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Abstract: This article examines how shocks and three-dimensional nonlinear dust-ion-acoustic waves
propagate across uniform magnetized electron–positron–ion plasmas. The two-variable (G′/G, 1/G)-
expansion and generalized exp(−φ(ξ))-expansion techniques are presented to construct the ion-
acoustic wave results of a (3+1)-dimensional extended Zakharov–Kuznetsov (eZK) model. As a result,
the novel soliton and other wave solutions in a variety of forms, including kink- and anti-kink-type
breather waves, dark and bright solitons, kink solitons, and multi-peak solitons, etc., are attained.
With the help of software, the solitary wave results (that signify the electrostatic potential field),
electric and magnetic fields, and quantum statistical pressures are also constructed. These solutions
have numerous applications in various areas of physics and other areas of applied sciences. Graphical
representations of some of the obtained results, and the electric and magnetic fields as well as the
electrostatic field potential are also presented. These results demonstrate the effectiveness of the
presented techniques, which will also be useful in solving many other nonlinear models that arise in
mathematical physics and several other applied sciences fields.

Keywords: extended Zakharov–Kuznetsov equation; two-variable (G′/G, 1/G)-expansion and
exp(−φ(ξ))-expansion techniques; ion-acoustic solitary waves; electrostatic potential; quantum
statistical pressure; magnetic and electric fields

1. Introduction

Nonlinear partial differential equations (NLPDEs) describing nonlinear complex phys-
ical phenomena actively play a key role in many areas of applied sciences, particularly in
plasma physics. In recent decades, it has become more important to locate exact solutions to
nonlinear PDEs, due to the fact that nonlinear PDEs arise in many fields of engineering, me-
chanics, and physics [1–4]. We are able to recognize the mechanism behind these physical
models by the study of exact solutions. To accomplish these aims, various efficient schemes
have been established to identify the exact solutions of nonlinear PDEs, however, it is a
difficult task. In plasma physics, nonlinear pulse propagation is defined by the ZK equa-
tion, which controls the characteristics of weakly nonlinear ion-acoustic waves in plasma
made up of cold ions and hot, isothermal electrons in uniform magnetic fields [3,4]. There
are several applications of the ZK equation in plasma physics, engineering, and applied
sciences. Specifically, among the highly significant equations explored in the context of
plasma physics is the ZK equation [5–10].
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One of the most well-known and inspiring characteristics of nonlinear phenomena,
particularly in extended models, which have many significant properties, is solitary waves.
One of the two extensively researched canonical two-dimensional extensions of the KdV
model is the ZK model [11]. The discussion of dust-ion-acoustic nonlinear waves in magne-
tized two-ion-temperature dusty plasmas, the proliferation of ion-acoustic waves with low
frequencies in a bushy quantum magneto-plasma, etc., are discussed through nonlinear
extended ZK equations [12–14]. Recently, using the theory of reductive perturbation, the
researchers in [15] derived the three-dimensional eZK (3-deZK) model in a magnetized
dusty plasma of two ion temperatures.

Several scholars have recently focused a lot of their effort on researching solitary wave
results of NLPDEs [16–18], which transpire in applied sciences. Hence, several effective
techniques have been established to create the solitary wave and soliton solutions, for
instance, the inverse scattering scheme, direct algebraic approach [19], Backlund transform
approach [20], Hirota’s bilinear technique [21], exp(−φ(η))-expansion techniques [22],
extended tanh approach [23], auxiliary equation techniques [24], mapping techniques [25],
rational expansion approach [26], elliptic function scheme [27], and numerous others [28].
Various numerical techniques have also been established, like the Adomian decomposition
approach [29], homotopy analysis approach [30], homotopy perturbation approach [31],
differential transform methods [32–35], etc., to achieve several forms of numerical solutions
in nonlinear PDEs. The study of soliton solutions, structures, interactions, and other
features has drawn a lot of interest, and it has successfully produced a number of significant
findings [13–15,36].

