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Abstract: An improved design optimization method for fractional-order-based proportional integral
derivative (FOPID) controllers is proposed in this paper to enhance the stability and transient
response of automatic voltage-regulator systems. The FOPID represents a higher degree-of-freedom
controller through having five tunable parameters, compared with only three parameters in the
integer-order PID controller. In the literature, the performance of the FOPID is highly determined
through the design method and its parameter-determination process. Recently, optimum design of the
FOPID has found wide employment in several engineering applications through using metaheuristic
optimization algorithms. In this paper, an improved method for the FOPID’s parameter optimization
is proposed for AVR applications using the marine predator optimization algorithm (MPA). The
proposed MPA–FOPID controller is verified through comparing its performance with other featured
and newly developed optimization algorithms. The proposed MPA–FOPID comparative analysis has
been proven to have better stability, frequency response, robustness, faster response, and disturbance-
rejection ability over the other studied methods in this paper.

Keywords: automatic voltage regulators; fractional-order PID controllers; marine predator algorithm
(MPA); metaheuristic optimization; stability

1. Introduction
1.1. Overview

Recently, wide continuous variations exist in electrical power systems due to the
changes in the type of energy source, grid modeling, and load behaviors. Recently,
renewable-based generation started to denominate the new sources’ installation, followed
by the corresponding grid proprieties changing. Based on that, achieving stable and con-
stant voltage magnitudes and frequencies have become essential objectives for the design
of control systems [1,2]. Fluctuating frequency and voltage magnitudes may lead to the
degraded performance of their connected loads, especially their reliability and useful op-
erating lifetime. The power system’s active power, reactive power, and associated power
losses are directly linked with the variations in their frequency and voltage magnitudes.
In cases of existing slight deviations in voltage magnitudes, sufficient changes exist in the
reactive power’s magnitude. When voltage magnitude deviates out of the predefined ±5%
limit around its rated voltage, the useful lifetime and operating efficiency of connected
power system components/appliances are accordingly highly reduced [3].

Fortunately, voltage deviations can be properly controlled, and their effects conse-
quently mitigated. The voltage can be regulated at various existing levels in power systems
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on the generation side, and/or on the transmission/distribution sides. On the generation
side, automatic voltage regulators (AVRs) are employed for controlling voltage devia-
tions [4], whereas on the transmission/distribution sides, various existing reactive power
compensation devices can be utilized, such as flexible AC transmission systems (FACTS),
transformers’ tab changers, filter devices, etc. The AVR systems have verified excellent
regulation performance on the generation sides of synchronous generators. Optimized
design of AVR parameters is essential for obtaining the best performance of these devices,
considering the various uncertainties and parameter variations in AVRs, sensors, gains,
etc. [5].

1.2. Literature Review

The integer order (IO) schemes have found wide use in AVR applications, especially
the PID control scheme. It has proven better dynamic response and more stable perfor-
mance, owing to its robustness and simple implementation. However, restrictions exist
in the use of PID control schemes in modern control and industrial applications, due to
their performance’s dependency on and sensitivity to the gains’ value-selection process [6].
Trial-and-error tuning has been presented in the literature; however, it consumes more time
without ensuring an optimum control-parameter selection process. Diverse traditional
tuning methods for PID controllers exist in the literature, such as the Ziegler–Nichols
and Cohen–Coon methods. However, they are based on selecting a particular operating
point for the tuning process when linearly evaluating the model. This, in turn, leads to
the incapability to drive optimum gains and high overshoot peaks, and, accordingly, long
oscillations exist in the system [7].

Additional improvements in AVR control have been proposed using fractional order
(FO) control schemes. Using FO calculus with PID control in the FOPID provides enhanced
performance and better degree of freedom in the control design [8]. The classical IO-based
PID has three tunable control parameters (proportional (P), integral (I), and derivative
(D) gains), whereas the FOPID has five tunable control parameters (P, I, and D gains in
addition to the FO operators λ and µ for the I and D terms). Accordingly, FOPID-based
AVR systems have better transients, more stability, and more robust performances than
traditional IO-based PID AVR systems. Therefore, the FOPID has been utilized in this
paper for AVR applications. The performance improvements of FOPID control can be
achieved through optimizing its parameters to fulfill predefined criteria of system response
(fitness/cost/objective function). Among the presented methods, metaheuristic-based
optimization methods have been widely used, and are proven to have better tuning of
parameters [9,10]. Another AVR control method based on PID plus the second-order
derivative (PIDD2) AVR controller has been presented in [11]. A modified version of the
Runge–Kutta optimization (RUN) algorithm has been proposed for optimizing the PIDD2
parameters.

Table 1 summarizes the applied optimization algorithms for tuning AVR control
systems. The table shows that several algorithms have been applied in the literature for
tuning PID and FOPID AVR controllers. The performance of these algorithms differs
according to the operating principle of each algorithm. Recently, several new optimization
algorithms have been proposed and showed improved performance in several applications.
The marine predator algorithm (MPA) has been presented in [12]. It has proved better
performance in the energy management of microgrids, several load-frequency control
applications [13], parameter determinations, reconfiguration of PV and fuel cells [14,15],
etc. Moreover, other optimizing algorithms have recently been presented for different
applications. However, these algorithms have been applied in the AVR control design
optimization. Therefore, their evaluation and comparisons are included in this paper.
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Table 1. Summary of control schemes and optimization algorithms of AVR systems in the literature.

