
s ∈ C\(−∞, 0] and |s| ≤ ca. Then, for such s

|s||F(s)| ≤ (b/a− 1)
|g(s)|

|g(s) + 1/a| ≤ (b/a− 1)
|g(s)|

1/a− |g(s)| ≤ 2(b− a)|g(s)|. (47)

This estimate, together with (46), implies that for ε→ 0∣∣∣∣∫Γ4

estF(s)ds
∣∣∣∣ ≤ ∫ φ

−φ
eεt cos θ |F(εeiθ)|ε dθ ≤ 2(b− a)

∫ φ

−φ
eεt cos θ |g(εeiθ)|dθ → 0.

Therefore, the contour of the integral in (41) can be replaced by the contour Γ+
3 ∪ Γ−3 ,

with ε→ 0 and R→ ∞, which implies

G(t) = 1 + lim
ε→0, R→∞

1
2πi

(∫ R

ε
ert(cos φ+i sin φ)F(reiφ)eiφ dr +

∫ ε

R
ert(cos φ−i sin φ)F(re−iφ)e−iφ dr

)
= 1 +

1
2πi

∫ ∞

0

(
ert(cos φ+i sin φ)F(reiφ)eiφ − ert(cos φ−i sin φ)F(re−iφ)e−iφ

)
dr.

Since F(s) satisfies (21) as a Stieltjes function, it follows that

G(t) = 1 +
1
π

∫ ∞

0
ert cos φ={ei(φ+rt sin φ)F(reiφ)}dr.

Then, we use condition (38) and pass, by applying dominated convergence theorem,
to the limit φ→ π − . In this way, and taking into account (35), we derive the real integral
representation (39) with K(r) defined by (40).

It remains to note that condition k̂(s) ∈ SF implies k2(r) ≤ 0 (see (24)). Since a < b,
representation (40) yields K(r) ≥ 0.

5. Examples

In this section, we consider two examples of kernels k in the definition (14) of the
convolutional derivative D(k)

t , and we show that for both examples the conditions of
Theorem 3 are satisfied. Asymptotic expansions of the corresponding relaxation moduli
are also discussed.

5.1. Fractional Derivative of Uniformly Distributed Order

Consider first the following particular case of the Zener-type model (13).

Example 1. Let (14) be the distributed-order fractional derivative with uniform distribution in the
interval (0, 1). In this case,

k(t) =
∫ 1

0

t−α

Γ(1− α)
dα, k̂(s) =

s− 1
s ln s

. (48)

In the case of kernel (48), the functions k1(r) and k2(r) in (40) are given by

k1(r) =
r + 1

r
· ln r

ln2 r + π2
, k2(r) =

r + 1
r
· −π

ln2 r + π2
.

From (35) and (48), we obtain

F(s) =
b− a

s

(
a +

ln s
s− 1

)−1
, (49)
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which implies

F(s) ∼ a− b
s ln s

, |s| → 0 (50)

and
F(s) ∼ b− a

as
, |s| → ∞. (51)

Therefore, assumption (38) is satisfied.
Let us establish the asymptotic expansion of the relaxation modulus G(t) for t→ +∞

in the case of Example 1. We use the expansion

F(s) ∼ (b− a)s−1(a− ln s)−1, |s| → 0,

which follows from (49). Applying the Karamata–Feller theorem (Theorem 2) with α = 1
and L(x) = (a + ln x)−1, and taking into account relation (34), we derive

G(t) ∼ 1 +
b− a

a + ln t
, t→ +∞. (52)

Therefore, the function G(t) exhibits a slow logarithmic decay for large times and
G(+∞) = 1.

Theorem 3 is applied for numerical computation of G(t) for the model in Example 1.
The results obtained for several values of the parameters a and b are plotted in Figure 1.
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Figure 1. Relaxation modulus G(t) for the model of Example 1: (a) a = 0.3 and different values of b;
(b) b = 3 and different values of a.

