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Abstract: This study uses the optimal auxiliary function method to approximate solutions for
fractional-order non-linear partial differential equations, utilizing Riemann–Liouville’s fractional inte-
gral and the Caputo derivative. This approach eliminates the need for assumptions about parameter
magnitudes, offering a significant advantage. We validate our approach using the time-fractional
Cahn–Hilliard, fractional Burgers–Poisson, and Benjamin–Bona–Mahony–Burger equations. Compar-
ative testing shows that our method outperforms new iterative, homotopy perturbation, homotopy
analysis, and residual power series methods. These examples highlight our method’s effectiveness in
obtaining precise solutions for non-linear fractional differential equations, showcasing its superiority
in accuracy and consistency. We underscore its potential for revealing elusive exact solutions by
demonstrating success across various examples. Our methodology advances fractional differential
equation research and equips practitioners with a tool for solving non-linear equations. A key fea-
ture is its ability to avoid parameter assumptions, enhancing its applicability to a broader range of
problems and expanding the scope of problems addressable using fractional calculus techniques.

Keywords: hybrid auxiliary method; non-linear fractional PDEs; Caputo derivative; approximate
solutions; OAFM; fractional differential equations; fractional calculus

MSC: 2020; 35R10; 35R11

1. Introduction

Many challenges that emerge in natural phenomena, including fluid mechanics, biology,
and thermodynamics, can be effectively represented through mathematical models. These
models can be translated into a mathematical framework using differential equations. Classi-
fying these differential equations as either linear or non-linear is contingent upon the specific
characteristics of the issues that manifest across various scientific domains. In contemporary
times, a significant research thrust has been directed towards fractional-order differential
equations. Fractional calculus stands as a refined adaptation of classical calculus. Addressing
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the challenge of solving non-linear fractional-order partial differential equations (FPDE) entails
the utilization of a diverse array of both numerical and analytical methods.

Some non-linear fractional partial differential equations exist among these PDEs, such
as time-fractional Cahn–Hilliard (TFCH) equations, fractional Burgers–Poisson equations,
and BBM Burger equations. The Cahn–Hillard equation was named after Cahn and Hilliard
in 1958 [1]. This equation is critical in order to comprehend a variety of interesting physical
phenomena, such as spinodal decomposition, phase ordering dynamics, and phase sepa-
ration processes. It also explains a critical qualitative distinguishing feature of two-phase
systems (see [1–4] for a detailed discussion); furthermore, long memory processes and
fractional integration in econometrics [5] and kinetics of phase decomposition processes [6]
have also been discussed. Researchers have investigated mathematical and numerical
solutions of TFCH equations [7–11] since the appearances of their real-life applications in
the abovementioned fields. The fractional Burgers–Poisson (FBP) equation was proposed
for the first time in 2004 to describe the propagation of long waves in dispersive media in a
single direction [12]. The FBP equation models a unidirectional water wave with weaker
dispersive effects than the KdV equation in shallow water. The BBM–Burger equation
defines the mathematical model of the propagation of small-amplitude long waves in
non-linear dispersive media.

The BBM equation is a refinement of the KdV equation, as is well known. The wave-
breaking models are affected by the BBM–Burger equation and the KdV equation [13].
Water waves inspired the KdV equation, which was later used as a basis for long waves in
a variety of other physical systems. However, the KdV equation was not valid in certain
long-wave physical systems. As a result, the BBM–Burger model was proposed, repre-
senting unidirectional long-wave propagation in a non-linear dispersive system [13–15].
Solving fractional differential equations and fractional partial differential equations has
been a significant focus for researchers. Since most fractional differential equations do
not have exact analytic solutions, approximate and numerical methods are commonly
used [16–18], Baleanu et al. discussed the planar system-masses in an equilateral trian-
gle [19], Ghanim et al. discussed certain implementations in fractional calculus operators,
some new extensions on fractional differential and integral properties, and some analytical
merits of the Kummer-type function [20–22], Almalahi et al. discussed qualitative analysis
of the Langevin integro-fractional differential equation [23], Jajarmi et al. and Sajjadi et al.
discussed a new iterative method for the numerical solution of high-order non-linear frac-
tional boundary value problems and fractional optimal control problems with a general
derivative operator [24–26], and Mohammadi et al. discussed a hybrid functions numer-
ical scheme for fractional optimal control problems [27]. On the well-posedness of the
sub-diffusion equation with the conformable derivative model, mathematical modeling
for the adsorption process of the dye removal Laplace–Carson integral transformation for
exact solutions [28–31] has been discussed in the literature in order to find the numerical
and approximate solutions. Many analytical methods have been attempted in order to
solve non-linear problems, including the new iterative method (NIM), homotopy perturba-
tion method (HPM), homotopy analysis method (q-HAM), residual power series method
(RPSM), and FHATM.