Ref. Controller Optimizer Algorithm

Ref. [16] PID Particle Swarm Optimization (PSO)

Ref. [17] PID Artificial Bee Colony (ABC)

Ref. [18] PID Biography-Based Optimization (BBO)

Ref. [19] PID Tree-Seed Algorithm (TSA)

Ref. [20] PID Grasshopper Optimization Algorithm (GOA)

Ref. [21] PID Pattern Search Algorithm (PSA)

Ref. [22] PID Whale Optimization Algorithm (WOA)

Ref. [23] PID Improved Whale Optimization Algorithm (IWOA)

Ref. [24] PID Genetic Algorithm (GA)

Ref. [25] PID Cuckoo Search (CS) Algorithm

Ref. [26] PID Sine–Cosine Algorithm (SCA)

Ref. [27] PID Improved Kidney Inspired Algorithm (IKA)

Ref. [17] PID Differential Evolution (DE)

Ref. [28] PID Continuous FireFly Algorithm (CFA)

Ref. [29] PID Symbiotic Organisms Search (SOS) Algorithm

Ref. [30] PID Salp Swarm Algorithm (SSA)

Ref. [31] PID Bacterial Foraging Optimization Algorithm (BFOA)

Ref. [32] PID Gravitational Search Algorithm (GSA)

Ref. [33] PID Ant Lion Optimizer (ALO)

Ref. [34] PID Local Unimodal Sampling (LUS) Algorithm

Ref. [35] PID Ant Colony Optimizer with Nelder–Mead (ACO-NM)

Ref. [36] FOPID Particle-Swarm Optimization (PSO)

Ref. [37] FOPID Genetic Algorithm (GA)

Ref. [38] FOPID Artificial-Bee Colony Optimizer (CNC-ABC)

Ref. [39] FOPID Chaotic Ant Swarm (CAS)

Ref. [40] FOPID Multi-Objective Extremal Optimization (MOEO)

Ref. [41] FOPID Sine–Cosine Algorithm (SCA)

Ref. [42] FOPID Chaotic Yellow Saddle Goatfish Algorithm (CYSGA)

Ref. [43] FOPID (method 1) Improved Multi-Objective NSGA-II with Henon Map

Ref. [44] FOPID (method 2) Cuckoo Search (CS)

Ref. [37] FOPID (method 3) Particle Swarm Optimization (PSO)

Ref. [45] FOPID (method 4) Salp Swarm Optimization (SSO)

Ref. [46] FOPID (method 5) Multi-Objective NSGA-II with Chaotic Map

Proposed FOPID Marine Predator Algorithm (MPA)

1.3. Motivation

Based on the above-described literature review, obtaining stable and satisfactory AVR
responses can be achieved with the proper designs and determinations of the best parame-
ters. In addition, various existing optimization algorithms differ in their principal operating
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philosophy, which is reflected in their outputted best parameters for the optimization prob-
lem. Additionally, the FOPID-based AVR systems achieved better performance metrics
than classical PID controllers. However, the evaluation of some recent optimization algo-
rithms and the superior performance of the MPA optimizer has not been investigated. The
MPA optimizer has achieved enhanced performance in several applications [12–15,47]. The
main highlights of the operating principles and governing policies of MPA for achieving
optimized foraging, interactions, and memories of marine predators are as follows [12]:

• The Lévy-based strategy is used by marine predators for environments with low prey
concentrations, and Brownian movement is used for areas with abundant prey. Both
strategies share the same percentage of traversing various habitats within their lifetime;

• The behavior of predators is changed by natural environment-based effects, such as
eddy formations, or by human-based effects, such as fish aggregating devices (FAD),
for seeking areas with prey distribution;

• The velocity ratio (VR), which is represented by the ratio of predator velocity to prey
velocity, is used for determining the best strategy. At low VR (VR = 0.1), Lévy is the
best predators’ strategy, whether prey are moving using Brownian or Lévy strategies;

• At unity VR (VR = 1), Brownian movement represents the best predator’s strategy
when prey movement is through Lévy. The other scenarios depend on the system’s
size.

• At high VR (VR ≥ 10), the predator’s best strategy is not doing any movements at all,
whereas prey’s movement is made through the Brownian or Lévy strategies;

• The MPA benefits the good memory of marine predators at reminding their associates
in addition to locations of successful foraging.

1.4. Paper Contributions

The paper’s contributions are summarized as follows:

• The recent powerful MPA optimizer is presented and applied with the FOPID to
improve the AVR controller. Based on authors’ knowledge at the submission date, this
is the first time the MPA optimizer is presented in AVR controller design. The study is
not limited to applying the MPA optimizer, it also presents a performance evaluation
of MPA with several recently developed optimization algorithms are presented in
this paper.

• Additionally, the use of FOPID provides higher freedom with its additional parame-
ters, which help improve the performance of AVR systems. The obtained optimum
FOPID AVR controller is compared with the previously determined optimum FOPID
using other optimizer techniques from the literature. The conducted design and
analysis clearly demonstrate superior results of the proposed MPA-tuned FOPID
AVR controller.

• Better convergence performance and the determined parameters’ accuracy of the
optimum FOPID AVR controller are presented in this paper using the MPA optimizer.
The proposed MPA-based method is compared with recent and existing optimization
methodologies. Additionally, several statistical tests are performed to make fair
comparisons of optimization methods. The obtained results over 30 runs and the
statistical analysis of the results confirm the superiority of MPA and its feasibility in
AVR controller design.

The remaining of the paper is organized as follows: Section 2 presents state-of-the-art
mathematical modeling of the AVR system, and the open loop analysis of AVR systems
is presented in Section 3. A detailed description of the proposed optimization methodol-
ogy is provided in Section 4. The AVR control and optimization process are detailed in
Section 5. The obtained results are shown in Section 6, and paper conclusions are provided
in Section 7.
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2. Mathematical Description Modeling for AVR Systems

Figure 1 shows simplified general AVR modeling for this study. The control system is
responsible for regulating the output voltage of the generator. It controls the excitation of
the generator using a signal representing the error of subtracting the sensed output terminal
voltage of the generator from the predefined reference voltage value. The operation of the
AVR control can be explained at voltage drop or raise as follows:
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Figure 1. Schematic representation of generalized AVR components.

• At voltage drop: The output terminal voltage drops when there are increased loading
conditions. In this scenario, the error between the sensed terminal voltage and the ref-
erence voltage increases with a positive value. Accordingly, the generator’s excitation
increases until the sensed voltage reaches the predefined reference voltage value. This
process continues until the sensed voltage equals the reference voltage. After reaching
this condition, the generator’s excitation is maintained constant to preserve a stable
supply voltage for all connected loads.

