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Abstract: Sequential minimal optimization (SMO) method is an algorithm for solving optimization
problems arising from the training process of support vector machines (SVM). The SMO algorithm
is mainly used to solve the optimization problem of the objective function of SVM, and it can have
high accuracy. However, its optimization accuracy can be improved. Fractional order calculus is an
extension of integer order calculus, which can more accurately describe the actual system and get
more accurate results. In this paper, the fractional order sequential minimal optimization (FOSMO)
method is proposed based on the SMO method and fractional order calculus for classification. Firstly,
an objective function is expressed by a fractional order function using the FOSMO method. The
representation and meaning of fractional order terms in the objective function are studied. Then the
fractional derivative of Lagrange multipliers is obtained according to fractional order calculus. Lastly,
the objective function is optimized based on fractional order Lagrange multipliers, and then some
experiments are carried out on the linear and nonlinear classification cases. Some experiments are
carried out on two-classification and multi-classification situations, and experimental results show
that the FOSMO method can obtain better accuracy than the normal SMO method.

Keywords: fractional order calculus; SMO; fractional expression; classification

1. Introduction

The sequential minimal optimization (SMO) algorithm is used to solve the optimiza-
tion problem of the objective function of support vector machines (SVM). The SVM method
was proposed in 1995 by Vapnik, the leader of AT&T Bell Labs [1], and the SVM method is
a classification technique. It has been continually researched and used since its introduction
because of its efficiency in solving small sample, nonlinear, and high-dimensional pattern
recognition problems. The SVM method would transform the final problem into solving
a convex quadratic programming problem with a globally optimal solution. However,
the data in practice are often large in size and complex in dimensionality. This can lead
to problems such as long machine computing time, excessive memory consumption, and
low accuracy. In order to solve these issues, extensive research has been done. The SMO
method is an algorithm for solving optimization problems arising from the training process
of SVM. The SMO method was proposed by John Platt of Microsoft Research in 1998 [2],
and it is widely used in the training process of SVM now. Previously available SVM train-
ing methods had to use complex methods and required expensive third-party secondary
planning tools. The SMO algorithm can better avoid these problems. The SMO method is
developed from the decomposition algorithm [3], and it decomposes a large problem into
several sub-problems with only two variables, and then the sub-problems would be solved
firstly. The SMO algorithm solves not only the problem of uncertainty in the multi-sample
classification solution but also the problem of relatively long operation time [4].