5.2. Convolutional Derivative with Multinomial Mittag-Leffler-Type Kernel

The multinomial Mittag-Leffler function, introduced in [31], is defined by the series

E(α1,...,αm),β(z1, . . . , zm) =
∞

∑
k=0

∑
k1+...+km=k
k1≥0,...,km≥0

k!
k1! . . . km!

∏m
j=1 z

kj
j

Γ
(

β + ∑m
j=1 αjk j

) , (53)

where zj ∈ C, αj > 0, β ∈ R, j = 1, . . . , m. Consider the following multinomial Mittag-
Leffler-type function of a single variable t > 0:

tβ−1E(α1,...,αm),β(−λ1tα1 , . . . ,−λmtαm), (54)

where αj > 0, β > 0, λj > 0, j = 1, . . . , m. It obeys the Laplace transform pair

L
{

tβ−1E(α1,...,αm),β(−λ1tα1 , . . . ,−λmtαm)
}
(s) =

s−β

1 + ∑m
j=1 λjs

−αj
. (55)
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It is proven in [32] that function (54) is completely monotone for t > 0, provided

0 < αj ≤ β ≤ 1, λj > 0, j = 1, ..., m. (56)

Viscoelastic models with memory kernels given in terms of completely monotone
multinomial Mittag-Leffler functions were studied in our previous work [33].

For other types of multi-index and multi-variable generalizations of the classical
Mittag-Leffler function (5), we refer to [34–37].

In this subsection, we consider the following special case of the generalized Zener model.

Example 2. Assume the kernel in definition (14) is given by the completely monotone function of
multinomial Mittag-Leffler type:

k(t) = tβ−1E(α1,...,αm),β(−λ1tα1 , . . . ,−λmtαm), (57)

where 0 < αm < αm−1 < · · · < α1 ≤ β < 1, λj > 0, j = 1, ..., m.

In this case, k̂(s) is given by (55), limits (37) hold, and k̂(s) ∈ SF as the Laplace
transform of a completely monotone function. Inserting (55) into (29) yields

Ĝ(s) =
∑m

j=1 λjs
β−αj + sβ + bs

s
(

∑m
j=1 λjs

β−αj + sβ + as
) .

A comparison to the fractional Zener model with multiple fractional derivatives (11)
studied in [8] shows that the model of Example 2 is a special case of it and corresponds to
the constitutive equation(

m

∑
j=1

λjD
β−αj
t + Dβ

t + b
∂

∂t

)
σ(x, t) =

(
m

∑
j=1

λjD
β−αj
t + Dβ

t + a
∂

∂t

)
ε(x, t).

Furthermore, inserting g(s) = sk̂(s) with k̂(s) from (55) into (36) yields

F(s) =
cs−1

∑m
j=1 λja−1sβ−αj−1 + a−1sβ−1 + 1

, (58)

where c = b/a− 1. By the use of identity (55), we deduce that (58) is a Laplace transform of a
multinomial Mittag-Leffler-type function, which leads to the following explicit representation

f (t) = cE(1−β+α1,...,1−β+αm ,1−β),1

(
−λ1

a
t1−β+α1 , . . . ,−λm

a
t1−β+αm ,−1

a
t1−β

)
. (59)

Therefore, the relaxation modulus has the explicit representation G(t) = 1 + f (t)
with f (t) given in (59), which is a generalization of Formula (4) for the classical fractional
Zener model.

Let us check the rest of the conditions of Theorem 3. Since (58) implies

|F(s)| ∼ b− a
λ1|s|β−α1

, |s| → 0; |F(s)| ∼ b− a
a|s| , |s| → ∞,

estimate (38) is satisfied.
Let us note that in the case of kernel (57) estimate (42) is satisfied for all s ∈ C\(−∞, 0].

This can be deduced from the property g(s)
1

1−β ∈ CBF (c.f., Proposition 3.1 in [32]) for
the function

g(s) = sk̂(s) =
s1−β

1 + ∑m
j=1 λjs

−αj
.
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This property implies by the use of (22) the inequality

|arg g(s)| ≤ (1− β)| arg s|, s ∈ C\(−∞, 0],

which leads to estimate (43) (in the same way as in the proof of Theorem 3), which, in turn,
implies (42). This estimate guarantees the integrability of |F(s)|e−ω|s| for all s except those
near the origin.