The (G′/G)-expansion method was introduced in [37] for consistent study of exact
solutions of NLPDEs. After that, an amended version, which is called the extended (G′/G)-
expansion method, was constructed in [38]. Afterward, a generalized (G′/G)-expansion
method was established [39]. Later, a two-variable (G′/G, 1/G)-expansion technique was
introduced in [40] and applied to nonlinear PDEs [41]. The (G′/G, 1/G)-expansion method
is believed to be a generalization of the (G′/G)-expansion approach. This attribute enables
us to uncover new and more generic solutions. This viewpoint gave us inspiration to
perform this study.

The overall structure of the remaining article can be outlined as follows: Section 2
elaborates on the proposed methods in detail. In Section 3, the given techniques are applied
on the eZK equation to generate accurate wave results. The stability of the model is
examined in Section 4. Section 5 analyzes the results and offers a physical justification.
Section 6 summarizes the entirety of the work.

2. Proposed Methods

We describe the algorithms of the two-variable (G′/G, 1/G)-expansion and gener-
alized exp(−φ(ξ))-expansion techniques to obtain the exact wave solutions of nonlinear
PDEs. Let us suppose a general PDE in x and t as

P
(

w,
∂w
∂t

,
∂w
∂x

,
∂2w
∂t2 ,

∂2w
∂x2 , ...

)
= 0. (1)

The transformation w(x, t) = w(ξ) with ξ = αx−ωt is utilized to alter Equation (1) to an
ODE as

P
(

w,−ω
dw
dξ

, α
dw
dξ

, ω2 d2w
dξ2 , α2 d2w

dξ2 ,−ωα
d2w
dξ2 , ...

)
= 0. (2)

2.1. Two-Variable (G′/G, 1/G)-Expansion Technique

To obtain wave results for the mentioned equations, this section provides a detailed
description of the proposed technique. The approach commences with a second-order
linear ordinary differential equation (ODE) as follows:

G′′(ξ) + µG(ξ) = ν, (3)
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via considering

φ =
G′

G
, ψ =

1
G

, (4)

To ensure the accuracy of the computing, it is important to consider the derivatives of the
variables φ and ψ as follows:

φ′ = −φ2 + νψ− µ, ψ′ = −φψ. (5)

The general results of Equation (3) can be categorized into three distinct cases.
Case 1: If µ < 0, then

G(ξ) = A1 sinh
(
ξ
√
−µ
)
+ A2 cosh

(
ξ
√
−µ
)
+

ν

µ
, (6)

with
ψ2 =

−µ

µ2σ + ν2 (µ− 2ψν + φ2), where σ = A2
1 − A2

2. (7)

Case 2: If µ > 0, then

G(η) = A1 sin(ξ
√

µ) + A2 cos(ξ
√

µ) +
ν

µ
, (8)

with
ψ2 =

µ

µ2σ + ν2 (µ− 2ψν + φ2), where σ = A2
1 + A2

2. (9)

Case 3: If µ = 0, then

G(ξ) = A1ξ + A2 +
ν

2
ξ2, (10)

with

ψ2 =
φ2 − 2νψ

A2
1 − 2νA2

. (11)

A1 and A2 are constants in the above cases.
Step 1: When examining the solution of Equation (2), it becomes apparent that it takes

the form in both ψ and φ as follows:

w(η) =
M

∑
j=0

ajφ
j +

M

∑
j=1

bjφ
j−1ψ, (12)

here G correspond to (3). The coefficients aj, bj, ω, α, and ν are constants. M can be
established via utilizing the harmonizing principle on Equation (2).

Step 2: Upon substituting Equation (12) into (2), and considering Equations (5) and (7),
a polynomial equation in terms of ψ and φ is derived, leading to the establishment of a
system of algebraic equations.

Step 3: The system is resolved via using a software program. The wave solutions in
Equation (2) are constructed as three different types of functions via exploiting the values
of aj, bj, a, µ, ν, A1, and A2.

Step 4: The resolution procedure concludes by generating outcomes in Equation (1)
through the utilization of the wave transformation ξ = αx−ωt in a reverse manner.