Similarly, using Riemann–Liouville’s (R-L) fractional integral and the Caputo deriva-
tive, we present another approach known as the optimal auxiliary function method (OAFM)
for higher dimensional equations, which was first introduced by Vasile Marinca and col-
leagues for thin film flow problem [32]. Laiq Zada et al. later expanded the approach
to partial differential and generalized seventh-order KDV equations [33]. Several other
approaches and models have been developed recently to deal with different types of
fractional-order equations and PDEs in general; see [34–37]. Auxiliary convergence control
parameters and auxiliary functions are included in this approach to control and accelerate
the method’s convergence. The OAFM operates without the need for presuming any param-
eter to be small or large. This proposed technique possesses the benefit of adeptly handling
both linear and non-linear challenges while preserving a broad scope of applicability and
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effectiveness. The rest of this work is structured as follows. We begin with an initial
section that provides essential definitions aimed at aiding the readers’ comprehension.
Following this, the subsequent section outlines the fundamental concepts underlying the
OAFM. Moving forward, in the third section, we apply the OAFM to tackle fractional-order
problems, leading to the derivation of valuable solutions that are accurately presented
through tables and graphs. Exploring deeper, the fourth and fifth sections provide a com-
prehensive analysis and discussion of the presented tables and graphs, respectively. Finally,
we conclude our study in the sixth section, summarizing the key findings and suggestions
drawn from our work.

2. Preliminaries

We need some basic definitions to investigate our problems with the help of OAFM.

Definition 1 ([38]). Riemann–Liouville fractional integral left-sided:

RLIα
a+ [ f (r)] =

1
Γ(α)

η∫
a

(η − r) α−1 f (r)dr η ≥ a, (1)

Definition 2 ([38]). Riemann–Liouville right-sided integral:

RLIα
b− [ f (η)] =

1
Γ(α)

b∫
η

(r− η) α−1 f (r)dr η ≤ b, (2)

Definition 3 ([38]). Modified Riemann–Liouville fractional derivative:

D[ f (r)] =
1

Γ(1− α)

d
dη

η∫
0

(η − r) −α [ f (r)− f (0)] dr. (3)

Definition 4 ([38]). Liouville derivative:

Dα[ f (η)] =
1

Γ(1− α)

d
dη

η∫
−∞

(η − r)−α f (r)dr, −∞ ≺ η ≺ ∞ (4)

Definition 5 ([38]). Liouville left-sided derivative:

Dα
0+ [ f (η)] =

1
Γ(η − α)

dn

dηn

η∫
0

(η − r)−α+n+1 f (r)dr, η � 0. (5)

Definition 6 ([38]). Liouville right-sided derivative:

Dα
−[ f (η)] =

(−1)n

Γ(η − α)

dn

dηn

∞∫
η

(η − r)−α+n−1 f (r)dr, η ≺ ∞. (6)

Definition 7 ([38]). Right Riemann–Liouville integral of variable fractional order:

ηIα
b [ f (r)] =

b∫
η

(η − r) α(r,η)−1 f (r)
dr

Γ[α(r, η)]
. (7)
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3. The Basic Idea of the Optimal Auxiliary Function Method

In this paper, we successfully applied the OAFM to solve the analytical approximate
non-linear fractional solution of partial differential equations. We consider the most general
form of a non-linear differential equation.

The following are the general PDEs:

∂αθ(η, r)
∂ rα

= ℘(η, r) + N(θ(η, r)) = 0, (8)

They are subject to boundary conditions:

∂α−k

r θ(η, r) = hk(η).(k = 0, 1, . . . , n− 1) ∂α−n

r θ(η, 0) = 0, n = [α].
∂k

r θ(η, 0) = gk(η).(k = 0, 1, . . . , n− 1) ∂n

r θ(η, 0) = 0, n = [α].
(9)

In Equation (8), ∂α

∂ rα shows the Caputo or R-L operator θ(η, r) unknown function while
℘(η, r) is a known analytic function.

Step 1: To find the approximate solution of Equation (9), we have to consider the
approximate solution in the form of two components shown in Equation (10).

θ̂ (η, r) = θ0(η, r) + θ1(η, r, cι), ι = 1, 2, 3, 4, 5 . . . δ. (10)

Step 2: We arrange an equation to find the zero- and first-order solution (10) into
Equation (8). Its results are

∂αθ0(η, r)
∂rα

+
∂αθ1(η, r)

∂rα
+ ℘(η, r) + N

[
∂αθ0(η, r)

∂rα
+

∂αθ1(η, r), Ci
∂rα

]
= 0. (11)

Step 3: The initial approximation θ0(η, r) can be obtained from the linear equation as

∂αθ0(η, r)
∂rα

+ ℘(η, r) = 0, (12)

Applying the inverse operator, we obtain θ0(η, r) as follows:

θ0(η, r) = ℘′(η, r) (13)

Step 4: Expand the non-linear term from Equation (11) in the form of

N
[

∂αθ0(η, r)
∂rα

+
∂αθ1(η, r, Ci)

∂rα

]
= N[θ0(η, r)] +

∞

∑
k=1

θk
1

k!
N(k)[θ0(η, r)]. (14)

Step 5: To solve Equation (14) easily and accelerate the convergence of the first-order
approximation, we introduce another expression that can be written as follows:

∂αθ1(η, r, Ci)

∂rα
= −E1[θ0(η, r)]N[θ0(η, r)]− E2

[
θ0(η, r), Cj

]
, (15)

Remark 1. Where E1 and E2 are two auxiliary functions depending upon θ0(η, r) and the conver-
gence control parameter Cι and CJ ,ι = 1, 2, 3, 4 . . . , J = s + 1, s + 2, . . . δ.