Furthermore, in the case of kernel (57), the functions k1(r) and k2(r) in (40) are given by

k1(r) =
A(r)

A2(r) + B2(r)
, k2(r) =

−B(r)
A2(r) + B2(r)

,

where

A(r) = rβ cos βπ +
m

∑
j=1

λjr
β−αj cos(β− αj)π,

B(r) = rβ sin βπ +
m

∑
j=1

λjr
β−αj sin(β− αj)π.

Let us establish the asymptotic behavior of the function G(t) as t→ 0+ and t→ +∞.
For t→ 0+ the series expansion (53) implies

G(t) ∼ b
a
−
(

b
a
− 1
)

λmtαm

Γ(αm + 1)
, t→ 0 + .

For t→ ∞ we use the asymptotic expansion of the multinomial Mittag-Leffler function,
given in [32], for the function f (t) in the representation (59), which yields

G(t) ∼


1 +

a
λ1

tβ−α1−1

Γ(β− α1)
, α1 6= β,

1− aλ2

λ2
1

tα2−β−1

Γ(α2 − β)
, α1 = β.

, t→ +∞. (60)

Therefore, the relaxation modulus in the case of Example 2 exhibits an algebraic decay
for large times to the final value G(+∞) = 1.

Although in the case of Example 2 there exists an explicit representation for the
function G(t), in terms of the multinomial Mittag-Leffler-type function (59), the integral
representation of Theorem 3 is still useful. For instance, it is convenient for numerical
computation of the relaxation modulus G(t) and, respectively, the multinomial Mittag-
Leffler-type function (59) (the infinite series (53) is not suitable for this purpose).

Theorem 3 is applied for the numerical computation of G(t) for the model with
kernel (57) with m = 2, λ1 = λ2 = 1, α1 = 0.5, α2 = 0.3, β = 0.8. Figure 2 presents the
numerical results obtained for several values of the parameters a and b. In order to enable
comparison, we have chosen the same values of a and b as in Figure 1. Compared to the
slow (logarithmic) decay in Figure 1, in Figure 2 we observe a faster (algebraic) decay for
large times: this is in agreement with the asymptotic expansions (60) and (52). For all plots,
the numerical initial value is in agreement with formula (30).



Fractal Fract. 2023, 7, 636 14 of 17

0 1 2 3 4 5 6 7 8 9 10
t

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

G

1.4

1.1

0.8
0.5

a=0.3

α
1
=0.5

α
2
=0.3

β=0.8

b=

1.7

0 1 2 3 4 5 6 7 8 9 10
t

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

G

b=3.0

α
1
=0.5

α
2
=0.3

β=0.8

2.5

1.0

1.5

2.0

0.5

a=

(a) (b)

Figure 2. Relaxation modulus G(t) for the model of Example 2 with m = 2, λ1 = λ2 = 1, α1 = 0.5,
α2 = 0.3, β = 0.8: (a) a = 0.3 and different values of b; (b) b = 3 and different values of a.

6. Second Integral Representation

Another integral representation for the function G(t) can be derived by applying the
subordination principle for the generalized fractional relaxation equation [16,23,24]:(

CD
(k)
t u

)
(t) = −λu(t), t > 0; u(0) = u0, (61)

where λ > 0 and CD(k)
t is the convolutional derivative in Caputo sense [16]:(

CD
(k)
t f

)
(t) =

d
dt

∫ t

0
k(t− τ) f (τ)dτ − k(t) f (0) =

(
D(k)

t f
)
(t)− k(t) f (0). (62)

Problem (61) is studied in [16], see also [23,24]. Detailed study in the case of distributed
order derivatives can be found in [21,22].

The subordination relation for the solution to problem (61) is given next, adapted for
use here (see [23,24]).