2.2. Generalized Exp(−φ(ξ))-Expansion Scheme

To achieve exact solutions using this approach, it is essential to follow a specific set of
steps:
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Step 1: By considering Equation (2), which is obtained from Equation (1) using wave
transformation, ξ = αx−ωt assumes the following traveling wave solutions

w(ξ) =
M

∑
i=0

ai(exp(−φ(ξ)))i, aM 6= 0, (13)

including ω(x, t) = ω(ξ) and satisfies the nonlinear ODE below.

φ′(ξ) = µ exp(−φ(ξ)) + ν exp(φ(ξ)) + λ, (14)

where the coefficients ai, µ, ν, and λ are constants. M can be established via utilizing the
harmonizing principle on Equation (2).

Step 2: The value of the positive integer M is subsequently determined by balancing
the higher-order nonlinear term and higher-order derivative term of (12). The following
formula is the detailed expression, assuming D[u(ξ)] = n:

D
(

dNv(ξ)
dξN

)
= N + ρ. (15)

D

[(
vN dKv(ξ)

dξK

)S]
= ρN + S(ρ + K). (16)

Step 3: Substituting Equations (13) and (14) into Equation (2), yields a polynomial
function of e−iφ(ξ); the parameters ai(1 ≤ i ≤ N), k, ν, µ, λ, ω, and α can be determined.

Step 4: The resolution procedure concludes by generating outcomes in Equation (1)
through the utilization of the wave transformation ξ = αx−ωt in a reverse manner.

3. Formation of Soliton Solutions of (3+1)-Dimensional Extended
Zakharov–Kuznetsov Dynamical Model

The (3+1)-dimensional extended ZK equation [3] can be written as

ut + k1uux + k2uxxx + k3
(
uxyy + uxzz

)
= 0. (17)

Adopting the transformation as

U(ξ) = u(x, y, z, t), ξ = α1x + α2y + α3z + ωt + ξ0, (18)

where α1, α2, α3, and ω are the wave number and frequency of the solitons. Using Equa-
tion (18) in Equation (17) and the ODEs obtained gives

ωU′ + k1α1UU′ +
(

k2α3
1 + k3α1(α

2
2 + α2

3)
)

U′′′ = 0. (19)

Integrating the above equation with respect to η yields

2
(

k2α3
1 + k3α1(α

2
2 + α2

3)
)

U′′ + 2ωU + k1α1U2 = 0. (20)

3.1. Two-Variable (G′/G, 1/G)-Expansion Technique

In this subpart, we construct the soliton wave solutions of the dynamical model (17) by
using the two-variable (G′/G, 1/G)-expansion technique. We use the balancing principle
on Equation (20) and considering the solution as

U(ξ) = a0 + a1φ(ξ) + a2φ(ξ)2 + b1ψ(ξ) + b2ψ(ξ)φ(ξ). (21)

By utilizing Equation (21) alongside Equation (5) and incorporating them into (20), a system
of equations in the variables a0, a1, a2, b1, b2, α1, α2, α3, ν, ω, and µ is derived. This system is
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constructed by equating the coefficients of terms involving φiψj to zero. Upon solving this
system, the following results are obtained:

a0 = −
4µ
(
α2

1k2 + α2
2k3 + α2

3k3
)

k1
, a2 = −

12
(
α2

1k2 + α2
2k3 + α2

3k3
)

k1
,

a1 = b1 = b2 = ν = 0, ω = −4α1µ
(

α2
1k2 + α2

2k3 + α2
3k3

)
. (22)

a0 = −
12µ

(
α2

1k2 + α2
2k3 + α2

3k3
)

k1
, a2 = −

12
(
α2

1k2 + α2
2k3 + α2

3k3
)

k1
, (23)

a1 = b1 = b2 = ν = 0, ω = 4α1µ
(

α2
1k2 + α2

2k3 + α2
3k3

)
.

a0 =
a2µ

3
, a1 = b1 = b2 = 0, ν = 0, ω = −4α1µ

(
α2

1k2 + α2
2k3 + α2

3k3

)
, (24)

k1 = −
12
(
α2

1k2 + α2
2k3 + α2

3k3
)

a2
.

a0 = a2µ, a1 = b1 = b2 = ν = 0, ω = 4α1µ
(

α2
1k2 + α2

2k3 + α2
3k3

)
, (25)

k1 = −
12
(
α2

1k2 + α2
2k3 + α2

3k3
)

a2
.

