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1. Introduction

The q-difference calculus was first introduced by Jackson [1,2]. In [3,4], the authors,
for the first time, studied fractional q-difference calculus. For more details on q-difference
calculus, we refer readers to [5–7] and the references therein.

Fractional differential equations with q-difference are very interesting, and we refer
readers to [8–17] and the references therein. For example, in [8,9], Ferreira studied the
existence of positive solutions to q-fractional differential equations by using fixed-point the-
orem in cones. The authors in [14] established the existence of triple-positive solutions for
fractional q-difference equations by using the q-Laplace transform and the fixed-point index
theorem. In [15], the authors dealt with the solvability of fractional q-integro-difference
systems using Krasnoselskii’s, Schauder’s and Schaefer’s fixed-point theorems. In [10],
the authors prove the existence of a unique iterative solution to a fractional q-difference
equation using a novel fixed-point theorem. Ülke and Topal [12], by using Schauder’s
fixed-point theorem, studied the existence of solutions for a differential equation with
fractional q-difference on the half-line.

In the literature, there exist papers mixing several kinds of fractional derivatives.
For example, in [18–22], the authors investigated the existence of solutions to fractional
differential equations by mixing Riemann–Liouville and Caputo fractional derivatives.
In [23], the authors studied the existence and uniqueness results for mixed derivatives
involving two fractional operators. In [24], the authors studied Hyers–Ulam stability
for a class of impulsive coupled fractional differential equations with mixing the Caputo
derivatives and ordinary derivative. As for some recent results on fractional calculus and
fractional integro-differential equations, we refer to [25–27] and the references therein.

In [9], Ferreira investigated the existence of positive solutions to a class of nonlinear
q-fractional boundary value problems. Also, in [28], by using fixed-point index theory,
Zhang studied the existence of positive solutions to a class of singular boundary value
problems for fractional differential equations with nonlinearity that changes sign. In this
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paper, we initiate the study of mixing two different fractional calculi by investigating
a problem containing both a Riemann–Liouville fractional derivative and a quantum
fractional derivative, which, as far as we know, is a new area of research. Thus, by using
Leggett–Williams fixed-point theorem, we will extend the results of the papers in [9,28]
to a combined boundary value problem with mixed Riemann–Liouville and quantum
fractional derivatives.

So, inspired by the above articles, the objective of the present paper is to apply the
Leggett–Williams fixed-point theorem to study the existence of multiple positive solutions
to the following problem:

Dϑ
ρ (Dγ

0+Q(z))− f (z,Q(z),Q(1)(z), . . . ,Q(n−2)(z)) = 0, z ∈ (0, 1),
Q(0) = Q(1)(0) = · · · = Q(n−2)(0) = Q(n−2)(1) = 0,
Dγ

0+Q(0) = Dρ(Dγ
0+Q(0) = Dρ(Dγ

0+Q)(1) = 0,

(1)

where Dϑ
ρ is the quantum fractional derivative of order 2 < ϑ ≤ 3 and quantum number

ρ ∈ (0, 1), Dγ
0+ is the Riemann–Liouville fractional derivative of order n− 1 < γ ≤ n, n ≥ 2

and f ∈ C([0, 1]×Rn−1; [0,+∞)). Note that (1) is a problem with mixed Riemann–Liouville
and ρ-difference fractional derivatives.

By using suitable changes in variables, we can split the problem (1) into two other
problems for which Green’s functions and their bounds are known from [9,28]. Then, we
prove that problem (1) has at least three positive solutions by applying Legget–Williams
fixed-point theorem. The used method is standard, but its configuration in the present
problem is new. The obtained results are new and contribute to this new research topic con-
cerning the study of positive solutions of boundary value problems, in which a combination
of two fractional calculi is used.

The paper is organized as follows. In Section 2, some preliminary facts are recalled
and basic properties are provided, which are needed later. In Section 3, we establish our
main results, which concern the existence of at least three positive solutions for problem (1),
via Leggett–Williams fixed-point theorem. An example illustrating the result is presented
in Section 4.

