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Abstract: The fractional Legendre polynomials (FLPs) that we present as an effective method for
solving fractional delay differential equations (FDDEs) are used in this work. The Liouville–Caputo
sense is used to characterize fractional derivatives. This method uses the spectral collocation technique
based on FLPs. The proposed method converts FDDEs into a set of algebraic equations. We lay out
a study of the convergence analysis and figure out the upper bound on error for the approximate
solution. Examples are provided to demonstrate the precision of the suggested approach.
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1. Introduction

In the hope of simulating a variety of physical events, it is crucial to use differential
equations based on fractional-order operators [1,2]. Some applications of these equations
include earthquake simulation, damping principles, fluid dynamics, biology, physics, and
engineering [3–7]. Numerous techniques have been employed to locate appropriate solu-
tions to these equations depending on their physical structure. The majority of the current
systems are flawed and unworkable considering the actual physical existence of these prob-
lems. The numerical findings show the full reliability of the proposed algorithms [8–10].
Since explicit exact solutions for FDEs are still lacking, approximation and numerical tech-
niques such as the spectral collocation method (SCM), FEM, FVM, and many others have
been used to solve many fractional models [11–15]. The paper’s primary goal is to use
the mentioned algorithm ([16,17]) to obtain the numerical solution of the following FDDE
using SCM depending on the fractional Legendre polynomials [18]:

Dαu(x) = f (x, u(x), u(g(x))), 0 < x < 1, 0 < α ≤ 2, (1)

where
u(0) = λ0, u(1) = λ1, (2)

where the order of the Liouville–Caputo fractional is α. The delay function is a function
g that satisfies condition a ≤ g(x) ≤ x, x ∈ [a, b] and g(x) ∈ C[a, b]. Also, we shall
calculate an upper bound for the estimated solution’s resulting error and the convergence
will be studied. In ([19,20]), the authors used spline functions to study both the error
and stability analysis for first-order delay differential equations. We plan to discretize
Equation (1) using the Legendre collocation method to produce an algebraic system of
equations (linear/nonlinear) and solve it.
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The manuscript is structured as follows: Section 2 presents the definitions and approxi-
mate formula for the fractional derivative. Section 3 provides some thoughts on the recently
revealed fractional-order Legendre polynomials. The polynomials approximation and error
estimation are discussed in Section 4. The implementation of the Legendre spectral method
for solving FDDE is introduced in Section 5. Section 6 also discusses numerical simulation.
We provide the conclusions and some observations in Section 7.

2. Preliminaries and Notations

Definition 1. The following formula defines the fractional derivative of order α of Liouville–
Caputo ([15,21]):

Dα f (t) =

{
1

Γ(m−α)

∫ t
0

f (m)(ξ)
(t−ξ)α−m+1 dξ, m− 1 < α < m,

f (m)(t), α = m ∈ N,

where

Dαtn =

{
0, for n ∈ N0 and n < dαe;

Γ(n+1)
Γ(n+1−α)

tn−α, for n ∈ N0 and n ≥ dαe. (3)

Additionally, a generalization of Taylor’s formula is introduced based on the fractional deriva-
tive of Liouville–Caputo [22]. Assume that

Dkα f (t) ∈ C(0, a], for k = 0, 1, ..., n + 1, where 0 < α ≤ 1,

then,

f (t) =
n

∑
i=0

xiα

Γ(iα + 1)
Diα f (0+) +

(D(n+1)α f )(ξ)
Γ((n + 1)α + 1)

t(n+1)α, 0 ≤ ξ ≤ t, ∀ t ∈ (0, a]. (4)

3. Legendre Polynomials of Fractional Order

Since the well-known Legendre polynomials Lk(z) are defined on [−1, 1] ([23,24]),
we introduce the shifted Legendre polynomials L∗k (t) by inserting z = 2t− 1 to use these
polynomials on [0, 1].

We shall introduce the fractional-order Legendre polynomials in this section. By chang-
ing the variables t = xν and ν > 0 on L∗k (t), these polynomials will be obtained. We
represent FLPs, L∗k (xν) by Pν

k (x). We note that the recurrence formula for Pν
k (x) may be

deduced from the recurrence relation of L∗k (t) [18]:

Pν
k+1(x) =

(2k + 1)(2xν − 1)
(k + 1)

Pν
k (x)− k

k + 1
Pν

k−1(x), Pν
0 (x) = 1, Pν

1 (x) = 2xν − 1, k = 1, 2, . . . , .