The SMO algorithm has been applied in various fields. For quantum-classical hybrid
algorithms, a sequential minimal optimization method was proposed in [5], and it con-
verges faster. The optimization problem of the parameterized quantum circuits is divided
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into solvable sub-problems, and the efficiency was proved. A sequential minimal opti-
mization regression approach for local pier scour depth estimation was proposed in [6].
The comparison results showed that the method could get higher prediction performance
than other methods. The SMO method was used during a parallel FPGA implementation
of the training phase of SVM [7], and it could enable the resolution of a complex convex
optimization problem through simple steps. The SMO implementation was also highly
parallel. Human activity detection has been carried out by employing the time efficiency
and optimality of SMO method to train SVM [8], and the accuracy was higher than other
methods. The SMO method was also used to analyze data and reveal rules and patterns in
the process of data mining [9], and it could improve the accuracy of the anomaly detection
rate. The results showed that the SMO method enhanced the rate of positive detection
besides reducing the rate of false alarms and achieving a high accuracy at the same time.
The advance SMO method was used in a modern automated approach to improve efficiency
and decrease the difficulty of lung tumor diagnosis [10]. An overall performance accuracy
of 0.962 was obtained. A model based on the sequential minimal optimization algorithm
was developed for predicting the range of the prices for each medicine [11], and the results
demonstrated that the model derived by the SMO algorithm provided good performance at
an accuracy of approximately 92.62%, with high sensitivity and precision. A novel hybrid
model of a sequential minimal optimization and support vector machine was proposed
for an accurate landslide susceptibility mapping [12], and results of the study showed that
the model had the highest performance for landslide susceptibility mapping. In [13], the
sequential minimal optimization was used to classify diabetic retinopathy. An enhanced
algorithm based on the knowledge of a context ontology methodology for sequential mini-
mal optimization was suggested in [14], and the experimental analysis demonstrated that
the method improved by 2% of accuracy when compared to semantic ontology. A parallel-
hybrid algorithm that combines SVM, sequential minimal optimization with stochastic
gradient descent methods was proposed to optimize the calculation of the weight costs
in [15]. The performance of the proposed method was better than the classical SMO method.
Suspended sediment load modeling through advanced computational algorithms was of
major importance and a challenging topic for developing highly accurate hydrological
models. A sequential minimal optimization method was applied for suspended sediment
load modeling in [16]. Water sources pollution is a great environmental problem that
negatively affects life. The SMO method was applied to water quality parameters of the
Akkopru stream located in the province of Van [17]. Autism spectrum disorder is a neurode-
velopmental disorder caused by several nervous system problems that change the function
of the brain. It is either congenital or occurs in the early years of life. The SMO method
was used in [18] and the results could be useful. A timely prediction with accuracy about
crop yield could be valuable for greater food production and maintainability of sustainable
agricultural growth. The SMO method was used for wheat production in [19], and the
results would be helpful for agriculture. The SMO algorithm was proposed to minimize
the cost function in [20], which decoupled the constraint of the mutual collisions in each it-
eration to save the planning time and experiment results showed that the method had good
performance in obstacle-rich environments and was efficient for a large number of UAVs.
The smallest possible sub-problem at each step was optimized by the SMO method in [21]
and it could be used as an efficient local solver within a global optimization strategy. The
extensive computational experiments and results showed that the algorithm was a valuable
alternative to the state-of-the-art algorithms for standard quadratic optimization problems.
The SMO method was used in [22] for optimizing SVM, and the SMO-optimized models
showed better performance than non-optimized models. The SMO of SVM was an effective
method to deal with classification and regression problems [23]. A generalized SMO-type
algorithm framework with a simple iterative format and easy implementation was pro-
vided. The numerical results showed that the algorithm was significantly shorter than
that of the other plain algorithms. A generalized framework of accelerating the stochastic
sub-gradient descent was proposed in [24] for a variety of SVM, and experimental results
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on a variety of datasets and learning applications confirmed that the method can speed up
the SMO method.

The SMO algorithm is based on integer order calculus. The above studies are based
on the integer order SMO algorithm. If the integer order SMO algorithm can extend to
the fractional order SMO algorithm, better results should be obtained, as fractional order
calculus is an extension of integer order calculus, which can describe the real system more
accurately and obtain more precise results [25]. The traditional calculus should be extended
to better describe and study such phenomena. The SMO algorithm is extended to the
fractional order sequential minimum optimization algorithm in this paper. The major
innovations of the article are presented below.

• According to the fractional order calculus, the fractional derivative of Lagrange multi-
plier is obtained.

• The fractional expression of the objective function can be obtained; with further
calculations, updated value calculation expressions can be obtained.

• A fractional order sequential minimum optimization method is proposed for classification.
• A large number of experiments are performed. There are linearly divisible cases

and nonlinear cases, and there are binary cases and multi-categorical examples. The
experimental results show that the fractional order sequential minimum optimization
algorithm is better than the traditional SMO method.

The remainder of the article is structured in the following way. In Section 2, fractional
order calculus has been introduced for further research. In Section 3, the fractional order
sequential minimum optimization method for classification is deduced in detail. Section 4
verifies the effectiveness of the proposed method through some experiments. There are
linearly divisible cases and nonlinear cases, and there are binary cases and multi-categorical
examples. Finally, our conclusions are derived in Section 5.