2. Preliminaries

In this section, we introduce some basic definitions and lemmas.
Let ρ ∈ (0, 1) be a quantum number and define the ρ-Gamma function as

Γρ(g) =
(1− ρ)(g−1)

(1− ρ)g−1 , g ∈ R \ {. . . ,−2,−1, 0},

and this satisfies Γρ(g + 1) = [g]ρΓρ(g), where [g]ρ is a number in q-calculus defined by

[g]ρ =
1− ρg

1− ρ
,

and the quantum power function is defined by

(1− ρ)(g−1) =
∞

∏
i=0

1− ρi+1

1− ρg+i .

The ρ-derivative of a function ψ : [0, ∞)→ R is defined as

(Dρψ)(ς) =
ψ(ς)− ψ(ρς)

(1− ρ)ς
, ς > 0,

and (Dρψ)(0) = limς→0(Dρψ)(ς).
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The ρ-integral in [0, b] is defined as follows:

(Iρψ)(ς) =
∫ ς

0
ψ(z)dρz = ς(1− ρ)

∞

∑
n=0

ψ(ρnς)ρn, ς ∈ [0, b].

We can obtain

(Dρ Iρψ)(ς) = ψ(ς),

and if ψ is continuous at ς = 0, then

(IρDρψ)(ς) = ψ(ς)− ψ(0).

On the properties of the Dρ and Iρ, we refer the reader to [29].

Definition 1. Let ψ ∈ L1(R+). Then, the fractional ρ-integral of the Riemann–Liouville fractional-
type operator of order ϑ > 0 is defined as

(Iϑ
ρ ψ)(z) =

1
Γρ(ϑ)

∫ z

0
(z− ρτ)(ϑ−1)ψ(τ)dρτ,

where the kernel of quantum power function is defined by

(z− ρτ)(ϑ−1) =
∞

∏
i=0

z− τρi+1

z− τρϑ+i .

Definition 2. The fractional ρ-derivative of the Riemann–Liouville fractional type of order ϑ > 0 is
defined by (D0

ρψ)(z) = ψ(z) and

(Dϑ
ρ ψ)(z) =

{
(Dm

ρ Im−ϑ
ρ ψ)(z), m− 1 < ϑ ≤ m,

Dm
ρ ψ(z), ϑ = m,

where m ∈ Z+.

If ρ → 0, then we have the definitions of the Riemann–Liouville fractional integral
and derivative as

(Iϑ
0+ψ)(z) =

1
Γ(ϑ)

∫ z

0
(z− τ)ϑ−1ψ(τ)dτ,

and

(Dϑ
0+ψ)(z) =

{
(Dm Im−ϑψ)(z), m− 1 < ϑ ≤ m,
Dmψ(z), ϑ = m,

respectively, where Dm = dm/dzm.

Lemma 1 ([8]). Let ϑ > 0 and l ∈ N. Then,

(Iϑ
ρ Dl

ρψ)(z) = (Dl
ρ Iϑ

ρ ψ)(z)−
l−1

∑
k=0

zϑ−l+k

Γρ(ϑ + k− l + 1)
(Dk

ρψ)(0).
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Let G(z) = −Dγ
0+Q(z), so the mixed fractional Riemann–Liouville and quantum

boundary value problem{
Dϑ

ρ (Dγ
0+Q(z))− f (z,Q(z), . . . ,Q(n−2)(z)) = 0, z ∈ (0, 1),

Dγ
0+Q(0) = Dρ(Dγ

0+Q)(0) = Dρ(Dγ
0+Q)(1) = 0,

changes into a fractional quantum boundary value problem of the form{
Dϑ

ρ (G(z)) = − f (z,Q(z), . . . ,Q(n−2)(z)), z ∈ (0, 1),
G(0) = Dρ(G(0)) = Dρ(G(1)) = 0.

(2)

Lemma 2 ([9]). Problem (2) has a solution

G(z) = 1
Γρ(ϑ)

∫ 1

0
Φ(z, ρω) f (ω,Q(ω),Q(1)(ω), . . . ,Q(n−2)(ω))dρω, (3)

where

Φ(z, ω) =

{
zϑ−1(1−ω)(ϑ−2) − (z−ω)(ϑ−1), 0 ≤ ω ≤ z ≤ 1,
zϑ−1(1−ω)(ϑ−2), 0 ≤ z ≤ ω ≤ 1.