The analytic form of the FLPs, Pν
k (x) of degree νk is given by:

Pν
k (x) =

k

∑
i=0

(−1)k+i (k + i)!
(k− i)!(i!)2 xi ν. (5)

Note that Pν
k (0) = (−1)k and Pν

k (1) = 1.

Lemma 1 ([25]). According to the weight function wν(x) = xν−1, the fractional-order polynomials
Pν

i (x) are orthogonal over [0, q]. Therefore, we obtain

∫ 1

0
Pν

i (x)Pν
j (x)wν(x)dx =

δij

ν(2i + 1)
.

Proof. The formula can be obtained directly by taking t = xν, in the orthogonality condition∫ 1
0 L∗i (t)L∗j (t)dt =

δij
2i+1 .
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4. Approximating Polynomials and Estimating Errors

Let a non-negative, integrable, real-valued function spanning the range (0, 1) be
denoted by wν(x) = xν−1, ν > 0. In the first (m + 1)-terms of FLPs, the function u(x) ∈ L2

wν ,
which is a square-integrable function in [0, 1], can be represented and approximated as follows:

uν
m(x) =

m

∑
i=0

ciPν
i (x). (6)

The error estimate for this approximation in wν-norm is provided by the following theorem.

Theorem 1. The error bound can be calculated using the following formula if uν
m is the best

estimation to u(x) out of Vν
m := span{Pν

0 (x), Pν
1 (x), . . . , Pν

m(x)}, and Di νu(x) ∈ C(0, 1] for
i = 0, 1, . . . , m + 1:

‖u− uν
m‖wν ≤ e(m+1)ν− θ

12(m+1)ν

((m + 1)ν)(m+1)ν+ 1
2

γν√
2π(2m + 3)ν

,

where 0 < θ < 1, γν = supx∈(0,1] |D(m+1) νu(x)|.

Proof. As an approximate representation of u(x) and denoted by y(x), consider the gener-
alized Taylor’s polynomial as follows:

y(x) =
m

∑
i=0

xi ν

Γ(iν + 1)
Di νu(0+), x ∈ (0, 1],

where it is known that the following error bound exists and:

|u(x)− y(x)| =
∣∣∣ x(m+1)ν

Γ((m + 1)ν + 1)
D(m+1)νu(ξx)

∣∣∣ ≤ γν
x(m+1)ν

Γ((m + 1)ν + 1)
=

γν x(m+1)ν

((m + 1)ν)!
.

Since uν
m, y(x) ∈ Vν

m and uν
m is the best approximation to u(x) out of Vν

m, then

‖u− uν
m‖2

wν ≤ ‖u− y‖2
wν ≤

(
γν

((m + 1)ν)!

)2 ∫ 1

0
xν−1x2(m+1)νdx

=

(
γν

((m + 1)ν)!

)2 1
(2m + 3)ν

,

this together with the well-known Stirling formula (n! =
√

2π nn+1/2 e−n+θ/12n, for some
(0 < θ < 1) lead to the desired result.

The primary formula for calculating an approximation of the Liouville–Caputo frac-
tional derivative is given in the following theorem.

Theorem 2. Let u(x) be as described in (6) and α > 0, then:

Dα(uν
m(x)) =

m

∑
i=dαe

i

∑
k=dαe

ci w(ν,α)
i,k xνk−α, w(ν,α)

i,k =
(−1)(i+k)(i + k)!Γ(νk + 1)
(i− k)!((k)!)2Γ(νk− α + 1)

. (7)

Proof. We can obtain this formula directly by using the linearity properties of the Liouville–
Caputo operation and then employing Equation (3) in Formula (5) with some simplification.
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Theorem 3. The error |ET(m)| = |Dαu(x)− Dαuν
m(x)| in approximating Dαu(x) by Dαuν

m(x)
is bounded by:

|ET(m)| ≤
∣∣∣ ∞

∑
i=m+1

ci

( i

∑
k=dαe

k−dαe

∑
j=0

Θi,j,k

)∣∣∣, (8)

where

Θi,j,k =
(−1)i+k(i + k)!(2j + 1)

(i− k)!((k)!)2Γ(νk− α + 1)
×

j

∑
r=0

(−1)j+r(j + r)!
(j− r)! (r!)2(νk− α + r + 1)

, j = 0, 1, . . . .