• At voltage raise: At reduced load values, the output voltage increases, and hence an
increase in the error signal happens, but with a negative value. Then, the generator’s
excitation is reduced until it achieves equal sensed and reference terminal voltage
values. Then, the generator’s excitation is maintained constant to stabilize the output
terminal voltage.

The field windings of the generator have very high values for their inductance, and
hence unavoidable conditions of load switching are generated in power systems. This, in
turn, imposes several challenges on the AVR design process. The transfer function (TF) of
the AVR system is modeled using the Laplace transform. The various AVR components
(amplifier, exciter, generator, and sensor) are modeled using linearized components to
facilitate TF modeling processes. The TF of AVR components (GA(s) for amplifier, GE(s)
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for exciter, GG(s) for generator, and GS(s) for sensor) are represented with their reported
parameters’ ranges in the literature as follows [41,48]:

GA(s) =
KA

1 + sTA
, and 10 ≤ KA ≤ 400, 0.02 s ≤ TA ≤ 0.1 s

GE(s) =
KE

1 + sTE
, and 1 ≤ KE ≤ 10, 0.4 s ≤ TE ≤ 1 s

GG(s) =
KG

1 + sTG
, and 0.7 ≤ KG ≤ 1, 1 s ≤ TG ≤ 2 s

GS(s) =
KS

1 + sTS
, and 1 ≤ KS ≤ 2, 0.001 s ≤ TS ≤ 0.06 s

(1)

where KA, KE, KG, and KS represent gains, and TA, TE, TG, and TS represent time constants
of the amplifier, exciter, generator, and sensor, respectively. The error between the measured
voltage Vm and its reference voltage Vre f is represented as Ev in Figure 2. The AVR has to
control the error Ev to be minimum and to equal zero at steady state, whereas the AVR
controller C(s) can be represented for PID CPID(s), and for FOPID CFOPID(s) as follows:

GPID(s) = KP +
KI
s

+ KDs

GFOPID(s) = KP +
KI

sλ
+ KDsµ

(2)

The complete first-order TF modeling of AVR components is shown in Figure 2.
The complete system’s TF representing the output to input TF Gsys(s) can be expressed
as follows:

Gsys(s) =
C(s)GA(s)GE(s)GG(s)

1 + C(s)GA(s)GE(s)GG(s)GS(s)
(3)

 1+ sTA

KA 

Amplifier

 1+ sTE

KE 

Exiter

 1+ sTG

KG

Generator

 1+ sTS

KS 

Sensor

CPID(s) = KP + KI / s+ KD s

Controller

∑ 
Ev

Vref

Vm

Vout
Or

CFOPID(s) = KP + KI / s
λ + KD s

µ+
─

Figure 2. Model TFs of AVR components.

3. System Characteristics without Controller

The considered parameters’ values (1) are as follows: KA = 10 , KE = 1, KG = 1,
KS = 1, TA = 0.1, TE = 0.4, TG = 1, and TS = 0.01 [42], whereas the generator’s gain
KG depends on its loading level. At the no-load condition, KG equals 0.7, and it increases
with loading to 1 at the nominal loading condition [42]. In this section, the analysis of the
AVR system without the controller is carried out. Figure 3 shows different step responses
of AVR systems at various loading conditions (varying KG at 0.7, 0.8, 0.9, and 1.0). The
associated frequency response and the root locus plots of the effects of different loading
conditions are shown in Figures 4 and 5, respectively. It can be seen that the generator’s
gain affects the system response in step time, the frequency response, and the root locus
pole/zero locations.
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Figure 3. Step responses of AVR systems without controller at various loading conditions.
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Figure 4. Frequency responses of AVR systems without controller at various loading conditions.
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Figure 5. Root locus plots of AVR systems without controller at various loading conditions.

The measured effects of the AVR system’s response are summarized in Table 2. The
overshoot percentage and settling time increase at higher values of KG, whereas the rise
time and steady state error decrease with the increase in KG. For the frequency response
bode diagram, the gain margin and the phase margin decrease with increasing KG. In
addition, the variations in KG values affect the closed-loop poles locations of the AVR
system. Comparisons of the open-loop response values are included in the table.

Table 2. AVR system’s responses at various loading conditions.

Type Parameters Units KG = 0.7 KG = 0.8 KG = 0.9 KG = 1.0

Overshot Percentage % 50.4956 55.9611 61.0183 65.7226

Rise Time Seconds 0.3172 0.2944 0.2760 0.2607

Settling Time Seconds 4.8980 5.4149 6.4257 6.9865
Step Resp.

Steady-State Err. Per Unit (p.u.) 0.1220 0.1158 0.1024 0.0938

Gain Margin dB 4.19 2.11 0.07 −2
Freq. Resp.

Phase Margin Degree (◦) 14.6 6.7 0.2 −5.3

−12.49 −12.31 −12.13 −11.93

Closed Loop −99.97 −99.97 −99.98 −99.98

System Poles −0.52 + 4.66i −0.61 + 4.47i −0.7 + 4.25i −0.8 + 4.02i
Root Locus

−0.52 − 4.66i −0.61 − 4.47i −0.7 − 4.25i −0.8 − 4.02i
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4. MPA Optimization Methodology

The MPA represents a population-based optimizer, wherein uniform distribution over
searching space exists in its initial solution. It is expressed as follows [12]:

X0 = Xmin + rand(Xmax − Xmin) (4)

where Xmax and Xmin are upper and lower boundaries of variables, and rand represents a
uniform-random vector (between 0 and 1). The Elite, which is used for representing top
predators, and prey are expressed as follows [47]:

Elite =



X I
1,1 X I

1,2 · · · · · · X I
1,d

X I
2,1 X I

2,2 · · · · · · X I
2,d

...
...

...
...

...
...

...
. . .

...
...

...
. . .