(4)

Lemma 3 ([28]). Assume that Q = In−2
0+ v(z), then the fractional Riemann–Liouville boundary

value problem {
Dγ

0+Q(t) = −G(z), z ∈ (0, 1),
Q(0) = Q(1)(0) = · · · = Q(n−2)(0) = Q(n−2)(1) = 0,

(5)

has a solution

v(z) =
∫ 1

0
Θ(z, ω)G(ω)dω, (6)

where

Θ(z, ω) =
1

Γ(γ− n + 2)

{
(z(1−ω))γ−n+1 − (z−ω)γ−n+1, 0 ≤ ω ≤ z ≤ 1,
(z(1−ω))γ−n+1, 0 ≤ z ≤ ω ≤ 1.

(7)

Lemma 4 ([9]). The following relations of kernels containing the quantum power functions hold:

Φ(z, ρω) ≥ 0 and Φ(z, ρω) ≤ Φ(1, ρω) for all 0 ≤ z, ω ≤ 1,

Φ(z, ρω) ≥ zϑ−1Φ(1, ρω) for 0 ≤ z, ω ≤ 1.

Lemma 5 ([28]). The following relations of kernels containing the usual power functions hold:

(1) Θ(z, ω) ≥ 0, Θ(z, ω) ≤ Θ(ω, ω), ∀ 0 ≤ z, ω ≤ 1;
(2) min 1

4≤t≤ 3
4

Θ(z, ω) ≥ $(s)Θ(ω, ω), ∀ 0 ≤ ω ≤ 1, where

$(ω) =


(

3
4 (1−ω)

)γ−n+1
−
(

3
4 −ω

)γ−n+1

(ω(1−ω))γ−n+1 , 0 < ω ≤ r,( 1
4ω

)γ−n+1
, r ≤ ω < 1,

(8)

and 1
4 < r < 3

4 .
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Now, we consider the mixed fractional Riemann–Liouville and quantum bound-
ary value problem (1). Assume that Q = In−2

0+ v(t); then, by applying Lemmas 2 and 3,
Q ∈ C([0, 1]) is a solution of the following equation:

v(z) =
1

Γρ(ϑ)

∫ 1

0
Θ(z, ω)

(∫ 1

0
Φ(ω, ρζ) f (ω, In−2

0+ v(ζ), In−3
0+ v(ζ), . . . , I1

0+v(ζ), v(ζ))dρζ

)
dω, (9)

if and only if v ∈ C([0, 1]) is a solution of (1).

3. Three Positive Solutions

In this section, we will study the existence of positive solutions to problem (1). We
now consider the Banach space X = C([0, 1]) with the usual norm ‖Q‖ = max0≤z≤1 |Q(z)|.
The cones Λ ⊂ X can be defined as follows:

Λ =

{
v ∈ X : min

1
4≤z≤ 3

4

v(z) ≥
(

1
4

)ϑ−1 η

3
‖v‖, z ∈ [0, 1]

}
,

where η = min 1
4≤ω≤ 3

4
$(ω)

Define a operator T : Λ→ X by

Tv(z) =
1

Γρ(ϑ)

∫ 1

0
Θ(z, ω)

(∫ 1

0
Φ(ω, ρζ) f (ω, In−2

0+ v(ζ), In−3
0+ v(ζ), . . . , I1

0+v(ζ), v(ζ))dρζ

)
dω. (10)

By similar methods in [28] (Lemma 2.7), we have that if Q = In−2
0+ v(t), v ∈ C[0, 1],

then the function Q(z) = In−2
0+ v(z) is a positive solution of (1). Clearly, the existence of a

positive solution for (1) is equivalent to the existence of a positive fixed point of T in Λ with
Q(z) = In−2

0+ v(z).

Lemma 6. Assume that

(H1) f ∈ C([0, 1]×Rn−1;R+) and | f (z,Q1, . . . ,Qn−1)| ≤ Ω on [0, 1] for a constant Ω > 0.

Then, T : Λ→ Λ is well defined and completely continuous.