Remark 2. E1 and E2 are of the form θ0(η, r),N[θ0(η, r)], or the combination of both θ0(η, r), and
N[θ0(η, r)], but they are not unique.

Remark 3. If θ0(η, r), or N[θ0(η, r)] are the functions of a polynomial, then E1[θ0(η, r), Cι]
and E2

[
θ0(η, r), Cj

]
are taken as the summation. If θ0(η, r), or N[θ0(η, r)] are the exponential

functions, then E1[θ0(η, r), Cι] and E2
[
θ0(η, r), Cj

]
are taken as the functions of addition of an

exponential function. If θ0(η, r), or N[θ0(η, r)] are in the form of a trigonometric function, then
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E1[θ0(η, r), Cι] and E2
[
θ0(η, r), Cj

]
are taken as the addition of a trigonometric function. A special

case for If N[θ0(η, r)] = 0 then θ0(η, r), is the exact solution of Equation (10).

Step 6: To find the square of the residual error to obtain the values of Cι and Cj we
use either the collocation method, the Galerkin method, the Ritz method, or the least square
method.

H
(
Cι, Cj

)
=

r∫
0

∫
Ω

R2(η, r; Cι, Cj
)
dηdr, (16)

where R is the residual,

R
(
η, r, Ci, Cj

)
=

∂α θ̂ (η,r),Ci ,CJ
∂r + ℘(η, r) + N

[
θ̂
(
η, r, Ci, Cj

)]
, i = 1, 2, 3 . . . s, j = s + 1, s + 2, s + 3 . . . ρ,

∂J
∂ C1

= ∂J
∂ C2

= . . . ∂J
∂ Cq

= 0.
(17)

In solving the above equations simultaneously, we obtain the values of the constants Cι.

Remark 4. This powerful tool does not depend on small or large parameters. Our procedure consists
of auxiliary functions E1 and E2 which control the convergence of the approximate solution after
only one iteration.

4. Numerical Experiments and Results

In this section, we present three problems and demonstrate how their numerical results
compare with other methods from the literature.

Problem 1. Consider the time-fractional equation of Cahn–Hilliard [39]:

∂αθ(η,r)
∂rα = µ

∂θ(η,r)
∂η + 6θ(η, r) ∂θ2(η,r)

∂η + 3θ2(η, r) ∂2θ(η,r)
∂η2 − ∂2θ(η,r)

∂η2 − ∂4θ(η,r)
∂η4 ,

0 < α ≤ 1 ,
(18)

Then, it is subject to the initial condition:

θ0(η, 0) = tanh
(

η√
2

)
(19)

The exact solution of Equation (18) when α, µ = 1 is

θ(η, r) = tanh

 η + r(√
2
)
 (20)

So, Equation (18) can be written as

∂αθ(η, r)
∂rα

− µ
∂θ(η, r)

∂η
− 6θ(η, r)

∂θ2(η, r)
∂η

− 3θ2(η, r)
∂2θ(η, r)

∂η2 +
∂2θ(η, r)

∂η2 +
∂4θ(η, r)

∂η4 = 0. (21)

In Equation (21), we take the linear and non-linear parts as L(θ(η, r)) = ∂αθ(η,r)
∂rα

N(θ(η, r)) = −µ
∂θ(η,r)

∂η − 6θ(η, r) ∂θ2(η,r)
∂η − 3θ2(η, r) ∂2θ(η,r)

∂η2 + ∂2θ(η,r)
∂η2 + ∂4θ(η,r)

∂η4 .
(22)

The initial approximation θ0(η, r) is obtained from Equation (12):

∂αθ(η, r)
∂rα

= 0, (23)
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In applying the inverse operator as mentioned in Equation (13), we obtain the follow-
ing solution,

θ0(η, r) = tanh
(

η√
2

)
(24)

By using Equation (24) in Equation (22), the non-linear operator becomes

N(θ0(η, r)) = −µ
∂θ0(η, r)

∂η
− 6θ0(η, r)

∂θ2
0(η, r)
∂η

− 3θ2
0(η, r)

∂2θ0(η, r)
∂η2 +

∂2θ0(η, r)
∂η2 +

∂4θ0(η, r)
∂η4 . (25)

The first approximation is given by (15):

∂αθ1(η, r, Ci)

∂rα
= −E1[θ0(η, r)]N[θ0(η, r)]− E2

[
θ0(η, r), Cj

]
, (26)