2. Fractional Order Calculus

The nature of the real world is fractional order, and many phenomena in nature cannot
be accurately described by the traditional integer order calculus equations. The essence of
fractional order calculus is arbitrary order. The order of fractional calculus can be a real
number, and it also can be a complex number. The operator of fractional order calculus
may be written by aDa

t [26], where letters a and t express the lower limit and the upper
limit separately, and α denotes the order.

aDa
t =


dα

dtα , R(α) > 0
1, R(α) = 0∫ t

a (dτ)(−α), R(α) < 0

. (1)

There are three commonly used fractional order calculus definitions. They are frac-
tional order calculus GL definition, fractional order calculus RL definition, and fractional
order calculus Caputo definition [27].

The fractional order calculus GL definition is defined as follows:

aDa
t f (t) = lim

h→0
h−α

[(t−a)/h]

∑
j=0

(−1)j
(

α
j

)
f (t− jh). (2)

where
(

α
j

)
expresses a binomial coefficient, and the j denotes a natural number.

The fractional order calculus RL definition is defined as follows:

aDa
t f (t) =

1
Γ(m− α)

(
d
dt

)m∫ t

a

f (τ)

(t− τ)1−(m−α)
dτ. (3)
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where m− 1 < α < m, m ∈ N, and Γ represents Gamma function and its definition is
Γ(z) =

∫ ∞
0 e−ttz−1dt, where the real part of z is greater than 0. Gamma function is the most

commonly used function in fractional order calculus.
The fractional order calculus Caputo definition is defined as follows:

aDa
t f (t) =

1
Γ(m− α)

∫ t

a

f (m)(x)

(t− x)α−m+1 dx. (4)

where m− 1 < α < m, m ∈ N. In some conditions, these three fractional order calculus
definitions are harmonized [28].

Fractional order systems based on fractional order calculus have demonstrated su-
perior performance in various industries. The electric circuit model based on fractional
order Caputo calculus can handle a wide range of fractional order dynamics in electrical
circuits [29]. The effectiveness of the model had been illustrated by graphical representa-
tion with simulation. Fractional order derivative operators can impact memory effects on
population dynamics in computer viruses [30]. The results highlight the memory effect
associated with fractional order derivatives, where past states and behaviors continue to
influence the system. The ability to capture these memory effects through fractional calcu-
lus can be considered a benefit. Fractional order calculus was modeled for hyperthermia
therapy of cancerous tumor sitting [31]. The experiments derived excellent agreement dur-
ing a hyperthermia treatment of different kinds of tumors. The fractional order approach
investigated the system of tsunami wave propagation along an oceanic coastline [32]. The
numerical simulations verified the effectiveness. A fractional order Caputo model was
established for the COVID-19 pandemic [33]. Relevant statistical data verified the effective-
ness of the model for depicting the COVID-19 pandemic. Fractional derivative operators
were used for the core loss prediction [34]. The results showed the accuracy of significant
frequency bandwidths. Fractional derivatives were used to modify a Duffing system [35].
The results show that the fractional elements clearly modify the system dynamics and
significantly increase the system energy efficiency. Fractional order calculus can extend
the capabilities of integer order calculus in accurately describing actual systems. Then the
fractional order sequential minimum optimization algorithm is proposed for more precise
classification tasks.

3. Methods

The sequential minimal optimization algorithm can train SVM for classification and
tasks [36]. The sequential minimal optimization with pinball loss was developed to reduce
the impact of measurement error [37]. Simulation results demonstrated that the method
had high accuracy, robustness, and computational efficiency in bulk power grids. When
the data are big, there will be some problems, such as long machine computing time and
excessive memory consumption.

The sequential minimal optimization algorithm is based on integer order calculus. The
nature of the real world is fractional order systems. Traditional calculus can be expanded
to fractional order calculus. The sequential minimal optimization algorithm would be
expanded to the fractional order sequence minimum optimization algorithm.

3.1. Fractional Order Expressions

In order to get better results, the objective function, classification criterion, and decision
function all should be expressed accurately. Firstly, fractional order expressions would be
deduced based on fractional order calculus.

For the function x, the integer order derivative of the function is

Dnxp =
p!