From (22)–(24) the following results can be obtained.
Case I: µ < 0 (hyperbolic function solution),

u1(x, y, z, t) =
4µ
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)(

2A2 A1 sinh(2
√−µξ) + A2

1(cosh(2
√−µξ) + 2) + A2

2(cosh(2
√−µξ)− 2)

)
k1(A1 sinh(

√−µξ) + A2 cosh(
√−µξ))2 . (26)

u2(x, y, z, t) =
12
(

A2
1 − A2

2
)
µ
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)

k1(A1 sinh(
√−µξ) + A2 cosh(

√−µξ))2 . (27)

u3(x, y, z, t) =
a2

3

(
µ− 3µ(A2 sinh(

√−µξ) + A1 cosh(
√−µξ))2

(A1 sinh(
√−µξ) + A2 cosh(

√−µξ))2

)
. (28)

Case II: µ > 0 (trigonometric function solution),

u4(x, y, z, t) = −
4µ
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)(

4A2 A1 sinh
(
2
√

µξ
)
+ A2

1
(
2 cosh

(
2
√

µξ
)
+ 1
)
+ A2

2
(
2 cosh

(
2
√

µξ
)
− 1
))

k1
(

A1 sinh
(√

µξ
)
+ A2 cosh

(√
µξ
))2 . (29)

u5(x, y, z, t) = −
12µ

(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)(

2A2 A1 sinh
(
2
√

µξ
)
+ A2

1 cosh
(
2
√

µξ
)
+ A2

2 cosh
(
2
√

µξ
))

k1
(

A1 sinh
(√

µξ
)
+ A2 cosh

(√
µξ
))2 . (30)

u6(x, y, z, t) =
a2

3

(
3µ
(

A2 sinh
(√

µξ
)
+ A1 cosh

(√
µξ
))2(

A1 sinh
(√

µξ
)
+ A2 cosh

(√
µξ
))2 + µ

)
. (31)

Case III: µ = 0 (rational function solution),

u7(x, y, z, t) = −
4
(
µξ2 + 3

)(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)

k1ξ2 . (32)

u8(x, y, z, t) = −
12
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)(

µξ2 + 1
)

k1ξ2 . (33)
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u9(x, y, z, t) =
a2

3

(
µ +

3
ξ2

)
. (34)

The motiosn and positions of the positrons and electrons as they transfer along their orbits
in a uniformly magnetized electron–positron plasma define the electric and magnetic fields.
The gradient of the scalar function u1, often known as the electrostatic potential, is the
electric field. The electric field “E” points from areas with high to low electric potential.
The electric field is represented mathematically as

~E = −∇u = −ux x̂− uyŷ− uz ẑ. (35)

The electric fields of the electric potential, u1, u2, and u3, are expressed as

~E1 =
24
(

A2
1 − A2

2
)
(−µ)3/2(α2

1k2 +
(
α2

2 + α2
3
)
k3
)
(A2 sinh(

√−µξ) + A1 cosh(
√−µξ))

k1(A1 sinh(
√−µξ) + A2 cosh(

√−µξ))3 .(α1 x̂ + α2ŷ + α3ẑ). (36)

~E2 =
24
(

A2
1 − A2

2
)√−µµ

(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)
(A2 sinh(

√−µξ) + A1 cosh(
√−µξ))

k1(A1 sinh(
√−µξ) + A2 cosh(

√−µξ))3 .(α1 x̂ + α2ŷ + α3ẑ). (37)

~E3 =
2a2
(

A2
1 − A2

2
)
(−µ)3/2(A2 sinh(

√−µξ) + A1 cosh(
√−µξ))

(A1 sinh(
√−µξ) + A2 cosh(

√−µξ))3 .(α1 x̂ + α2ŷ + α3ẑ). (38)

~E4 = −
24
(

A2
1 − A2

2
)
µ3/2(α2

1k2 +
(
α2

2 + α2
3
)
k3
)(

A2 sinh
(√

µξ
)
+ A1 cosh

(√
µξ
))

k1
(

A1 sinh
(√

µξ
)
+ A2 cosh

(√
µξ
))3 .(α1 x̂ + α2ŷ + α3ẑ). (39)