Proof. The proof can be found in [24].

5. Implementation of Legendre-SCM for Solving FDDE

Consider the FDDE (1), we first write u(x) as:

uν
m(x) =

m

∑
i=0

ciPν
i (x). (9)

From Equations (1) and (9) and Theorem 2, we have:

m

∑
i=dαe

i

∑
k=dαe

ci w(ν,α)
i,k xνk−α = f

(
x,

m

∑
i=0

ciPν
i (x),

m

∑
i=0

ciPν
i (g(x))

)
. (10)

We now collocate Equation (10) at (m + 1− dαe) points xp, p = 0, 1, . . . , m− dαe as:

m

∑
i=dαe

i

∑
k=dαe

ci w(ν,α)
i,k xνk−α

p = f

(
xp,

m

∑
i=0

ciPν
i (xp),

m

∑
i=0

ciPν
i (g(xp))

)
. (11)

We utilize the roots of the fractional Legendre polynomial Pν
m+1−dαe(x) for suitable

collocation nodes.
From (9) in (2), and use the properties of the Formula (5), we can obtain the follow-

ing equations:
m

∑
i=0

(−1)ici = λ0,
m

∑
i=0

ci = λ1. (12)

Using Equation (11) and dαe equations of B.Cs gives (m + 1) algebraic equations in the
unknown ci, i = 0, 1, . . . , m, which can be solved. Consequently, u(x) for (1) can be found.

6. Numerical Results

Example 1. Consider the following differential equation for a linear fractional delay:

D0.5u(x) + u(x/4) + 2
√

xu(x) = 2x + 0.5(
√

x +
√

π), (13)

with the initial condition:
u(0) = 0. (14)

Using the provided method and m = 2, we arrive at the following approximation of the solution:

uν
2(x) =

2

∑
n=0

cnPν
n (x). (15)

Using Equation (11) with α = 0.5, we have:
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2

∑
n=dαe

n

∑
k=dαe

cn w(ν,α)
n,k xν k−α

p +
2

∑
n=0

cnPν
n (xp/4) + 2

√
xp

2

∑
n=0

cnPν
n (xp) = 2xp + 0.5(

√
xp +

√
π), (16)

with p = 0, 1 where xp are roots of Pν
2 (x) and x0 = 0.0446582, x1 = 0.622008, at ν = 0.5.

Using Equations (14) and (15) we get:

c0 − c1 + c2 = 0. (17)

Now, solving Equations (16) and (17), we get:

c0 = 1/2, c1 = 1/2, c2 = 0.0.

Thus, using Equation (15) we can get:

u(x) ' 1
2 Pν

0 (x) + 1
2 Pν

1 (x) + 0.0Pν
2 (x) =

√
x = The exact solution.

Example 2. Consider the following differential equation for a linear fractional delay:

Dαu(x) + e−
√

x/4 u(x/16)− 1
2
√

x
u(x) = 1, 0 < α ≤ 1, (18)

with
u(0) = 1. (19)

The exact solution of Equation (18) at α = 1 is u(x) = e
√

x. Using the provided method and
m = 4, we arrive at the following approximation of the solution:

uν
4(x) =

4

∑
n=0

cnPν
n (x). (20)

Using Equation (11), we have:

4

∑
n=dαe

n

∑
k=dαe

cn w(ν,α)
n,k xν k−α

p + e−
√xp/4

4

∑
n=0

cnPν
n (xp/16)− 1

2√xp

4

∑
n=0

cnPν
n (xp) = 1, (21)

with p = 0, 1, 2, 3 where xp are roots of Pν
4 (x) and x0 = 0.004821, x1 = 0.108961, x2 = 0.448887,

x3 = 0.865957, at ν = 0.5.
Using Equations (19) and (20), we obtain:

c0 − c1 + c2 − c3 + c4 = 1. (22)

Now, solving Equations (21) and (22), we can obtain:

c0 = 1.718288, c1 = 0.845162, c2 = 0.139858, c3 = 0.013982, c4 = 0.000998.