Proof. For every v ∈ Λ, clearly, TQ(z) ≥ 0 on [0, 1]. Let v ∈ Λ. So, by Lemmas 4 and 5, we
obtain

‖(Tv)‖ ≤ 1
Γρ(ϑ)

∫ 1

0
Θ(z, ω)

(∫ 1

0
Φ(ω, ρζ) f (ω, In−2

0+ v(ζ), In−3
0+ v(ζ), . . . , I1

0+v(ζ), v(ζ))dρζ

)
dω

≤ 1
Γρ(ϑ)

(∫ 1
4

0
+
∫ 3

4

1
4

+
∫ 1

3
4

)

×Θ(z, ω)

(∫ 1

0
Φ(1, ρζ) f (ω, In−2

0+ v(ζ), In−3
0+ v(ζ), . . . , I1

0+v(ζ), v(ζ))dρζ

)
dω

≤ 3
Γρ(ϑ)

∫ 3
4

1
4

Θ(z, ω)

(∫ 1

0
Φ(1, ρζ) f (ω, In−2

0+ v(ζ), In−3
0+ v(ζ), . . . , I1

0+v(ζ), v(ζ))dρζ

)
dω.

Also, we have

(Tv)(t) ≥ 1
Γρ(ϑ)

∫ 3
4

1
4

Θ(z, ω)

(∫ 1

0
Φ(ω, ρζ) f (ω, In−2

0+ v(ζ), In−3
0+ v(ζ), . . . , I1

0+v(ζ), v(ζ))dρζ

)
dω

≥ 1
Γρ(ϑ)

∫ 3
4

1
4

$(ω)

×Θ(ω, ω)

(∫ 1

0
ωα−1Φ(1, ρζ) f (ω, In−2

0+ v(ζ), In−3
0+ v(ζ), . . . , I1

0+v(ζ), v(ζ))dρζ

)
dω
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≥
(

1
4

)ϑ−1 η

Γρ(ϑ)

∫ 3
4

1
4

Θ(ω, ω)

×
(∫ 1

0
Φ(1, ρζ) f (ω, In−2

0+ v(ζ), In−3
0+ v(ζ), . . . , I1

0+v(ζ), v(ζ))dρζ

)
dω

≥
(

1
4

)ϑ−1 η

3
‖Tv‖.

Hence, T : Λ → Λ is well defined. Now, we claim that T maps bounded sets into
bounded sets. To this end, in view of (H1), and Lemmas 4 and 5, we obtain

|(Tv)(t)| ≤ Ω
Γρ(ϑ)

∫ 1

0
Θ(ω, ω)

(∫ 1

0
Φ(1, ρζ)dρζ

)
dω < +∞.

Define Θ1(z, ω) = (z(1−ω))γ−n+1− (z−ω)γ−n+1 and Θ2(z, ω) = (z(1−ω))γ−n+1.
By (H1), and Lemmas 4 and 5, for any v ∈ X and z1, z2 ∈ [0, 1] with z1 < z2, we have

|(Tv)(z2)− (Tv)(z1)|

≤ Ω
Γρ(ϑ)

(∫ z1

0
+
∫ z2

z1

+
∫ 1

z2

)
|Θ(z2, ω)−Θ(z1, ω)|

(∫ 1

0
Φ(1, ρζ)dρζ

)
dω

=
Ω

Γρ(ϑ)Γ(γ− n + 2)

(∫ 1

0
Φ(1, ρζ)dρζ

){ ∫ z1

0
|Θ1(z2, ω)−Θ1(z1, ω)|dω

+
∫ z2

z1

|Θ1(z2, ω)−Θ2(z1, ω)|dω +
∫ 1

z2

|Θ2(z2, ω)−Θ2(z1, ω)|dω

}
. (11)

Since Θ1(z, ω) and Θ2(z, ω) are uniformly continuous on [0, 1], then we obtain∫ z1

0
|Θ1(z2, ω)−Θ1(z1, ω)|dω,

∫ 1

z2

|Θ2(z2, ω)−Θ2(z1, ω)|dω → 0, as z2 → z1. (12)

Also, ∫ z2

z1

|Θ1(z2, ω)−Θ2(z1, ω)|dω

=
1

γ− n + 2

{
zγ−n+1

2 (1− z1)
γ−n+2 − zγ−n+1

2 (1− z2)
γ−n+2

−(z2 − z1)
γ−n+2 + zγ−n+1

1 (1− z2)
γ−n+2 − zγ−n+1

1 (1− z1)
γ−n+2

}
→ 0, as z2 → z1. (13)

So, (11)–(13) yield that T is equicontinuous on [0, 1]. Therefore, by Arzelá–Ascoli
theorem, we have the conclusion.