The Maxwell–Faraday equation provides the relationship between electric and magnetic
fields as

5× ~E = −∂~B
∂t

. (40)

Utilizing the Maxwell–Faraday Equation (40), the magnetic field is constructed as

~B1 =
24(α1 − α3)

(
A2

1 − A2
2
)
(−µ)3/2(α2

1k2 +
(
α2

2 + α2
3
)
k3
)
(A2 sinh(

√−µξ) + A1 cosh(
√−µξ))

k1ω(A1 sinh(
√−µξ) + A2 cosh(

√−µξ))3 .(−α2 x̂ + (α1 + α3)ŷ− α2 ẑ). (41)

~B2 =
24
(

A2
1 − A2

2
)
(−µ)3/2(α1 − α3)

(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)
(A2 sinh(

√−µξ) + A1 cosh(
√−µξ))

k1ω(A1 sinh(
√−µξ) + A2 cosh(

√−µξ))3 .(−α2 x̂ + (α1 + α3)ŷ− α2 ẑ). (42)

~B3 =
2a2(α1 − α3)

(
A2

1 − A2
2
)
(−µ)3/2(A2 sinh(

√−µξ) + A1 cosh(
√−µξ))

ω(A1 sinh(
√−µξ) + A2 cosh(

√−µξ))3 .(α2 x̂− (α1 + α3)ŷ + α2ẑ). (43)

~B4 =
24(α1 − α3)

(
A2

1 − A2
2
)
µ3/2(α2

1k2 +
(
α2

2 + α2
3
)
k3
)(

A2 sinh
(√

µξ
)
+ A1 cosh

(√
µξ
))

k1ω
(

A1 sinh
(√

µξ
)
+ A2 cosh

(√
µξ
))

3 .(−α2 x̂ + (α1 + α3)ŷ− α2 ẑ). (44)

The electric number density, denoted by ne, is used to describe the pressure of the electron
fluid as P = P(ne). The following is the relationship between the electric number density
ne and the electron fluid pressure P:

P =
ν2

Feme

3n2
0

e3ne , (45)

where ν2
Fe stands for the Fermi velocity of electrons, an electron’s mass is me, and n0 is

the equilibrium density for both electrons and ions. This equation yields the electron’s
quantum statistical pressure as

P1 =
ν2

Feme

3n2
0

Exp

(
12µ

(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)(

2A2 A1 sinh(2
√−µξ) + A2

1(cosh(2
√−µξ) + 2) + A2

2(cosh(2
√−µξ)− 2)

)
k1(A1 sinh(

√−µξ) + A2 cosh(
√−µξ))2

)
. (46)
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P2 =
ν2

Feme

3n2
0

Exp

(
12
(

A2
1 − A2

2
)
µ
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)

k1(A1 sinh(
√−µξ) + A2 cosh(

√−µξ))2

)
. (47)

P3 =
ν2

Feme

3n2
0

Exp

(
a2

(
µ− 3µ(A2 sinh(

√−µξ) + A1 cosh(
√−µξ))2

(A1 sinh(
√−µξ) + A2 cosh(

√−µξ))2

))
. (48)

P4 =
ν2

Feme

3n2
0

Exp

(
−

12µ
(
α2

1k2 +
(
α2

2 + α2
3

)
k3
)(

4A2 A1 sinh
(
2
√

µξ
)
+ A2

1

(
2 cosh

(
2
√

µξ
)
+ 1
)
+ A2

2

(
2 cosh

(
2
√

µξ
)
− 1
))

k1
(

A1 sinh
(√

µξ
)
+ A2 cosh

(√
µξ
))2

)
. (49)

Similarly, the solutions of set (25) can be constructed in the more generalized form of a
dynamical model (17).