Thus, using Equation (20) we can obtain the approximate solution u(x) of Example 2.
The approximate solution and the exact one are given in Figure 1 at α = 1 and ν = 0.5.

But, the approximate solution with α(= 0.75, 0.85) is given in Figure 2. These graphs
demonstrate that the exact solution and numerical solution are in very good agreement,
and the approximate solution exhibits the same behavior.
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Figure 1. The numerical solution and the exact solution of Example 2.

Figure 2. The approximate solution with different values of α of Example 2.

Example 3. Consider the following non-linear fractional delay differential equation:

D1.5u(x) = u(x− 0.5) + u3(x) + h(x), (23)

where h(x) = Γ(2ν+1)
Γ(2ν−0.5) x2ν−1.5 − (x− 0.5)2ν − x6ν, with

u(0) = 0, u(1) = 1. (24)

Using the provided method and m = 3, we arrive at the following approximation of the solution:

uν
m(x) =

m

∑
n=0

cnPν
n (x). (25)
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Using Equation (11), we have:

3

∑
i=dαe

i

∑
k=dαe

ci w(ν,α)
i,k xνk−α

p =
3

∑
n=0

cnPν
n (xp − 0.5) +

(
3

∑
n=0

cnPν
n (xp)

)3

+ h(xp), (26)

with p = 0, 1, 2 where xp are roots of Pν
3 (x). Using Equations (24) and (25), we obtain:

c0 − c1 + c2 − c3 = 0, (27)

c0 + c1 + c2 + c3 = 1. (28)

Solving (26)–(28), we obtain:

c0 = 1/3, c1 = 1/2, c2 = 1/6, c3 = 0.0.

Thus, using Equation (25) at ν = 1.25, we can obtain:

u(x) = 1
3 Pν

0 (x) + 1
2 Pν

1 (x) + 1
6 Pν

2 (x) + 0.0Pν
3 (x) = x2.5 = x2ν = The exact solution.

Example 4 ((Ikeda system-One delay)). Consider the Ikeda delay system with one delay, which
is described in ([26,27]):

Dαu(t) = −κ u(t) + λ sin(µ u(t− τ)), 1 < α ≤ 2, (29)

where κ, λ, µ, and τ are constants; with

u(0) = u0, u(1) = u1. (30)

Using the provided method and m = 10, we arrive at the approximation of the solution as in
Equation (25). Using Equation (11), we have

m

∑
n=dαe

n

∑
k=dαe

cn w(ν,α)
n,k tνk−α

p = −κ
m

∑
n=0

cnPν
n (tp) + λ sin

(
µ

m

∑
n=0

cnPν
n (tp − τ)

)
, (31)

with p = 0(1)8 where tp are roots of Pν
9 (t). Using Equations (25) and (30), we can obtain:

m

∑
n=0

(−1)n cn = u0,
m

∑
n=0

cn = u1. (32)

Now, solving the system of Equations (31)–(32), we obtain the approximate solution of this
model (29).

To conclude this numerical analysis with the simulation; we define the residual error function
(REF) as:

REF(t, m) =
m

∑
n=dαe

n

∑
k=dαe

cn w(ν,α)
n,k tνk−α + κ

m

∑
n=0

cnPν
n (t)− λ sin

(
µ

m

∑
n=0

cnPν
n (t− τ)

)
. (33)

The absolute relative error drops to zero in all situations when the residual is minimal
(REF(t, m) → 0), indicating that the solution tends to the exact one. Since the precise answer is
unknown in the situation of α in fractional order, we shall employ this form of error. Finally, REF
includes other forms; for further information, see [28].