Here, we select E1 and E2 according to the non-linear operator,

E1 = −



C1

(
1√
2
−

tanh2
(

η√
2

)
√

2

)
+ C1

(
1
2

(
−tanh

(
η√
2

)
+ tanh3

(
η√
2

)))
r

+C1

(
1

12

(
−
√

2 + 4
√

2tanh2
(

η√
2

)
− 3
√

2tanh4
(

η√
2

)))
r2

+C1

(
1

12

(
2tanh

(
η√
2

)
− 5tanh3

(
η√
2

)
+ 3tanh5

(
η√
2

)))
r3

+C1

(
1

120

(
2
√

2− 17
√

2tanh2
(

η√
2

)
+ 30
√

2tanh4
(

η√
2

)
− 15
√

2tanh6
(

η√
2

))
r4
)


E2 = 0

(27)

Using Equations (24) and (25) in Equation (26), and apply the inverse operator, we
obtain the first approximation as

θ1(η, r) =
1

120α Γ(α)
C1 rαSech2

(
η√
2

)
2
√

2
(
30− 5r2 + r4)+ 20r

(
−3 + r2)tanh

(
η√
2

)
−15
√

2r2(−2 + r2)tanh2
(

η√
2

)
− 30r3tanh3

(
η√
2

)
+15
√

2r4tanh4
(

η√
2

)
 (28)

in adding Equations (24) and (28), we obtain first-order approximate solutions as

θ̂ (η, r) = θ0(η, r) + θ0(η, r, C1).

θ̂ (η, r) = tanh
(

η√
2

)
+ 1

120 α Γ(α)C1rαSech2
(

η√
2

)
2
√

2
(
30− 5r2 + r4)+ 20r

(
−3 + r2)tanh

(
η√
2

)
−15
√

2r2(−2 + r2)tanh2
(

η√
2

)
− 30r3tanh3

(
η√
2

)
+15
√

2r4tanh4
(

η√
2

)


(29)

Below, the results of Problem 1 are presented in Tables 1 and 2 and visualized in
Figures 1–6.

Table 1. The numerical values of the control parameters, with varying values of α for Equation (18).

α = 1 α = 0.8 α = 0.7 α = 0.6

C1 0.9999999999999998 1.0689593321155948 1.1649666232352796 1.3213063996776493



Fractal Fract. 2023, 7, 673 7 of 18

Fractal Fract. 2023, 7, x FOR PEER REVIEW 8 of 21 
 

 

1.0 0.715566 0.67742 0.65435 0.630632 0.630632 2.224480 × 10−5 1.736922 × 10−7 1.39521 × 10−11 
2.0 0.923783 0.91113 0.903476 0.895608 0.895608 7.794449 × 10−6 3.622408 × 10−8 1.85728 × 10−11 
3.0 0.981023 0.97768 0.975656 0.973577 0.973577 1.257660 × 10−7 2.328496 × 10−8 1.11566 × 10−12 

0.08 

0.0 0.229497 0.15456 0.10748 0.056508 0.056508 4.940148 × 10−5 7.713501 × 10−8 9.99082 × 10−11 
1.0 0.748476 0.70289 0.674246 0.643237 0.643237 8.990891 × 10−5 1.124520 × 10−6 2.17279 × 10−10 
2.0 0.934445 0.91940 0.909956 0.899727 0.899727 3.218897 × 10−5 2.387229 × 10−7 3.08464 × 10−10 
3.0 0.983821 0.97985 0.977359 0.974662 0.974662 4.548965 × 10−7 1.516340 × 10−7 1.89203 × 10−11 

0.1 

0.0 0.262219 0.18058 0.128409 0.070593 0.070593 9.109940 × 10−5 2.352262 × 10−7 4.76052 × 10−10 
1.0 0.767071 0.71788 0.686336 0.651452 0.651452 1.740220 × 10−4 2.722916 × 10−6 7.86751 × 10−10 
2.0 0.940392 0.92420 0.913853 0.902386 0.902386 6.321236 × 10−5 5.848640 × 10−7 1.16877 × 10−9 
3.0 0.985376 0.98111 0.978381 0.975358 0.975358 8.108096 × 10−7 3.686350 × 10−7 7.26751 × 10−11 

 
Figure 1. Two-dimensional plot for Equation (18) with the exact solution at 𝑟 = 0.025 and different 
values of 𝛼 when 𝜇 =  1. 

 
Figure 2. Two-dimensional plot of the OAFM solution with the exact solution of Equation (18) at 𝑟 = 0.025 for 𝛼 = 1 and 𝜇 =  1. 