We now present the Leggett–Williams fixed-point theorem [30]. Let X be a Banach
space, Λ be a cone in X and Υ : Λ → [0,+∞) be a concave non-negative continuous
functional on Λ.

Let 0 < φ1 < φ2. Define Λδ and Λ(Υ, φ1, φ2) as

Λδ = {Q ∈ Λ|‖Q‖ < δ},

and

Λ(Υ, φ1, φ2) = {Q ∈ Λ : φ1 ≤ Υ(Q), ‖Q‖ ≤ φ2}.
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Theorem 1. ([30]). Let Υ be a concave non-negative continuous functional on Λ with Υ(Q) ≤ ‖Q‖
for every Q ∈ Λφ3 and T : Λφ3 → Λφ3 be a completely continuous operator. Assume that there
exist 0 < φ1 < φ2 < d ≤ φ3 such that

(D1) Q ∈ Λ(Υ, φ2, d) : Υ(Q) > φ2 6= ∅, and Υ(TQ) > φ2 for Q ∈ Λ(Υ, φ2, d);
(D2) ‖TQ‖ < φ1 for ‖Q‖ ≤ φ1;
(D3) Υ(TQ) > b for Q ∈ Λ(Υ, φ2, φ3) with ‖TQ‖ > d.

Then, T has at least three fixed points, Q1, Q2 and Q3 with ‖Q1‖ < φ1, φ2 < Υ(Q2) and
‖Q3‖ > φ1, with Υ(Q3) < φ2.

We define Υ as

Υ(v) = min
1
4≤t≤ 3

4

v(t).

Clearly, Υ is a concave non-negative continuous functional on X and for every v ∈
X, Υ(v) ≤ ‖v‖.

Let

v =
1

Γρ(ϑ)

∫ 1

0
Θ(ω, ω)

(∫ 1

0
Φ(1, ρζ)dρζ

)
dω,

R =

(
1
4

)ϑ−1 η

Γρ(ϑ)

∫ 3
4

1
4

Θ(ω, ω)

(∫ 1

0
Φ(1, ρζ)dρζ

)
dω.

We now state and prove our main result.

Theorem 2. Suppose that (H1) holds and there exist positive constants φ1, φ2, φ3 such that
0 < φ1 < φ2 ≤ φ3 and

(F1) f (z, ζ1, . . . , ζn−1) ≤
φ3

v
, ∀ (z, ζ1, . . . , ζn−1) ∈ [0, 1]× [0, φ3]

n−1;

(F2) f (z, ζ1, . . . , ζn−1) ≤
φ1

v
, ∀ (z, ζ1, . . . , ζn−1) ∈ [0, 1]× [0, φ1]

n−1;

(F3) f (z, ζ1, . . . , ζn−1) >
φ2

R
, ∀ (z, ζ1, . . . , ζn−1) ∈

[
1
4 , 3

4

]
× [φ2, φ3]

n−1.

Then, (1) has at least three positive solutions

Q1(z) = In−2
0+ v1(z), Q2(z) = In−2

0+ v2(z), Q3(z) = In−2
0+ v3(z)

such that ‖v1‖ < φ1, φ2 < Υ(v2(z)), and ‖v3‖ > φ1, with Υ(v3(z)) < φ2.

Proof. We apply Theorem 1 to prove this theorem. For any v ∈ Pφ3 , by (F1), we obtain

‖Tv‖ = max
z∈[0,1]

∣∣∣∣∣ 1
Γρ(ϑ)

∫ 1

0
Θ(z, ω)

×
(∫ 1

0
Φ(ω, ρζ) f (ω, In−2

0+ v(ζ), In−3
0+ v(ζ), . . . , I1

0+v(ζ), v(ζ))dρζ

)
dω

∣∣∣∣∣
≤ 1

Γρ(ϑ)

φ3

v

∫ 1

0
Θ(ω, ω)

(∫ 1

0
Φ(1, ρζ)dρζ

)
dω = φ3.

So, T : Λφ3 → Λφ3 and T is completely continuous (see Lemma 6). Also, by (F2) and
the above argument, we have that ‖Tv‖ < φ1 if v ∈ Λφ1 . Hence, (D2) of Theorem 1 holds.

Set
λ(z) =

φ2 + φ3

2
, ∀ z ∈ [0, 1].
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Clearly, λ(z) ∈ Λ and ‖λ‖ = φ2+φ3
2 , and then

Υ(λ) =
φ2 + φ3

2
> φ2.