...
X I

n,1 X I
n,2 · · · · · · X I

n,d


n×d

(5)

Prey =



X1,1 X1,2 · · · · · · X1,d
X2,1 X2,2 · · · · · · X2,d

...
...

...
...

...
...

...
. . .

...
...

...
. . .

...
Xn,1 Xn,2 · · · · · · Xn,d


n×d

(6)

where
−→
X I is top predators’ vector, n stands for searching agents’ number, d stands for

dimensions’ number, and Xi,j stands for the jth dimension of ith prey. The three operating
scenarios of MPA can be expressed as follows:
At High VR Scenario: Within this scenario, the predators’ velocity is higher than prey’s
velocity. It happens during initial optimization iterations. It is mathematically expressed as:
while Iter < 1

3 MaxIter [14],

−→
Si =

−→
RB ⊗ (

−−→
Elitei −

−→
RB ⊗

−−→
Preyi), i = 1, 2, . . . , n

−−→
Preyi =

−−→
Preyi + P.

−→
R ⊗−→Si

(7)

where RB is vector of random numbers for Brownian motion representation, ⊗ stands for
entry-wise multiplication, P is a constant equal to 0.5, R stands for a random number vector
between 0 and 1, and Iter stands for the current iteration’s number within the maximum
iterations number MaxIter, whereas multiplying RB with Preyi simulates prey movements.
At Unity VR Scenario: This scenario happens while 1

3 MaxIter ≤ Iter < 2
3 MaxIter, wherein

predators use Brownian strategy and prey use Lévy strategy. Both of exploration and
the exploitation happen in this scenario. Then, the population is divided between them,
where prey are responsible for the exploitation part and predators are responsible for the
exploration part. For the prey’s half of the population, it is expressed as [12]:

−→
Si =

−→
RL ⊗ (

−−→
Elitei −

−→
RL ⊗

−−→
Preyi), i = 1, 2, . . . , n/2

−−→
Preyi =

−−→
Preyi + P.

−→
R ⊗−→Si

(8)
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where
−→
RL stands for Lévy distribution-based random number vector for Lévy movement

representation. For the predators’ half of the population, it is expressed as [12]:

−→
Si =

−→
RB ⊗ (

−→
RB ⊗

−−→
Elitei −

−−→
Preyi), i = n/2, . . . , n

−−→
Preyi =

−−→
Elitei + P.CF⊗−→Si

CF = (1− t
MaxIter

)
2 Iter

MaxIter

(9)

At Low VR Scenario: This scenario happens while Iter ≥ 2
3 MaxIter. It is mathematically

expressed as [14]:

−→
Si =

−→
RL ⊗ (

−→
RL ⊗

−−→
Elitei −

−−→
Preyi), i = 1, 2, . . . , n

−−→
Preyi =

−−→
Elitei + P.CF⊗−→Si

(10)

In addition, FAD effects are mathematically expressed as [12]:

−−→
Preyi =

{−−→
Preyi + CF[Xmin +

−→
R ⊗ (Xmax − Xmin)]⊗U If r ≤ FADs

−−→
Preyi + [FADs(1− r) + r](

−−−→
Preyr1 −

−−−→
Preyr2) If r > FADs

(11)

where U stands for binary vector including arrays of 0 and 1, FADs stands for FADs’ effects
probability, which equals 0.2, r stands for a random number between 0 and 1, and

−−−→
Preyr1

and
−−−→
Preyr2 are random indexes within the prey matrix.

5. The AVR Control and Optimization Process
5.1. FO Theory and Representation

The FO control theory offers better flexibility and freedom compared with integer
ones. The common representation of FO theory is provided by the Riemann–Liouville
methodology, the Grunwald–Letnikov methodology, and the Caputo representation. For
Grundwald–Letnikov, the αth FO derivative part of function f and within a to t range
limits is:

Dα|ta = lim
h→0

1
hα

t−a
h

∑
r=0

(−1)r
(

n
r

)
f (t− rh) (12)

where h refers to step time, and the use of n is for fulfilling the (n− 1 < α < n) condition.
The coefficients in binomial are obtained as:(

n
r

)
=

Γ(n + 1)
Γ(r + 1)Γ(n− r + 1)′

(13)

where Gamma refers to function and is defined as:

Γ(n + 1) =
∫ ∞

0
tx−1e−t dt (14)

Additionally, Liouville and Riemann have provided definitions of derivatives that are
capable of avoiding sums and limits. Wherein this definition uses the IO derivatives, the
integrals are represented as:

Dα|ta =
1

Γ(n− α)

(
d
dt

)n ∫ t

a

f (τ)
(t− τ)α−n+1 dτ (15)

The Caputo method representation defines FO derivatives as:

Dα|ta =
1

Γ(n− α)

∫ t

a

f (n)(τ)
(t− τ)α−n+1 dτ (16)
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whereas Dα|ta is referred as:

Dα|ta =


α > 0 → dα

dtα FO derivative
α < 0 →

∫ tf
t0

dtα FO integral

α = 0 → 1

(17)

Implementing of an FO-based control is commonly performed using an Oustaloup
recursive approximation (ORA). It showed a suitable representation of FO derivatives for
digital implementations in real-time applications. Also, it showed a better way to optimize
FO control design using optimization techniques. Therefore, ORA FO representation is
selected in this work to represent the FOPID AVR controller. The approximate mathematical
ORA representation of the αth derivative (sα) is expressed as:

sα ≈ ωα
h

N

∏
k =−N

s + ωz
k

s + ω
p
k

(18)

where ω
p
k and ωz

k refer to pole and zero locations in ωh sequences, respectively, and they
are calculated as:

ωz
k = ωb(

ωh
ωb

)
k+N+ 1−α

2
2N+1 (19)

ω
p
k = ωb(

ωh
ωb

)
k+N+ 1+α

2
2N+1 (20)

ωα
h = (

ωh
ωb

)
−α
2

N

∏
k=−N

ω
p
k

ωz
k

(21)

where the ORA approximated representations contains (2N + 1) number of poles and
zeros. Thence, N refers to ORA’s filter order within (2N + 1) frequency ranges. The
implemented ORA representation in this paper relies on using (N = 5) in frequency range
of (ω ∈ [ωb, ωh] ), and accordingly selected between [0.001, 1000] rad/s.