Using the provided method, we present a numerical simulation of this model (29)
in Figures 3–5 with κ = 3, λ = 24, µ = 1 and initial values u0 = u1 = 0.1. In Figure 3,
the REF at τ = 0.1, α = 1.98 with m = 10 (a) and m = 15 (b) is given. In Figure 4, the REF
at τ = 0.01, m = 12 with α = 1.95 (a) and α = 1.99 (b) is given. Finally, in Figure 5, we
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provide a numerical simulation of this model using m = 15; with τ = 0.3, 0.6, 0.9, 1.2 (a)
and α = 1.2, 1.4, 1.6, 1.8, 2.0 (b). These Figures demonstrate that the solution depends on α
and τ, demonstrating the effectiveness of the numerical technique for solving the posed
issue in fractional derivatives.

Figure 3. The REF of Example 4 with τ = 0.1, α = 1.98; at m = 10 (a) and m = 15 (b).

Figure 4. The REF of Example 4 with τ = 0.01, m = 12; at α = 1.95 (a) and α = 1.99 (b).

Figure 5. The numerical solution of Example 4, with m = 15; with different values of τ (a) and α (b).

Example 5 ((Ikeda system-two delays)). Consider the Ikeda delay system with two delays which
is described in [29]:

Dαu(t) = −κ u(t− τ1) + λ sin(µ u(t− τ2)), 1 < α ≤ 2, (34)

where κ, λ, µ, τ1, and τ2 are constants and with:

u(0) = u0, u(1) = u1. (35)
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Using the provided method and m = 10, we arrive at the approximation of the solution as in
(25). Using Equation (11), we have

m

∑
n=dαe

n

∑
k=dαe

cn w(ν,α)
n,k tνk−α

p = −κ
m

∑
n=0

cnPν
n (tp − τ1) + λ sin

(
µ

m

∑
n=0

cnPν
n (tp − τ2)

)
, (36)

with p = 0(1)8 where tp are roots of Pν
9 (t). Using (25) and (35), we get:

m

∑
n=0

(−1)n cn = u0,
m

∑
n=0

cn = u1. (37)

Now, solving the system of Equations (36)–(37), we obtain the approximate solution to this
model (34).

Here, we define the REF to conduct a full numerical study with the simulation:

REF(t, m) =
m

∑
n=dαe

n

∑
k=dαe

cn w(ν,α)
n,k xνk−α + κ

m

∑
n=0

cnPν
n (t− τ1)− λ sin

(
µ

m

∑
n=0

cnPν
n (t− τ2)

)
. (38)

Using the provided method, we present a numerical simulation of this model (34)
using the suggested approach in Figures 6–8 with κ = 3, λ = 24, µ = 1 and initial values
u0 = u1 = 0.1. In Figure 6, the REF at τ1 = τ2 = 0.1, α = 1.98 with m = 10 (a) and
m = 15 (b) is given. In Figure 7, the REF at τ1 = τ2 = 0.01, m = 12 with α = 1.95 (a)
and α = 1.99 (b) is given. Finally, in Figure 8, the solution at m = 10, α = 1.98; with
τ1 = 0.3, 0.6, 0.9, 1.2 (a) and τ2 = 0.3, 0.6, 0.9, 1.2 (b) is given. These Figures demonstrate
that the solution depends on α, τ1 and τ2, demonstrating the effectiveness of the numerical
technique for solving this issue in fractional derivatives.

Figure 6. The REF of Example 5 with τ1 = τ2 = 0.1, α = 1.98; at m = 10 (a) and m = 15 (b).

Figure 7. The REF of Example 5 with τ1 = τ2 = 0.01, m = 12; at α = 1.95 (a) and α = 1.99 (b).
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Figure 8. The numerical solution of Example 5, with m = 10, α = 1.98; with different values of τ1

(a) and τ2 (b).

7. Conclusions and Remarks

This work’s primary focus is on presenting fractional Legendre polynomials with states and
demonstrating some of their characteristics. In addition, the Legendre SCM is used in this article
to solve fractional delay differential equations. The suggested problem is reduced to a system of
algebraic equations, which can be solved using an appropriate numerical method, leveraging the
properties of the new fractional Legendre polynomials. We examine the convergence analysis, the
generated formula’s accuracy, and the approximation of the solution. The numerical simulations
show that this approach to applying the Liouville–Caputo derivative is an effective way to solve
FDDE. In addition, Only a few shifted fractional Legendre polynomials are required to produce a
good outcome. By including new terms in the series, overall error rates can be reduced.
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