Consequently, λ ∈ {v ∈ Λ(Υ, φ2, d) : ϑ(v) > φ2} 6= ∅. Furthermore, for any
v ∈ Λ(Υ, φ2, d), we obtain

φ2 ≤ v(z) ≤ φ3, ∀ z ∈
[

1
4

,
3
4

]
.

So, (F3) yields that

f (z, ζ1, . . . , ζn−1) >
φ2

R
∀ z ∈

[
1
4

,
3
4

]
, φ2 ≤ ‖v = (ζ1, . . . , ζn−1)‖ ≤ φ3.

Then, by Lemmas 4 and 5, we can obtain

ϑ((Tv)(z)) = min
1
4≤z≤ 3

4

((Tv)(z))

=
1

Γρ(ϑ)

∫ 1

0
min

1
4≤z≤ 3

4

Θ(z, ω)

×
(∫ 1

0
Φ(ω, ρζ) f (ω, In−2

0+ v(ζ), In−3
0+ v(ζ), . . . , I1

0+v(ζ), v(ζ))dρζ

)
dω

≥ φ2

R

(
1
4

)ϑ−1 η

Γρ(ϑ)

∫ 3
4

1
4

Θ(ω, ω)

(∫ 1

0
Φ(1, ρζ)dρζ

)
dω

= φ2.

Therefore, (D1) of Theorem 1 holds.
Finally, we claim that (D3) of Theorem 1 holds. If v ∈ Λ(Υ, φ2, φ3) and ‖Tv‖ > d, then

Υ((Tv)(z)) > φ2. So, (D3) of Theorem 1 holds.
Therefore, Theorem 1 implies that (1) has three positive solutions Q1(z) = In−2

0+ v1(z),
Q2(z) = In−2

0+ v2(z),Q3(z) = In−2
0+ v3(z) such that ‖v1‖ < φ1, φ2 < Υ(v2(z)), and ‖v3‖ > φ1,

with Υ(v3(z)) < φ2. The proof is completed.

4. Example

Consider the following mixed fractional Riemann–Liouville and quantum boundary
value problem of the form

D2.5
e−π (D1.5

0+Q)− f (z,Q(z)) = 0, z ∈ (0, 1),
Q(0) = Q(1) = 0,
D1.5

0+Q(0) = De−π (D1.5
0+Q(0) = De−π (D1.5

0+Q)(1) = 0,

(14)

where ϑ = 2.5, γ = 1.5, ρ = e−π , n = 2 and

f (z,Q) =


z

100 + cos2(π(1−Q)), z ∈ [0, 1], 0 ≤ Q < 1
z

100 + cos2(π(1−Q)) + 250 arctan(Q− 1), z ∈ [0, 1], 1 ≤ Q ≤ 2,
z

100 + cos2(π(1−Q)) + 250 arctan(Q− 1) + cos2(π
2 (Q− 1)

)
, z ∈ [0, 1], Q ≥ 4.

So, through direct calculations, we obtain

v = 0.31293072, R = 0.0130532975.
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By choosing φ1 = 1, φ2 = 2, φ3 = 71, we obtain

f (z,Q) ≤ 206.51 ≤ φ3

v
= 223.69219, for all 0 ≤ z ≤ 1, 0 ≤ Q ≤ 100;

f (z,Q) ≤ 1.01 ≤ φ2

v
= 3.195595, for all 0 ≤ z ≤ 1, 0 ≤ Q ≤ 1;

f (z,Q) ≥ 160.51 >
φ2

R
= 153.217, for all

1
4
≤ z ≤ 3

4
, 2 ≤ Q ≤ 71.

Hence, f satisfies the conditions (H1) and (F1)–(F3). So, Theorem 2 yields that the
problem (14) has at least three positive solutions.

5. Conclusions

In this paper, we considered a fractional differential equation involving fractional
quantum differences and the Riemann–Liouville fractional derivatives. We studied the exis-
tence of at least three positive solutions by using the Leggett–Williams fixed-point theorem.
Finally, we investigated the consistency of our theoretical findings by demonstrating an ex-
ample. In future works, we can extend this problem to more fractional derivatives, such as
the Hadamard fractional derivative, ψ-Hilfer and discrete fractional differential equations.
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