3.2. Generalized Exp(−φ(ξ))-Expansion Method

In this part, we construct the wave results of the dynamical model (17) by using the gen-
eralized exp(−φ(ξ))-expansion technique. Using the balancing principle on Equation (20)
and considering the solution as

U(ξ) = a0 + a1e−φ(ξ) + a2e−2φ(ξ). (50)

By utilizing Equation (50) alongside Equation (5) and incorporating them into (20), a system
of equations in variables a0, a1, a2, k1, k2, k3, α1, α2, α3, ν, ω, and µ is derived. This system is
constructed by equating the coefficients of terms involving φi to zero. Upon solving this
system, the following results are obtained:

a1 = −
12λµ

(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)

k1
, a2 = −

12µ2(α2
1k2 +

(
α2

2 + α2
3
)
k3
)

k1
,

ε =
α1
(
a0k1 + 12µν

(
α2

1k2 +
(
α2

2 + α2
3
)
k3
))(

a0k1 + 2
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)(

λ2 + 2µν
))

2k1
,

ω = −α1

(
a0k1 +

(
α2

1k2 +
(

α2
2 + α2

3

)
k3

)(
λ2 + 8µν

))
. (51)

a0 = −
12µν

(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)

k1
, a1 = −

12λµ
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)

k1
, a2 = −

12µ2(α2
1k2 +

(
α2

2 + α2
3
)
k3
)

k1
,

ε = 0, ω = ±α1

(
α2

1k2 +
(

α2
2 + α2

3

)
k3

)(
−
(

λ2 − 4µν
))

. (52)

a2 =
a1µ

λ
, α3 = ±

√
−a1k1 − 12λµ

(
α2

1k2 + α2
2k3
)

2
√

3
√

λ
√

k3
√

µ
, ω =

α1k1
(
a1
(
λ2 + 8µν

)
− 12a0λµ

)
12λµ

,

ε = −
α1k1(a0λ− a1ν)

(
a1
(
λ2 + 2µν

)
− 6a0λµ

)
12λ2µ

. (53)

The following results, in the form of solitons and other waves from set (51), can be ob-
tained as

Family 1: For µ = 1,

u1(x, y, z, t) = a0 +

24ν
(
α2

1k2 +
(
α2

2 + α2
3

)
k3
)(

λ
√

λ2 − 4ν tanh
(√

λ2−4ν
2 (ξ + ξ0)

)
+ λ2 − 2ν

)
k1

(√
λ2 − 4ν tanh

(√
λ2−4ν

2 (xξ + ξ0)
√

λ2 − 4ν

)
+ λ

)2 , ν 6= 0, λ2 − 4ν > 0. (54)

The electric and magnetic fields of u1 are expressed as
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~E1 =
12ν
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)(

λ2 − 4ν
) 3

2
(

λ tanh
(√

λ2−4ν
2 (ξ + ξ0)

)
+
√

λ2 − 4ν
)

sech2
(√

λ2−4ν
2 (ξ + ξ0)

)
k1

(√
λ2 − 4ν tanh

(√
λ2−4ν

2 (ξ + ξ0)
)
+ λ

)3 .(α1 x̂ + α2ŷ + α3 ẑ). (55)

~B1 =

((
12(α1 − α3)ν

(
α2

1k2 +
(

α2
2 + α2

3

)
k3

)(
λ2 − 4ν

) 3
2
(

ν
(

λ2 − 2ν
)

sinh
(

2
√

λ2 − 4ν(ξ + ξ0)
)

−λν
√

λ2 − 4ν cosh
(

2
√

λ2 − 4ν(ξ + ξ0)
)
+ λ

(
λ2 − 2ν

)√
λ2 − 4ν cosh

(√
λ2 − 4ν(ξ + ξ0)

)
+3λν

√
λ2 − 4ν +

(
4λ2ν− λ4 + 4ν2

)
sinh

(√
λ2 − 4ν(ξ + ξ0)

)))
/
(

k1ω
(

λ2 − 2ν

+2ν cosh
(
(ξ + ξ0)

√
λ2 − 4ν

)))3
))

.(α2 x̂− (α1 + α3)ŷ + α2ẑ). (56)

The electron’s quantum statistical pressure is constructed as

P1 =
ν2

Feme

3n2
0

Exp

3a0 +
72ν
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)(

λ
√

λ2 − 4ν tanh
(√

λ2−4ν
2 (ξ + ξ0)