5.2. Proposed Optimized FOPID AVR Control

Figure 6 shows the schematic diagrams of PID- and FOPID-based AVR systems. It
can be seen that the PID possesses three tunable gains, whereas the FOPID possesses five
different tunable parameters. The FOPID has three gains and two FO operators, which
increase its flexibility and degree of freedom compared to IO-based PID controller. The
parameter optimization process is highly dependent on the objective function employed
to drive the optimizer algorithm. The controller parameters are selected to minimize the
predefined objective function. Usually, the measured output voltage and/or the error
signals are used for constructing the objective functions.

Y (s)

PK

1/s ΣIK

DK s 

Ev (s)

(a)

Y (s)

PK

λs/1 ΣIK

DK  µs

Ev (s)

(b)
Figure 6. Schematic structure of AVR control schemes. (a) PID controller; (b) FOPID controller.
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There are four main error-based objective functions in the literature. Their general
representation is as follows:

1. Integral-squared-errors (ISE),

ISE =
∫ m

∑
i=1

(e2
i ) dt (22)

2. Integral time-squared-errors (ITSE),

ITSE =
∫ m

∑
i=1

(e2
i ) t.dt (23)

3. Integral-absolute-errors (IAE),

IAE =
∫ m

∑
i=1

abs(ei) dt (24)

4. Integral time-absolute-errors (ITAE),

ITAE =
∫ m

∑
i=1

abs(ei) t.dt (25)

Moreover, the various error and/or performance indices can be combined in the
summation and employed for constructing functions with multiple objectives. Weighting
factors for each error or objective can also be added to the general form to manage the
priority of each element. Table 3 summarizes the various objective function representations
in the literature.

Table 3. Existing objective functions in the literature.

Objective Function Type Ref.

OF = IAE =
∫
|ev|dt Single Ref. [38]

OF1 = IAE, OF2 = 1000|Ess|, OF3 = Ts Multiple Ref. [40]

OF1 = ωc f , OF2 = Pm Multiple Ref. [43]

OF = ITAE =
∫

t.|ev|dt Single Ref. [45]

OF = (ω1.OS)2 + ω2.T2
s + ω3

dV2
max

Single Ref. [37]

OF = ω1.OS + ω2.Tr + ω3.Ts + ω4.Ess +
∫
(ω5.|ev|dt + ω6.Vf (t)2)dt + ω7

Pm
+ ω8

Gm
Single Ref. [36]

OF = (1− e−β).(OS + Ess) + e−β.(Ts − Tr) Single Ref. [39]

OF1 = ITSE =
∫

t.e2
vdt, OF2 =

∫
t.∆u2(t)dt, OF3 = ITSE =

∫
t.e2

loaddt Multiple Ref. [46]

OF = ω1.OS + ω2.Ts + ω3.Ess + ω4.
∫
|ev|dt + ω5.

∫
u2dt Single Ref. [37]

OS = overshoot, Tr = rise time, Ts = settling time, Ess = steady-state error, ev = error voltage, u = control signal,
Pm = phase margin, Gm = gain margin, ωc f = gain crossover-frequency, eload = error signal during load disturbance,
dVmax = maximum-point of voltage signal-derivative, ω1–ω8 = weighting factors.

The ITAE is used as an objective function in this paper for the optimization problem
due to its generality. Figure 7 shows the schematic diagram of the proposed AVR controller
optimization process. The measured error voltage signal is used to calculate the objective
function for each simulation run, and the MPA optimizer works to determine the optimum
parameters as clarified in Algorithm 1. It can be seen that there are three tunable parameters
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with the PID controller and five tunable ones with the FOPID controller. The upper and
lower boundaries for the proposed optimization process are as follows:

Kmin
P ≤ KP ≤ Kmax

P

Kmin
I ≤ KI ≤ Kmax

I

Kmin
D ≤ KD ≤ Kmax

D

λmin ≤ λ ≤ λmax

µmin ≤ µ ≤ µmax

(26)

where ( f )min and ( f )max are lower and upper bounds of the tunable AVR controller’s
parameter, respectively, whereas Kmin

P , Kmin
I , Kmin

D are set at 1, 0.1, and 0.1, respectively, and
Kmax

P , Kmax
I , and Kmax

D , are set at 2, 1, and 0.4, respectively. In addition, µmin, and λmin are
set at 1, whereas µmax and λmax are set at 2 in the proposed optimization process. For a fair
comparison, all the optimization algorithms are set at 50 iterations, and the population size
is set at 8.
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Figure 7. Proposed MPA-based AVR controller optimization.
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Algorithm 1 Pseudo-code representing proposed optimization process using MPA
Define MPA parameters (Size of population, and maximum iteration MaxIter
Start algorithm initialization using (4)
Construct initial Elite using (5)
Initialize the searching agents (Preys) population using (6)
while Iter < MaxIter do

Calculate objective function, and construct Elite matrix
if Iter < MaxIter/3 then

Update preys using (7)
else if MaxIter/3 ≤ Iter < 2MaxIter/3 then

For preys’ half of population (i = 1, . . . , n/2), update preys using (8)
For predators’ half of population (i = n/2, . . . , n), update preys using (9)

else if Iter ≥ 2MaxIter/3 then
Update preys using (10)

end if
Accomplish the memory savings, and the Elite updates
Applying the FADs effects using (11)
Calculate the objective function

end while
Return the best solution

6. Results and Discussion
Performance Comparisons with Recent Algorithms

Firstly, comparisons of the performance of MPA optimizers was performed with opti-
mizers featured in the literature recently. The considered optimizers include the Artificial
Hummingbirds Algorithm (AHA) [49], arithmetics trigonometric optimizer algorithm
(ATOA) [50], Differential Evolutions (DE) [51], Heap-Based Optimization (HBO) [52],
Sine–Cosine Optimizer Algorithm (SCA) [53], Slime Mould Algorithm (SMA) [54], and
Manta Ray-Foraging Optimization (MRFO) [55]. The proposed AVR controller and op-
timization algorithms are simulated using MATLAB R2021a software. The AVR system
and controller are implemented in Simulink and linked with the m-file program, which
contains the optimization algorithms. The optimization process is made 30 times using the
same number of iterations, population size, and parameters limits. The obtained results
over the 30 runs are summarized in Table 4.