(p− n)!
xp−n. (5)
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Replacing the integer number n with an arbitrary number µ, while p is also defined
as an arbitrary number. Let z = µ, and the integral form of the Gamma function can be
expressed as

Γ(z) =
∫ ∞

0
e−ttz−1dt. (6)

It can be expressed in its limiting form as

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
. (7)

Then for an arbitrary µ and a non-natural number p, there is

Dµxp =
Γ(p + 1)

Γ(p− µ+ 1)
xp−µ. (8)

Based on Equation (7), the following expression can be obtained

Dµxp =
Γ(p + 1)

Γ(p− µ+ 1)
xp−µ = lim

n→∞

np+1(p− µ+ 1)(p− µ+ 1 + 1) · · · (p− µ+ 1 + n)
np−µ+1(p + 1)(p + 1 + 1) · · · (p + 1 + n)

xp−µ. (9)

And then

Dµx2 = lim
n→∞

n3(3− µ)(4− µ) · · · (3− µ+ n)
n3−µ·3·4 · · · (3 + n)

x2−µ. (10)

Dµx = lim
n→∞

n2(2− µ)(3− µ) · · · (2− µ+ n)
n2−µ·2·3 · · · (2 + n)

x1−µ. (11)

These are fractional order derivatives. The fractional derivative of Lagrange multiplier
is obtained by this fractional order derivative.

3.2. Fractional Order SMO

The fractional order objective function will better describe the system problems for
more accurate results, and then the fractional order objective function would work. The
optimal value of the objective function and the constraints are reduced

ψ =
1
2

K11α2
1 +

1
2

K22α2
2 + sK12α1α2 + y1α1v1 + y2α2v2 − α1 − α2 + Ψconstant. (12)

s.t. α1y1 + α2y2 = −∑n
i=3 αi yi = ζ. (13)

0 ≤ αi ≤ C, i = 1, 2. (14)

where ζ is a constant, and α denotes the Lagrange multiplier. These Lagrange multipliers
can be fractional order Lagrange multipliers. They can contribute to better-describing
problems and

s = y1y2. (15)

Ki,j = K〈xi, xj〉, i, j = 1, 2, · · · , n. (16)

vi = ∑n
j=3 yiα

old
j Kij = f (xi)− bold − y1αold

1 K1i − y2αold
2 K2i. (17)

Here, αold
1 , αold

2 are the old Lagrange multipliers, and αnew
1 , αnew

2 denote the updated
Lagrange multipliers. The optimal value of the objective function and the constraints are
the same as the integer order function.
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When y1 6= y2, there are L = max
(

0, αold
2 − αold

1

)
H = min

(
C, αold

2 − αold
1 + C

) . (18)

When y1 = y2, there are L = max
(

0, αold
2 + αold

1 − C
)

H = min
(

C, αold
2 + αold

1

) . (19)

Let Ei denote the difference between the predicted value f (xi) and the true value yi.
Then the expression can be obtained

Ei = f (xi)− yi =
(
∑n

j=1 αjyjK
(
xj, xi

)
+ b
)
− yi (i = 1, 2). (20)

Multiplying 1/y1 at each side of expression αnew
1 y1 + αnew

2 y2= αold
1 y1 + αold

2 y2, we
can get

αnew
1 + sαnew

2 = constant = αold
1 + sαold

2 = ω. (21)

where ω = −y1∑n
i=3 yiα

old
i . Then it can be αnew

1 = ω− sαnew
2 , and the objective function of

the sub-problem is converted to a problem containing only α2. At this point, the objective
function is

ψ = 1
2 K11 (α

new
1
)2

+ 1
2 K22 (α

new
2
)2

+ sK12αnew
1 αnew

2 + y1αnew
1 v1 + y2αnew

2 v2 − αnew
1 − αnew

2 + Ψconstant

=
(

1
2 K11s2 + 1

2 K22 − s2K12

)
(αnew

2 )2 − (1− sK12ω + ωsK11 + y1sv1 − y2v2 − s)αnew
2 + 1

2 K11ω2 + y1ωv1 −ω+

ψconstant.