Figure 1. Two-dimensional plot for Equation (18) with the exact solution at r = 0.025 and different
values of α when µ = 1.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 8 of 21 
 

 

1.0 0.715566 0.67742 0.65435 0.630632 0.630632 2.224480 × 10−5 1.736922 × 10−7 1.39521 × 10−11 
2.0 0.923783 0.91113 0.903476 0.895608 0.895608 7.794449 × 10−6 3.622408 × 10−8 1.85728 × 10−11 
3.0 0.981023 0.97768 0.975656 0.973577 0.973577 1.257660 × 10−7 2.328496 × 10−8 1.11566 × 10−12 

0.08 

0.0 0.229497 0.15456 0.10748 0.056508 0.056508 4.940148 × 10−5 7.713501 × 10−8 9.99082 × 10−11 
1.0 0.748476 0.70289 0.674246 0.643237 0.643237 8.990891 × 10−5 1.124520 × 10−6 2.17279 × 10−10 
2.0 0.934445 0.91940 0.909956 0.899727 0.899727 3.218897 × 10−5 2.387229 × 10−7 3.08464 × 10−10 
3.0 0.983821 0.97985 0.977359 0.974662 0.974662 4.548965 × 10−7 1.516340 × 10−7 1.89203 × 10−11 

0.1 

0.0 0.262219 0.18058 0.128409 0.070593 0.070593 9.109940 × 10−5 2.352262 × 10−7 4.76052 × 10−10 
1.0 0.767071 0.71788 0.686336 0.651452 0.651452 1.740220 × 10−4 2.722916 × 10−6 7.86751 × 10−10 
2.0 0.940392 0.92420 0.913853 0.902386 0.902386 6.321236 × 10−5 5.848640 × 10−7 1.16877 × 10−9 
3.0 0.985376 0.98111 0.978381 0.975358 0.975358 8.108096 × 10−7 3.686350 × 10−7 7.26751 × 10−11 

 
Figure 1. Two-dimensional plot for Equation (18) with the exact solution at 𝑟 = 0.025 and different 
values of 𝛼 when 𝜇 =  1. 

 
Figure 2. Two-dimensional plot of the OAFM solution with the exact solution of Equation (18) at 𝑟 = 0.025 for 𝛼 = 1 and 𝜇 =  1. 
Figure 2. Two-dimensional plot of the OAFM solution with the exact solution of Equation (18) at
r = 0.025 for α = 1 and µ = 1.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 3. Three-dimensional plot of the exact solution at 𝛼 = 𝜇 = 1. 

 
Figure 4. Three-dimensional plot of the OAFM solution at 𝛼 = 𝜇 = 1. 

Figure 3. Three-dimensional plot of the exact solution at α = µ = 1.



Fractal Fract. 2023, 7, 673 8 of 18

Fractal Fract. 2023, 7, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 3. Three-dimensional plot of the exact solution at 𝛼 = 𝜇 = 1. 

 
Figure 4. Three-dimensional plot of the OAFM solution at 𝛼 = 𝜇 = 1. Figure 4. Three-dimensional plot of the OAFM solution at α = µ = 1.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 5. Three-dimensional plot of the OAFM solution at 𝛼 = 𝜇 = 0.5. 

 
Figure 6. Three-dimensional plot of the OAFM solution at 𝛼 = 𝜇 = 0.25. 

Problem 2. Consider the fractional Burgers–Poisson Equation [40]: 
2 2 3

2 2 3
( ,r) ( ,r) ( ,r) ( ,r) ( ,r) ( ,r) ( ,r)( ,r) 3 ( ,r) 0,

0, 0 1.
r r

r

α α

α α
θ η θ η θ η θ η θ η θ η θ ηθ η θ η

η η η η η η
α

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + + − + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
> < ≤

 (30)

Then, it is subject to the initial condition: 

( )0 ,0θ η η=  (31)

The exact solution of Equation (30) at 1α =  is 

Figure 5. Three-dimensional plot of the OAFM solution at α = µ = 0.5.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 5. Three-dimensional plot of the OAFM solution at 𝛼 = 𝜇 = 0.5. 

 
Figure 6. Three-dimensional plot of the OAFM solution at 𝛼 = 𝜇 = 0.25. 

Problem 2. Consider the fractional Burgers–Poisson Equation [40]: 
2 2 3

2 2 3
( ,r) ( ,r) ( ,r) ( ,r) ( ,r) ( ,r) ( ,r)( ,r) 3 ( ,r) 0,

0, 0 1.
r r

r

α α

α α
θ η θ η θ η θ η θ η θ η θ ηθ η θ η

η η η η η η
α

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + + − + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
> < ≤

 (30)

Then, it is subject to the initial condition: 

( )0 ,0θ η η=  (31)

The exact solution of Equation (30) at 1α =  is 

Figure 6. Three-dimensional plot of the OAFM solution at α = µ = 0.25.



Fractal Fract. 2023, 7, 673 9 of 18

Table 2. Error analysis of the OAFM, with NIM and q-HAM using the exact solution (α = µ = 1) for
Equation (18).

r η
OAFM Solution Exact

Solution
NIM Error [39] q-HAM Error

[39] OAFM Error
α = 0.6 α = 0.7 α = 0.8 α = 1

0.01

0.0 0.065975 0.0361 0.020385 0.007070 0.007070 1.151971 × 10−7 2.35697 × 10−12 4.77049 × 10−17

1.0 0.650199 0.63147 0.621632 0.613291 0.613291 1.810671 × 10−7 2.82376 × 10−10 9.99201 × 10−16

2.0 0.902204 0.89594 0.892655 0.889867 0.889867 6.167394 × 10−8 5.74951 × 10−11 9.99201 × 10−16

3.0 0.975328 0.97367 0.972799 0.972060 0.972060 1.165205 × 10−9 3.75726 × 10−11 1.11022 × 10−16