The obtained best FOPID parameters for each optimizer over the 30 runs are summa-
rized in Table 5. It also provides statistical analysis of the best value, worst value, mean
value, median value, and standard deviation for each optimizer during the 30 runs. The
proposed MPA gives the lowest value of the objective function compared to the studied
optimizers of 0.0151, whereas the SMA optimizer provides the highest value of the objective
function of 0.0233. This proves the best performance of MPA over the all runs, whereas the
statistical analysis shows that the SCA provides the highest value of the worst objective of
0.0763 compared to the lowest value of worst objective of 0.0176 using the proposed MPA
optimizer. Additionally, the proposed MPA provides the best results in terms of mean,
median, and standard deviation over the 30 runs compared to the studied optimizers. This
proves the ability and stability of proposed method over the performed runs and random
processes of different optimizers.

Another test based on 100 runs of the MRFO and MPA is performed, and the obtained
results are shown in Table A1 in Appendix A. The associated statistical results are sum-
marized in Table 6. It can be seen from the table that the best objective obtained by MPA
is 0.01507709, compared to 0.01534512 by the MRFO algorithm. Additionally, the mean
value achieved by the MPA is 0.01564708, compared to 0.01704896 by MRFO. This, in turn,
confirms the improved design performance using MPA compared to the MRFO algorithm.
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Table 4. Obtained objective functions over 30 runs of the studied optimizers.

Run No. AHA ATOA DE HBO SCA SMA MRFO MPA

1 0.0294 0.0325 0.0175 0.0178 0.0532 0.0507 0.0168 0.0165
2 0.0175 0.0312 0.0164 0.0170 0.0342 0.0414 0.0156 0.0154
3 0.0192 0.0358 0.0233 0.0209 0.0255 0.0367 0.0162 0.0162
4 0.0159 0.0251 0.0205 0.0202 0.0368 0.0500 0.0155 0.0151
5 0.0265 0.0288 0.0180 0.0206 0.0326 0.0484 0.0165 0.0152
6 0.0196 0.0598 0.0152 0.0205 0.0420 0.0486 0.0178 0.0154
7 0.0191 0.0253 0.0232 0.0173 0.0589 0.0296 0.0176 0.0153
8 0.0166 0.0227 0.0162 0.0233 0.0366 0.0356 0.0159 0.0162
9 0.0257 0.0237 0.0280 0.0180 0.0584 0.0593 0.0174 0.0152

10 0.0207 0.0250 0.0203 0.0314 0.0215 0.0284 0.0156 0.0152
11 0.0320 0.0283 0.0202 0.0200 0.0663 0.0512 0.0167 0.0166
12 0.0264 0.0321 0.0205 0.0265 0.0374 0.0512 0.0159 0.0151
13 0.0209 0.0264 0.0205 0.0242 0.0378 0.0358 0.0155 0.0174
14 0.0287 0.0356 0.0202 0.0162 0.0376 0.0415 0.0159 0.0170
15 0.0271 0.0204 0.0255 0.0445 0.0388 0.0546 0.0155 0.0165
16 0.0231 0.0322 0.0171 0.0166 0.0436 0.0527 0.0155 0.0152
17 0.0219 0.0321 0.0208 0.0257 0.0470 0.0478 0.0155 0.0153
18 0.0196 0.0294 0.0178 0.0161 0.0422 0.0233 0.0183 0.0176
19 0.0273 0.0324 0.0185 0.0237 0.0304 0.0550 0.0180 0.0156
20 0.0223 0.0287 0.0184 0.0228 0.0363 0.0488 0.0175 0.0151
21 0.0157 0.0200 0.0223 0.0267 0.0611 0.0375 0.0155 0.0154
22 0.0178 0.0368 0.0170 0.0187 0.0558 0.0257 0.0157 0.0156
23 0.0280 0.0338 0.0157 0.0301 0.0327 0.0493 0.0153 0.0151
24 0.0170 0.0254 0.0238 0.0267 0.0298 0.0503 0.0154 0.0165
25 0.0222 0.0216 0.0270 0.0182 0.0308 0.0558 0.0179 0.0162
26 0.0220 0.0260 0.0204 0.0200 0.0285 0.0491 0.0155 0.0151
27 0.0187 0.0326 0.0343 0.0373 0.0346 0.0363 0.0160 0.0151
28 0.0305 0.0360 0.0199 0.0185 0.0763 0.0365 0.0170 0.0172
29 0.0245 0.0387 0.0195 0.0206 0.0280 0.0328 0.0155 0.0160
30 0.0198 0.0261 0.0167 0.0251 0.0372 0.0358 0.0155 0.0159

Table 5. Best FOPID parameters and statistical analysis of the studied optimizers over the performed
30 runs.

AHA ATOA DE HBO SCA SMA MRFO MPA

Optimum FOPID Parameters

Kp 1.8295 2.0000 1.7057 1.5215 1.8515 1.5791 1.6506 1.7061
Ki 0.8152 1.0000 0.8263 0.7293 1.0000 0.9417 0.7878 0.8068
Kd 0.3968 0.4000 0.4000 0.3601 0.4000 0.3896 0.3932 0.4000
λ 1.1636 1.1335 1.1158 1.1269 1.0584 1.0234 1.1235 1.1286
µ 1.2512 1.1797 1.2129 1.2073 1.1911 1.1344 1.2093 1.2164

Statistical Parameters

Best 0.0157 0.0200 0.0152 0.0161 0.0215 0.0233 0.0153 0.0151
Worst 0.0320 0.0598 0.0343 0.0445 0.0763 0.0593 0.0183 0.0176
Mean 0.0225 0.0301 0.0205 0.0228 0.0411 0.0433 0.0163 0.0158

Median 0.0220 0.0291 0.0202 0.0206 0.0373 0.0481 0.0159 0.0155
Std. Deviation 0.0047 0.0076 0.0042 0.0065 0.0131 0.0098 0.0010 0.0008
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Table 6. Statistical analysis based on 100 runs of MPA and MRFO algorithms.