(22)

And then

ψ = 1
2 (K11 − 2K12 + K22)(α

new
2 )2 −

(
(K11 − 2K12 + K22)α

old
2 + y2(E1 − E2)

)
αnew

2 + 1
2 K11ω2 + y1ωv1 −ω+

ψconstant.
(23)

Then the objective function ψ can be derived by µ(µ > 0) order.

Dµψ(α2) =
1
2 (K11 − 2K12 + K22)

Γ(2+1)
Γ(2−µ+1) (α

new
2
)2−µ

−
(
(K11 − 2K12 + K22)α

old
2 +y2(E1 − E2))

Γ(1+1)
Γ(1−µ+1) (α

new
2
)1−µ

= 0.
(24)

Substituting the above formula and simplifying, we can get

αnew
2 = lim

n→∞

(3 + n)(2− µ)

3− µ + n

(
αold

2 −
y2(E1 − E2)

η

)
. (25)

where η = K11 + K22–2K12. When n→ ∞ , there is

lim
n→∞

(3 + n)(2− µ)

3− µ + n
= 2− µ. (26)

Then

αnew
2 = (2− µ)(αold

2 −
y2(E1 − E2)

η
). (27)
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Due to the restriction, the updation of α2 is

αnew
2 =


H, αnew

2 > H
αnew

2 , L ≤ αnew
2 ≤ H

L, αnew
2 < L

. (28)

For αnew
1 , there is

αnew
1 = αold

1 + y1y2(α
old
2 − α

new
2 ). (29)

By computing, the offset b satisfies the following condition

b =


b1, i f 0 < αnew

1 < C
b2, i f 0 ≤ αnew

2 ≤ C
b1+b2

2 , other
. (30)

where
bnew

1 = bold − E1 − y1

(
αnew

1 − αold
1

)
K11 − y2

(
αnew

2 − αold
2

)
K12. (31)

bnew
2 = bold − E2 − y1

(
αnew

1 − αold
1

)
K12 − y2

(
αnew

2 − αold
2

)
K22. (32)

From the above derivation, the optimal solution α∗ of the objective function can be
obtained, and then the optimal values b∗, w∗ can be deduced. So, the hyperplane and
decision function can be determined. The key differences between the traditional SMO
method and the FOSMO method are fractional order expressions, because there is an
additional parameter: the fractional order. When the fractional order is 1, that is the
traditional SMO method.

3.3. FOSMO Classification Algorithm

In this paper, the fractional order sequential minimum optimization method for
classification is proposed, and the steps can be summarized as follows:

S1: simplifying optimization problems in support vector machines, and simplifi-
cation result is an objective function containing two items of Lagrange multiplier αnew

2
and (αnew

2 )2;
S2: obtaining fractional derivatives of αnew

2 and (αnew
2 )2, respectively, according to the

fractional order calculus definition;
S3: substituting the fractional derivative of the αnew

2 and (αnew
2 )2 into the optimization

problems in support vector machines to obtain fractional order expression of the objective
function; with further calculations, obtaining updated value calculation expressions of α1,
α2, and obtaining the values of αnew

1 and αnew
2 using heuristic algorithm;

S4: updating the offset b of hyperplane function according to the values of αnew
1

and αnew
2 ;

S5: processing the data and determining the classification according to the
decision function.

Then some experiments are performed on the fractional order sequential minimum
optimization method. There are linearly divisible cases and nonlinear cases, and there are
binary cases and multi-categorical examples.