0.05

0.0 0.173216 0.11130 0.073843 0.035340 0.035340 1.306675 × 10−5 7.361971 × 10−9 3.72481 × 10−12

1.0 0.715566 0.67742 0.65435 0.630632 0.630632 2.224480 × 10−5 1.736922 × 10−7 1.39521 × 10−11

2.0 0.923783 0.91113 0.903476 0.895608 0.895608 7.794449 × 10−6 3.622408 × 10−8 1.85728 × 10−11

3.0 0.981023 0.97768 0.975656 0.973577 0.973577 1.257660 × 10−7 2.328496 × 10−8 1.11566 × 10−12

0.08

0.0 0.229497 0.15456 0.10748 0.056508 0.056508 4.940148 × 10−5 7.713501 × 10−8 9.99082 × 10−11

1.0 0.748476 0.70289 0.674246 0.643237 0.643237 8.990891 × 10−5 1.124520 × 10−6 2.17279 × 10−10

2.0 0.934445 0.91940 0.909956 0.899727 0.899727 3.218897 × 10−5 2.387229 × 10−7 3.08464 × 10−10

3.0 0.983821 0.97985 0.977359 0.974662 0.974662 4.548965 × 10−7 1.516340 × 10−7 1.89203 × 10−11

0.1

0.0 0.262219 0.18058 0.128409 0.070593 0.070593 9.109940 × 10−5 2.352262 × 10−7 4.76052 × 10−10

1.0 0.767071 0.71788 0.686336 0.651452 0.651452 1.740220 × 10−4 2.722916 × 10−6 7.86751 × 10−10

2.0 0.940392 0.92420 0.913853 0.902386 0.902386 6.321236 × 10−5 5.848640 × 10−7 1.16877 × 10−9

3.0 0.985376 0.98111 0.978381 0.975358 0.975358 8.108096 × 10−7 3.686350 × 10−7 7.26751 × 10−11

Problem 2. Consider the fractional Burgers–Poisson Equation [40]:

∂αθ(η,r)
∂rα − ∂α

∂rα

(
∂2θ(η,r)

∂η2

)
+ ∂θ(η,r)

∂η + θ(η, r) ∂θ(η,r)
∂η −

(
3 ∂θ(η,r)

∂η
∂2θ(η,r)

∂η2 + θ(η, r) ∂3θ(η,r)
∂η3

)
= 0,

r > 0, 0 < α ≤ 1 .
(30)

Then, it is subject to the initial condition:

θ0(η, 0) = η (31)

The exact solution of Equation (30) at α = 1 is

θ(η, r) =
1 + η

1 + r
− 1 (32)

According to the non-linear operator, we choose E1 and E2 for problem 2.

E1 = −
(

C1 + 3C2(r) + 2C3
(
r2)+ 2C4(r)

3 + 2C5(r)
4
)

E2 = 0
(33)

Using the same procedure of the OAFM method, we obtain the zero-order and first-
order solution as

θ0(η, r) = η, (34)

θ1(η, r) =
rα(C1 + r(3C2 + 2r(C3 + r(C4 + C5r))))(1 + η)

α Γ[α]
, (35)

In combining Equations (34) and (35), we obtain the OAFM solution given by the
following expression:

θ̂ (η, r) = θ0(η, r) + θ1(η, r, C1, C2, C3, C4, C5, C6).
θ̂(η, r) = η + rα(C1+r(3C2+2r(C3+r(C4+C5r))))(1+η)

α Γ[α] .
(36)

Below, the results of Problem 2 are presented in Tables 3 and 4 and visualized in
Figures 7–10.
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Table 3. Numerical values of convergence control parameters obtained by the Galerkin method for
different values of α for Equation (30).

α=1 α=0.7 α=0.6

C1 −0.9999870166919811 −1.1189030434611396 −1.208213789561331
C2 0.33313615275841246 0.9544139953390676 1.341269491284959
C3 −0.4945108518067398 −6.4337069205146395 −10.808604146484456
C4 0.4503627958849215 20.772596091262024 37.507958650955004
C5 −0.2727180163051805 −29.1932425180932 −54.58723568118725
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Table 4. Comparison of the OAFM, with exact and HPM solutions, and comparison with abs. errors
at α = 1.

η r HPM Sol.
[40]