Algorithm Best Worst Mean Median Std. Deviation

MRFO 0.01534512 0.02311189 0.01704896 0.01641032 0.00168091

MPA 0.01507709 0.01848793 0.01564708 0.01546613 0.00059616

An analysis of variance (ANOVA) test has been performed on the obtained results of
30 runs. The results are shown in Table 7, and their corresponding rankings are shown in
Figure 8. In the ANOVA test, when the obtained value for F is higher than the obtained
p-value, the null hypothesis will be true. The obtained results verify that the obtained
F-value is much higher than the obtained p-value, showing a significant difference among
the obtained results. From Figure 8, the proposed optimization using MPA outperforms
other recently developed methods that are considered in this analysis. The proposed MPA-
based design provides the smallest variance range with the lowest objective value (for
our minimization problem for optimization). This confirms the resilience and accuracy
of proposed method. Additionally, the Tukey Honestly Significant Difference (the Tukey
HSD) post hoc analysis has been provided to provide support for the obtained ANOVA
test-based results. Figure 9 provides the obtained HSD post hoc results. The proposed MPA-
based optimization provides the lowest value for the mean fitness function. It is followed
by the MRFO and SMA optimizers. The obtained results from the two tests confirm the
superior algorithm robustness of the MPA based design for determining optimal FOPID
AVR controller parameters.

Table 7. Performance comparisons using ANOVA test.

ANOVA Table

Source SS df MS F Prob > F
Columns 0.02375 7 0.00339 66.72 4.53626× 10−52

Error 0.0118 232 0.00005
Total 0.03555 239
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Figure 8. Statistical analysis using ANOVA test.
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Figure 9. Tukey test of obtained results.

The obtained optimal parameters of various considered algorithms are simulated in a
closed-loop control with the AVR model. The control parameters associated with the best
objective function from the 30 runs are used in the simulation study for fair comparisons.
The obtained results with step change in the reference voltage at zero second and full-load
condition with KG = 1 are shown in Figure 10. It can be seen that the worst response is
obtained by the ATOA, SMA, and SCA optimizers, whereas the MPA and MRFO provide
the best results. Although MPA appears to have a slightly higher peak, it provides faster,
reaching a steady-state operating point. The measured ISE, IAE, ITSE, and ITAE for MPA
are 2.7334, 2.857, 4.1826, and 4.3812, respectively, whereas the MPA provides 2.8728, 2.9025,
4.4870, and 4.6129, respectively.

In this part, a comparison of the step response of the proposed design is performed
with some featured designs from the literature. The obtained step response comparisons are
shown in Figure 11 at full-load condition with KG = 1. The considered FOPID designs and
parameters include method 1 as in [43], method 2 as in [44], method 3 as in [37], method 4
as in [45], method 5 as in [46], and the proposed MPA design. The proposed MPA-based
FOPID AVR regulator provides reduced peak values and fast tracking in this step change
scenario. Although method 2 provides a lower peak overshoot value, it has a steady state
error as shown in the zoomed-in results. The proposed MPA-based design achieves zero
steady state error in this scenario. The method 5 design has the highest peak overshoot
value, followed by the methods 3 and 4. The design of method 1 has a high rise time and
oscillations. Another case study at the no-load condition with KG = 0.7 is performed and
shown in Figure 12. The results confirm the superior response of the proposed method
compared with studied methods from the literature at no-load condition. The proposed
MPA-based design has a low peak overshoot value, a low rise time, and zero steady state
error. This proves the superior performance of the proposed design method compared to
existing methods in the literature.
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Figure 10. Step response comparisons of the various obtained optimization results at full-load
condition with KG = 1.
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Figure 11. Step response comparisons of the proposed AVR controller with the existing designs in
the literature at full-load condition with KG = 1.
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Figure 12. Step response comparisons of the proposed AVR controller with the existing designs in
the literature at no-load condition with KG = 0.7.

A comparison of the convergence characteristics is provided in Figure 13. The selected
algorithms for the comparison include HBO, SMA, and ATOA methods. It can be seen that
the MPA optimizer has good conversion speed compared with the other algorithms. While
the most important criteria is the ability of MPA to have a reduced objective function at the
end of the optimization process, it can be seen that MPA has the minimum objective function.
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Figure 13. Conversion speed evaluation of MPA method.
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Another check is made by adding a disturbance of 0.3 p.u. to the output voltage
measurement. The obtained results are shown in Figure 14. The disturbance is injected
at 6 s and removed at 10 s. It can be seen that the MPA-based FOPID is robust against
disturbances, and it can recover its state very fast with lower fluctuations, whereas the
other studied designs have higher transients and/or higher steady state error and response
times. Another comparison is made with the PIDD2 tuned by the RUN algorithm, and the
parameters are taken from [11]. The obtained results are shown in Figure 15. It can be seen
that the proposed MPA-based FOPID has better performance and response characteristics
compared with the existing PIDD2 method.
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Figure 14. Step responses with load disturbance of 0.3 p.u.
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Figure 15. Performance comparison with PIDD2 with parameters from [11].
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7. Conclusions

This paper deals with an important issue of modern power systems that is related to the
AVR controller and its design optimization. The paper proposes an optimized FOPID AVR
controller that is optimized with the powerful marine predator optimization algorithm
(MPA). The proposed AVR controller achieves an improved transient response, while
preserving system stability. Additionally, the FOPID provides additional design freedom
due to the extra included fractional order operators. Compared with the integer-order PID,
the FOPID has two additional design flexibilities, which are reflected it its response and
optimization process. Comprehensive statistical analysis of the MPA and obtained results
over 30 runs are provided and compared with featured methods from the literature. The
proposed FOPID-MPA method provides the best objective function minimization with
reduced variations with runs compared to the other studied methods. The ANOVA and
Tukey tests are provided in addition to statistical parameters, which proved to be the best
performance obtained by the proposed FOPID-MPA method. Future research includes
consideration of various constraints of AVR elements and further comparisons with other
control methods. Additionally, more considerations can be given to other measurements,
such as noise and stator current limitations.
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Appendix A

Table A1. Obtained objective functions for the MRFO and MPA over 100 runs.