4. Experiments

The sequential minimal optimization method is the best algorithm for training SVM,
and it can obtain better results than other classification methods. The sequential minimal
optimization-support vector machine hybrid classifier was the best compared to artificial
neural networks, simple logistic, K-nearest neighbor, decision tree, and random forest [18].
The comparison results between traditional integer order sequential minimum optimization
algorithm and fractional order sequential minimum optimization algorithm could be
illustrated in experiments in this section.
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4.1. Linear Case

Here, data are from the data_test2.mat, and this is a randomly generated dataset
containing 80 data with labels, of which 40 are positive cases with label +1 and 40 are
negative cases with label −1. The maximum iteration number is set to 50 and the error
value is 0.01, and the initial value of b is 0. The original data are shown in Figure 1 and the
red circles are the negative cases with label −1 and the green squares are the positive cases
with label +1.
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Figure 1. The original diagram of data_test2. The red circles are the negative cases with label −1 and
the green squares are the positive cases with label +1.

Applying the fractional order SMO on these data, the data classification results are
shown in Table 1. Using MATLAB 2017, the relaxation variable influence factor C is 0.8.

Table 1. Classification table of linearly separable when impact factor C is 0.8.

Derivative Order Number of
Correct-Categories

Number of
Error Categories Accuracy

0.1 61 19 76.25%
0.2 64 16 80%
0.3 64 16 80%
0.4 65 15 81.25%
0.5 65 15 81.25%
0.6 65 15 81.25%
0.7 65 15 81.25%
0.8 68 12 85%
0.9 66 14 82.5%
1.0 75 5 93.75%
1.1 65 15 81.25%
1.2 67 13 83.75%
1.3 65 15 81.25%
1.4 76 4 95%
1.5 71 9 88.75%
1.6 60 20 75%
1.7 47 33 58.75%
1.8 49 31 61.25%
1.9 39 41 48.75%
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As shown in Table 1, when the order is 1, the number of correct classifications is 75
and the number of incorrect classifications is 5, and the correct classification rate is 93.75%.
When the order is 1.4, the number of correct classifications is 76 and the number of incorrect
classifications is 4, and the correct classification rate is 95%. It can be seen that the FOSMO
method demonstrates better classification accuracy than the traditional SMO on linear
classification cases. However, the result is not significant. The classification effects for when
the order is 1 and 1.4, respectively, are shown in Figures 2 and 3.
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Comparing the integer order SMO algorithm with the fractional order SMO algorithm,
it can be found that the most significant change is the update method of αnew

2 . Because the
value range of αnew

2 is larger in the fractional order SMO algorithm, the accuracy of the
fractional order SMO algorithm is higher than that of the SMO algorithm.

From Table 1, it can be found that the classification correct rate does not exceed the
integer order from the order of 0.1 to 0.9. Only when the fractional order is greater than 1,
good results will be obtained. To verify this, the relaxation variable factor C is taken to be
0.5. The results for when C is 0.5 are shown in Table 2.

Table 2. Classification table when impact factor C is 0.5.

Derivative Order Number of
Correct-Categories

Number of
Error Categories Accuracy

0.1 60 20 75%
0.2 70 10 87.5%
0.3 76 4 95%
0.4 78 2 97.5%
0.5 67 13 83.75%
0.6 70 10 87.5%
0.7 67 13 83.75%
0.8 77 3 96.25%
0.9 74 6 92.5%
1.0 73 7 91.25%

It can be seen from Table 2 that the classification effect is better than integer order when
the order is 0.3, 0.4, 0.8, and 0.9. When the order is 1, there are 73 correct classifications
and 7 incorrect classifications, and the correct classification rate is 91.25%. When the order
is 0.4, there are 78 correct classifications and 2 incorrect classifications, and the correct
classification rate is 97.5%. The correct classification rate is 6.25% higher than order 1.
So, it is obvious that the classification effect of order 0.4 is better than that order 1. From
the above results, it can be seen that good results can be obtained from order 0.1 to 0.9.
Combined with the above analysis, it also can be seen that the classification correctness
results will vary due to different orders, but there will always be fractional orders with
better classification results than integer orders.

For the nonlinear cases, the conclusion also holds true.

4.2. Data_Test1

Here, the nonlinear case is from data_test1.mat, and the data_test1.mat contains
200 test samples, and 100 are positive cases with label +1 and 100 are negative cases with
label −1. In order to verify the high accuracy of the fractional order SMO, examples are
carried out by MATLAB 2017.