OAFM Solution Exact
Solution

Abs. HPM [40] Abs. OAFM
α=1 α=0.7 α=0.6

0.9 0.2 0.5804 0.583333 0.342866 0.217758 0.583333 2.933 × 10−3 9.39489 × 10−8

1.2 0.2 0.8304 0.833333 0.554898 0.410035 0.833333 2.933 × 10−3 1.08783 × 10−7

1.5 0.2 1.08 1.08333 0.766929 0.602313 1.08333 3.33 × 10−3 1.23617 × 10−7

1.8 0.2 1.3296 1.33333 0.978961 0.79459 1.33333 3.73 × 10−3 1.38451 × 10−7

2 0.2 1.496 1.5 1.12032 0.922775 1.5 4.0 × 10−3 1.4834 × 10−7

1 0.3 0.526 0.538435 0.271101 0.124476 0.538462 2.462 × 10−3 2.64625 × 10−5

1 0.35 0.45925 0.481359 0.168277 −0.03724 0.481481 2.223 × 10−2 1.2237 × 10−4

1 0.4 0.392 0.428173 −0.00623 −0.35796 0.428571 3.657 × 10−2 3.98493 × 10−4

1 0.45 0.32275 0.378264 −0.31461 −0.96298 0.37931 5.656 × 10−2 1.04634 × 10−3

1 0.5 0.25 0.330963 −0.84290 −2.02297 0.333333 8.333 × 10−2 2.3706 × 10−3

Problem 3. The BBM–Burger equation can be written as [41]

∂αθ(η, r)
∂rα

− ∂3θ(η, r)
∂η2∂r

+
∂θ(η, r)

∂η
+

(
θ2(η, r)

2

)
η

= 0, r > 0, η ∈ I ≥ R, α ∈ (0, 1], (37)
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with the initial conditions of
θ0(η, 0) = Sech2

(η

4

)
. (38)

The exact solution of Equation (37) at α = 1 is:

θ(η, r) = sec h2
(η

4
− r

4

)
. (39)

According to the non-linear operator, we choose E1 and E2 for problem number 3:

E1 = −
(

C1

(
1
2 Sech2( η

4
)
tanh

( η
4
)))

E2 = 0,
(40)

Using the same procedure of the OAFM method, we obtain the zero-order and first-
order solution as

θ0(η, r) = Sech2
(η

4

)
. (41)

θ1(η, r, C1) =
C1 rαSech2( η

4
)
tanh

( η
4
)

2 α Γ(α)
(42)

We obtain the first-order approximate solution by combining Equations (41) and (42).

θ̂(η, r) = θ0(η, r) + θ1(η, r, C1),

θ̂(η, r) = Sech2( η
4
)
+

C1rαSech2( η
4 )tanh( η

4 )
2α Γ(α) .

(43)

Below, the results of Problem 3 are presented in Tables 5 and 6 and visualized in
Figures 11–18.

Table 5. Comparison of OAFM solutions with RPSM solutions and the exact solution for different
values of α and comparison with the abs. error of RPSM at α = 1 for the BBM–Burger equation.

η r RPSM [41] Sol.
at α=1

OAFM Solution at Exact
Solution

Abs. RPSM
[41] Abs. OAFM

α=1 α=0.7 α=0.6

−15
0.001 0.0022087864 0.00220879 0.0021987 0.00218763 0.00220879 2.44 × 10−9 9.17574 × 10−10

0.01 0.0021988584 0.00219885 0.0021540 0.00212126 0.00219888 2.41 × 10−8 3.39094 × 10−8

0.1 0.0021019994 0.00209946 0.0019299 0.00185702 0.00210223 2.29 × 10−7 2.77232 × 10−6

−10
0.001 0.0265787633 0.0265791 0.0264598 0.0263276 0.02657911 349 × 10−7 1.08249 × 10−8

0.01 0.0264579103 0.026461 0.0259285 0.0255388 0.02646140 3.45 × 10−6 3.94981 × 10−7

0.1 0.0252801959 0.0252796 0.0232655 0.0223983 0.02531183 3.16 × 10−5 3.21803 × 10−5

−5
0.001 0.2802626306 0.280296 0.2792140 0.2780160 0.28029508 3.33 × 10−5 8.95206 × 10−8

0.01 0.2788971245 0.279225 0.2743971 0.2708640 0.27922753 3.30 × 10−4 2.72217 × 10−6

0.1 0.2656871698 0.268514 0.2502531 0.2423990 0.26872355 3.30 × 10−3 2.09181 × 10−4

0
0.001 0.9999997500 1 1 1 1 1.88 × 10−7 6.25000 × 10−8

0.01 0.9999750000 1 1 1 0.99999475 1.88 × 10−6 6.24997 × 10−6

0.1 0.9974997396 1 1 1 0.99937526 1.88 × 10−3 6.24740 × 10−4

5
0.001 0.2805672046 0.280534 0.2816160 0.282814 0.28053822 3.34 × 10−5 4.89041 × 10−8

0.01 0.2819428891 0.281605 0.2864333 0.289966 0.28160625 3.37 × 10−4 1.33948 × 10−6

0.1 0.2961686088 0.292315 0.3105766 0.318439 0.29251226 3.66 × 10−3 1.96911 × 10−4

10
0.001 0.0266056972 0.0266054 0.0267247 0.0268568 0.02660534 3.49 × 10−7 4.44199 × 10−9

0.01 0.0267272511 0.0267235 0.0272560 0.0276457 0.02672372 3.52 × 10−6 2.43308 × 10−7

0.1 0.0279748560 0.0279048 0.0299189 0.0307862 0.02793650 3.84 × 10−5 3.16596 × 10−5

15
0.001 0.0022109987 0.002211 0.0022210 0.0022321 0.00221109 2.44 × 10−9 3.66932 × 10−10

0.01 0.0022209817 0.00222094 0.0022657 0.0022985 0.00222096 2.46 × 10−8 2.11548 × 10−8

0.1 0.0023233232 0.00232033 0.0024898 0.0025628 0.00232306 2.59 × 10−7 2.73523 × 10−6
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Table 6. Comparison between the abs. error of the OAFM with RPSM and error of FHATM [42] at
α = 1 for the BBM–Burger equation.