Theorem 4 ([23,24]). Assume k ∈ L1
loc(R+) is such that k̂(s) ∈ SF and satisfies (37). Then, the

solution u(t) to problem (61) admits the integral representation

u(t) = u0

∫ ∞

0
ϕ(t, τ)e−λτ dτ, t > 0, (63)

where the function ϕ(t, τ) is a unilateral probability density, i.e.,

ϕ(t, τ) ≥ 0,
∫ ∞

0
ϕ(t, τ)dτ = 1, (64)

which is defined by the identity

ϕ(t, τ) =
1

2πi

∫ c+i∞

c−i∞
k̂(s)est−τsk̂(s) ds, c, t, τ > 0. (65)

From the relation between the convolutional derivatives in Riemann–Liouville and
Caputo sense in (62) and identity (28), we obtain for the solution of problem (61) the
following expression in the Laplace domain:

û(s) = u0
k̂(s)

sk̂(s) + λ
.
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Applying the uniqueness property of the Laplace transform, the obtained identity
compared to (35) implies that the function f (t) in the representation G(t) = 1 + f (t) is the
solution of the relaxation Equation (61), with convolutional derivative in Caputo sense and
with the same kernel k as in (14), and

λ = 1/a, u0 = b/a− 1.

Applying the subordination relation (63), we deduce the following:

Theorem 5. Assume 0 < a < b, the kernel k ∈ L1
loc(R+) is such that k̂(s) ∈ SF and satisfies

conditions (37). Then, the relaxation modulus G(t) to model (13) admits the integral representation

G(t) = 1 + (b/a− 1)
∫ ∞

0
ϕ(t, τ)e−τ/a dτ, t > 0, (66)

where the function ϕ(t, τ) is defined in (65) and is a unilateral probability density function, i.e.,
it satisfies (64).

We close this section with an estimate, which follows from the established relation of
G(t) and the solution of the generalized fractional relaxation Equation (61), by applying
Theorem 5.8 in the dissertation [24].

Corollary 1. Assume the conditions of Theorem 5 are satisfied. Then, the relaxation modulus G(t)
to model (13) obeys the estimate

G(t) ≤ 1 +
b− a

a + l(t)
, t > 0, (67)

where the function l(t) is related to the kernel k(t) via the identity∫ t

0
l(t− τ)k(τ)dτ = t.

For instance, in the case of Example 2, by applying the Laplace transform we obtain

l(t) = ω2−β(t) +
m

∑
j=1

λjω2−β+αj(t),

where the functions ωα(t) are defined in (3).

7. Concluding Remarks

In the present work, two integral representations are derived for the relaxation
modulus of the generalized fractional Zener model (13). The results are formulated in
Theorems 3 and 5. The main difficulty in the proof of Theorem 3 is to justify the change
of the integration contour for the considered class of kernels. This is done based on the
relevant properties of Stieltjes functions and related classes of functions. On the other
hand, Theorem 5 is a straightforward implication of the subordination principle for the
generalized fractional relaxation equation.

The first representation, (39), demonstrates that G(t) is a completely monotone func-
tion under the assumptions of Theorem 3: this is implied by the non-negativity of the
spectral function K(r). For some models, deriving such a representation with a non-
negative spectral function is the most convenient way to establish complete monotonicity
of the relaxation modulus (see e.g., [11]). In addition, representation (39) is appropriate for
numerical computation of the relaxation modulus.

The second integral representation, (66), splits the relaxation modulus into two parts: a
probability density function ϕ(t, τ), which depends only on the kernel k and is independent
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of the model parameters a and b, and the function (b/a− 1)e−τ/a. Such a decomposition
makes representation (66) suitable for obtaining estimates for the relaxation modulus G(t),
as well as for the study of the effect of the parameters a and b on its behavior, which will
be a subject of future work.

The technique presented in this paper could be applied to other viscoelastic constitu-
tive equations, to obtain integral representations for the corresponding relaxation moduli.
Such representations would be useful for the analytical and numerical study of the models.
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