Run No. MPA MRFO Run No. MPA MRFO

1 0.0160902309153365 0.0186072735390579 51 0.0159763953627226 0.0164159935337242
2 0.0157754214386025 0.0157790581530151 52 0.0154625364235344 0.0161561738059689
3 0.0163839755300565 0.0197874911366351 53 0.0154673980808997 0.0216327342483548
4 0.0158614360293316 0.0207406428821346 54 0.0151171665779289 0.0171331501582164
5 0.0151815141506785 0.0178342633107935 55 0.0151615813344883 0.0177126323347514
6 0.0166839473808019 0.0199929483957633 56 0.0156267887327416 0.0164519137830847
7 0.0170801125246933 0.0155652253629703 57 0.0165867956883701 0.0154761204614243
8 0.0170861857896019 0.0163012176667067 58 0.0155362943324246 0.0156001843471987
9 0.0156217377981934 0.0174133359370687 59 0.0152952531265295 0.0191971202041615
10 0.0161582631746110 0.0164046438255427 60 0.0154008521226980 0.0169098714187219
11 0.0170467975859854 0.0180406862499614 61 0.0151632456741165 0.0161135094007944
12 0.0182722351800569 0.0185911187833772 62 0.0153527356134189 0.0154955036509552
13 0.0153036284462915 0.0153519464778942 63 0.0151261669951796 0.0160335763536030
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Table A1. Cont.

Run No. MPA MRFO Run No. MPA MRFO

14 0.0158050783963908 0.0153868044792599 64 0.0152063617495559 0.0207565298970893
15 0.0152747700347015 0.0158201433770507 65 0.0152006227143923 0.0155734274747462
16 0.0160724506267845 0.0187138746721933 66 0.0152126399419112 0.0169535389239530
17 0.0155061948859095 0.0186836337099605 67 0.0155041942054795 0.0153554028201223
18 0.0165419455259726 0.0185533825453101 68 0.0155097483622622 0.0160391558592351
19 0.0153239301220592 0.0223799180060417 69 0.0155229664833601 0.0161831344490288
20 0.0157248521583907 0.0158234562111405 70 0.0152269394223403 0.0171716717715401
21 0.0152544299495255 0.0156292615025043 71 0.0157237013082333 0.0182032626875426
22 0.0156251526403613 0.0160019396955112 72 0.0157714234694387 0.0185312561464443
23 0.0159162308142132 0.0178834956451730 73 0.0157236934238772 0.0160178288055126
24 0.0161622408281447 0.0166977069643665 74 0.0150855154798788 0.0156785500585492
25 0.0150770912799963 0.0160946478966843 75 0.0156749031336672 0.0183338207041531
26 0.0159260002629224 0.0202221745201756 76 0.0152678788613815 0.0177098353253446
27 0.0155029436270759 0.0178024023309439 77 0.0154648527668256 0.0213044716721203
28 0.0158256473703595 0.0159423598815060 78 0.0152115531728442 0.0175407533787249
29 0.0152981824451236 0.0154539311942310 79 0.0151919556809319 0.0154529560023485
30 0.0163552680101254 0.0168646119783646 80 0.0184879256653829 0.0160860584564143
31 0.0153077796595018 0.0166950620491384 81 0.0150963550483734 0.0161007964844298
32 0.0155507585576659 0.0163582696073985 82 0.0158997972385465 0.0169265091642214
33 0.0155108649307797 0.0155126486258078 83 0.0153172163577543 0.0158997972385465
34 0.0160034803104551 0.0183471186539829 84 0.0154046935066751 0.0174072210013845
35 0.0153675694782160 0.0231118909681678 85 0.0151392551367036 0.0194813295050308
36 0.0157011613280708 0.0162058702232047 86 0.0155098581205377 0.0159186921213136
37 0.0154641600824197 0.0159433449512397 87 0.0154122382825814 0.0166866119939868
38 0.0152287469911507 0.0158987438068760 88 0.0155100829613650 0.0161010349179289
39 0.0153853897470870 0.0157847475047855 89 0.0156897018278160 0.0166741742074250
40 0.0157703358883489 0.0173888037944703 90 0.0153128334831947 0.0159414326243861
41 0.0154313596386918 0.0170021705087658 91 0.0153575265265852 0.0168227013385350
42 0.0160520172501177 0.0157239653675728 92 0.0154502895278778 0.0164106715341243
43 0.0153801132684594 0.0185347128325756 93 0.0151150340218386 0.0160006097916894
44 0.0164614923840220 0.0153723037170996 94 0.0157887027725565 0.0155413006166845
45 0.0153702421725225 0.0153723037170996 95 0.0151212550739855 0.0155006512376765
46 0.0161266891964663 0.0153451195810031 96 0.0155500689142018 0.0161683560384650
47 0.0153867052299926 0.0172731580353522 97 0.0151789038204640 0.0178129214344732
48 0.0153635291223803 0.0154699708648064 98 0.0152734520589117 0.0154727513622186
49 0.0153284443691374 0.0163318577343206 99 0.0150910942530682 0.0174838967070398
50 0.0152902130049922 0.0156309924834781 100 0.0156344970037647 0.0179487980457389
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