η r Exact Solution OAFM Solution Error RPSM [42] Error [42] FHATM Error OAFM

10
0.01 2.672 × 10−2 2.672 × 10−2 3523 × 10−6 4529 × 10−5 2.4331 × 10−7

0.001 2.661 × 10−2 2.661 × 10−2 3492 × 10−7 4501 × 10−6 4.4419 × 10−9

15
0.01 2.221 × 10−3 2.221 × 10−3 2464 × 10−8 3717 ×10−6 2.1155 × 10−8

0.001 2.211 × 10−3 2.211 × 10−3 2441 × 10−9 3697 × 10−7 3.6690 × 10−10

20
0.01 1.825 × 10−4 1.825 × 10−4 1663 × 10−10 3034 × 10−7 1.7446 × 10−9

0.001 1.817 × 10−8 1.817 × 10−4 1640 × 10−11 3018 × 10−8 3.0135 × 10−11
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for solving fractional-order equations. In this study, Mathematica 9 was employed for all 
of our computational work. The accuracy and the validity of the method were evaluated 
by comparing the results obtained with other analytical methods available in the litera-
ture. Tables 1 show the numerical values of convergence control parameters obtained us-
ing the collocation technique. Table 2 represents the absolute error of the OAFM, compar-
ing it with NIM and q-HAM using the exact solution 𝛼 =  𝜇 =  1 . Table 3 shows the 
numerical values of convergence control parameters obtained using the Galerkin method 
(for the fractional Burgers-Poisson equation, we used the Galerkin method because, for 
this problem, the collocation method did not provide us with a rapid result). 

Similarly, Table 4 compares OAFM results with exact and HPM solutions; the abso-
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Overall, the results presented in Tables 2, 4–6 indicate that, as the value of 𝛼 ap-
proaches 1, the OAFM solution rapidly converges to the exact solution. Based on the pre-
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5. Discussion

This section discusses the results of the optimal auxiliary function method (OAFM)
for solving fractional-order equations. In this study, Mathematica 9 was employed for all of
our computational work. The accuracy and the validity of the method were evaluated by
comparing the results obtained with other analytical methods available in the literature.
Table 1 show the numerical values of convergence control parameters obtained using the
collocation technique. Table 2 represents the absolute error of the OAFM, comparing it with
NIM and q-HAM using the exact solution (α = µ = 1). Table 3 shows the numerical values
of convergence control parameters obtained using the Galerkin method (for the fractional
Burgers-Poisson equation, we used the Galerkin method because, for this problem, the
collocation method did not provide us with a rapid result).

Similarly, Table 4 compares OAFM results with exact and HPM solutions; the absolute
error shows that our method is more accurate than the HPM. These tables demonstrate
the accuracy of the OAFM by evaluating the absolute errors for different problems with
their exact solutions. Tables 5 and 6 present a comparative analysis of OAFM solutions
with RPSM solutions and exact solutions for various α values, along with a comparison
of absolute errors in RPSM at α = 1, respectively. These comparisons further validate the
effectiveness of the OAFM in delivering precise solutions.

Visual representations are provided through 2D and 3D graphs to complement the
numerical results. Figures 1 and 2 display 2D graphs for problem 1 with varying values of
α, while Figures 3–6 show 3D graphs for problem 1. Additionally, Figures 7 and 8 show 2D
graphs for different values of α at r = 0.2 for problem 2, and Figures 9 and 10 display 3D
plots comparing the exact and OAFM solutions for problem 2. Furthermore, Figures 11–16
show 3D graphs for problem 3 with different values of α, while Figures 17 and 18 show 2D
plots for varying α at r = 0.01 for problem 3.

Overall, the results presented in Tables 2 and 4–6 indicate that, as the value of α
approaches 1, the OAFM solution rapidly converges to the exact solution. Based on the
presented results, we can confidently say that the OAFM approach delivers remarkably
precise solutions.

6. Conclusions

The optimal auxiliary function method (OAFM) is a strong and reliable analytical
tool, providing solutions that closely match the exact solutions for various fractional-
order equations. The time-fractional Cahn–Hilliard equation, fractional Burgers–Poisson
equation, and Benjamin–Bona–Mahony–Burger equations have all been successfully used
for finding the approximate solutions by using the OAFM. We can conclude from the
numerical results and the presented figures that the proposed method for fractional-order
non-linear partial differential equations is very reliable and easy to use. In comparison to
NIM, FHATM, q-HAM, RPSM, and HPM, the OAFM approach solutions converge quickly
to the exact solution. Based on the mathematical findings, we determined that the proposed
method is simple, quick, and effective.
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