The test results for when C is 0.5, b is 0, tolKKT is 0.01, maxIter is 80, and sigma is 0.9
are shown in Table 3.

As can be seen from Table 3, the integer order SMO has the best result compared to
the others when the order is 1. Then the order can be further refined between 0.95 order
and 1.05 order. On the basis of the original parameters, the experimental results are shown
in Table 4.

Table 4 shows that when the order is 0.96 and 1.03, the classification results are better
than the integer order. When the order is 1, the number of correct classifications is 192,
and the number of incorrect classifications is 8, and the correct classification rate is 96%.
When the order is 0.96, the number of correct classifications is 193, and the number of
incorrect classifications is 7, and the correct classification rate is 96.5%. It can be seen that
the fractional order SMO can still achieve better classification accuracy than the integer
order SMO method on nonlinear classification cases.
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Table 3. Classification table of non-linearly when the impact factor C is 0.5.

Derivative Order Number of
Correct-Categories

Number of
Error Categories Accuracy

0.1 100 100 50%
0.2 100 100 50%
0.3 100 100 50%
0.4 100 100 50%
0.5 100 100 50%
0.6 100 100 50%
0.7 100 100 50%
0.8 100 100 50%
0.9 100 100 50%
1.0 192 8 96%
1.1 151 49 75.5%
1.2 150 50 75%
1.3 150 50 75%
1.4 166 34 83%
1.5 149 51 74.5%
1.6 166 34 83%
1.7 101 99 50.5%
1.8 100 100 50%
1.9 100 100 50%

Table 4. Classification table when the impact factor C is 0.5.

Derivative Order Number of
Correct-Categories

Number of
Error Categories Accuracy

0.95 100 100 50%
0.96 193 7 96.5%
0.97 152 48 76%
0.98 100 100 50%
0.99 100 100 50%
1.00 192 8 96%
1.01 100 100 50%
1.02 100 100 50%
1.03 193 7 96.5%
1.04 192 8 96%
1.05 137 63 68.5%

4.3. Sonar Data

This example is performed on 60-dimensional sonar data. The sonar data are used
to determine whether the target is rock (R) or mine (M) by obtaining signals based on
different aspect degrees. The sonar data are a binary dataset with 208 data in total, including
111 mine labels and 97 rock labels. Now the better predicted result is about 88%. Here, the
sonar data are classified by the fractional order SMO algorithm.

Firstly, the sonar labels are processed by defining the R label as 1 and the M label
as −1. Secondly, the data are normalized before classification, and although the data values
are all between 0 and 1, the maximum and minimum differences are nearly 100 times.
Finally, parameters are set. The relaxation variable C is 2, the initial value of offset b is 0,
the maximum tolerance tolKKT is 0.01, the maximum number of iterations maxIter is 80,
and sigma is 1.5 in the Gaussian kernel function. The classification results are shown in
Table 5.
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Table 5. Classification table of Sonar data.

Derivative Order Accuracy

0.1 47.12%
0.2 47.12%
0.3 47.12%
0.4 47.12%
0.5 47.12%
0.6 47.12%
0.7 47.12%
0.8 47.12%
0.9 75%
1.0 78.85%
1.1 95.67%
1.2 47.6%
1.3 94.23%
1.4 49.52%
1.5 47.12%
1.6 46.63%
1.7 46.63%
1.8 46.63%
1.9 46.63%

It can be seen from Table 5 that the correct classification rate is 95.67% when the order
is 1.1. When the order is 1.3, the correct classification rate is 94.23%. For the integer order
1st order SMO, the correct classification rate is 78.85%. The comparison shows that the
classification effect of fractional order SMO is better than the integer order SMO method.

4.4. Multiclassification Case

For the multi-classification case, the fractional order sequential minimum optimiza-
tion classification algorithm will be adapted by the one-to-one algorithm. For fractional
order one-to-one multi-classification algorithms, the main idea is to use the one-to-one
algorithm to call the fractional order sequential minimum optimization algorithm in binary
classification.

Let the training sample set T with K categories. The process is as follows:
S1: All different kinds of sample sets are combined two by two, and it is possible to

obtain a total of k(k − 1)/2 different kinds of combinations;
S2: The sample points in the different class combinations are formed into a training

set T(i, j);
S3: Invoke the binary classification and solve P judgment functions separately:

fi(x) = sgn(gi(x)). If fi(x) = +1, then the sample point X belongs to class i and the
class i gets one vote. Otherwise, the sample point X belongs to class j and class j gets
one vote.

S4: The votes number will be counted respectively based on the P judgment functions.
The category with the most votes is the final judgment category.

The data are normalized first prior to multiple classifications. The specific role of
normalization is to generalize the statistical distribution of the uniform sample. Normaliza-
tion between 0 and 1 is the statistical probability distribution and normalization between
−1 and +1 is the statistical coordinate distribution. If there are two variables uniformly
distributed and x1 is in the range of 100,000 to 200,000, the x2 is between 1 and 2. It is
obvious that x2 is difficult to display if they are in the same coordinate system and these
points of x2 will be ignored for classification. In order to make these points not be ignored,
normalization should be done.

For the classical Iris data, the FOSMO classification algorithm is applied for debugging,
asing the random function to disrupt the order of the data. The labels of the data are also
disrupted accordingly. The FOSMO binary classification algorithm is called using a one-
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to-one approach. To verify the improvement of fractional order in accuracy, the Gaussian
radial basis kernel function is used to test the classification of the classical Iris data and the
experimental data are obtained from UCI. Firstly, normalization is used for the data and
then randomly disordered order and the corresponding labels were also disordered. To
ensure the accuracy of the data, each order was run five times, and then the value with the
most occurrences was taken. The classification results are shown in Table 6.

Table 6. Multi-classification table of Iris data.

Derivative Order Training Accuracy Testing Accuracy Accuracy

0.1 0.9500 0.9200 0.9400
0.2 0.9500 0.9200 0.9400
0.3 0.9500 0.9200 0.9400
0.4 0.9500 0.9200 0.9400
0.5 0.9500 0.9400 0.9467
0.6 0.9500 0.9200 0.9400
0.7 0.9500 0.9400 0.9467
0.8 0.9600 0.9400 0.9533
0.9 0.9600 0.9400 0.9533
1.0 0.9600 0.9200 0.9467

It can be seen from Table 6 that the accuracy is 95.33% when the order is 0.8. When the
order is 0.9, the accuracy is also 95.33%. For the integer order 1st order SMO, the accuracy
is 94.67%. The comparison results show that the FOSMO is better than the integer order
SMO method.

5. Conclusions

The SMO algorithm is one of the main algorithmic theories in SVM. In this paper, the
FOSMO classification algorithm is proposed for classification by combining fractional order
calculus with the SMO algorithm. The fractional order Lagrange multiplier is deduced by
fractional order calculus. Fractional order objective function with fractional order Lagrange
multipliers can describe the real systems more accurately and there is a specific parameter:
the fractional order. The classification accuracy is determined by the fractional order. It
is a challenge to determine the optimal fractional order when implementing the FOSMO
method in practical applications. Through the experimental results, we can find that the
FOSMO algorithm can always obtain a higher accuracy result than the traditional SMO
method for both linear and nonlinear cases. It can be concluded that the FOSMO algorithm
has a higher accuracy than the integer order SMO algorithm for practical systems. Owing
to fractional order calculus, the FOSMO method would also be fit for more complex and
sophisticated systems in the field of machine learning and classification.

The advantage of the FOSMO algorithm is that it can obtain higher accuracy. However,
there are difficulties with it. The optimal fractional order is not easy to determine. This
optimal fractional order is also the main sensitive parameter that has an impact on the
optimization performance. The future research directions would be the optimal fractional
order in complex fractional order systems. It is also an important topic in the theory of
fractional order systems. The FOSMO algorithm would be a small step to a fractional order
machine learning system.
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