)
+ λ2 − 2ν

)
k1

(√
λ2 − 4ν tanh

(√
λ2−4ν

2 (xξ + ξ0)
√

λ2 − 4ν
)
+ λ

)2

. (57)

u2(x, y, z, t) = a0 +
24ν
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)(

λ2 − 2ν− λ
√

4ν− λ2 tan
(√

4ν−λ2

2 (ξ + ξ0)
))

k1

(
λ−
√

4ν− λ2 tan
(√

4ν−λ2

2 (ξ + ξ0)
))2 , ν 6= 0, λ2 − 4ν < 0. (58)

The electric and magnetic fields of u2 are expressed as

~E2 =

12ν
(
α2

1k2 +
(
α2

2 + α2
3

)
k3
)(

λ2 − 4ν
)(

λ2 − 4ν− λ
√

4ν− λ2 tan
(√

4ν−λ2
2 (ξ + ξ0)

))
sec2

(√
4ν−λ2

2 (ξ + ξ0)

)
k1

(
λ−
√

4ν− λ2 tan
(√

4ν−λ2
2 (ξ + ξ0)

))3 .(α1 x̂ + α2 ŷ + α3 ẑ). (59)

~B2 =

((
12(α1 − α3)ν

(
α2

1k2 +
(

α2
2 + α2

3

)
k3

)(
4ν− λ2

) 3
2
(

ν
(

2ν− λ2
)

sin
(

2
√

4ν− λ2(ξ + ξ0)
)

+λν
√

4ν− λ2 cos
(

2
√

4ν− λ2(ξ + ξ0)
)
− λ

(
λ2 − 2ν

)√
4ν− λ2 cos

(√
4ν− λ2(ξ + ξ0)

)
−3λν

√
4ν− λ2 +

(
λ4 − 4λ2ν− 4ν2

)
sin
(√

4ν− λ2(ξ + ξ0)
)))

/
(

k1ω
(

λ2 − 2ν

+2ν cos
(√

4ν− λ2(ξ + ξ0)
))3

))
.(−α2 x̂ + (α1 + α3)ŷ− α2ẑ). (60)

The electron’s quantum statistical pressure is constructed as

P2 =
ν2

Feme

3n2
0

Exp

a0 +
72ν
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)(

λ2 − 2ν− λ
√

4ν− λ2 tan
(√

4ν−λ2

2 (ξ + ξ0)
))

k1

(
λ−
√

4ν− λ2 tan
(√

4ν−λ2

2 (ξ + ξ0)
))2

. (61)

u3(x, y, z, t) =
a0k1

(
eλ(ξ+ξ0) − 1

)
2 − 12λ2(α2

1k2 +
(
α2

2 + α2
3
)
k3
)
eλ(ξ+ξ0)

k1
(
eλ(ξ+ξ0) − 1

)2 , ν = 0, λ 6= 0, λ2 − 4ν > 0. (62)

u4(x, y, z, t) = a0 +
3λ3(ξ + ξ0)

(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)
(λξ + λξ0 + 2)

k1(λξ + λξ0 + 1)2 , ν 6= 0, λ 6= 0, λ2 − 4ν = 0. (63)
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Family 2: For λ = 0,

u5(x, y, z, t) = a0 −
12µν

(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)

cot2(√µν(ξ + ξ0)
)

k1
, µ > 0, ν > 0. (64)

The electric and magnetic fields of u5 are expressed as

~E5 = −
24
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)
(µν)

3
2 cot

(√
µν(ξ + ξ0)

)
csc2(√µν(ξ + ξ0)

)
k1

.(α1 x̂ + α2ŷ + α3ẑ). (65)

~B5 =
24(α3 − α1)

(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)
(µν)

3
2 cot

(√
µν(ξ + ξ0)

)
csc2(√µν(ξ + ξ0)

)
k1ω

.(α2 x̂− (α1 + α3)ŷ + α2ẑ). (66)

The electron’s quantum statistical pressure is constructed as

P5 =
ν2

Feme

3n2
0

Exp

(
3a0 −

32µν
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)

cot2(√µν(ξ + ξ0)
)

k1

)
. (67)

u6(x, y, z, t) = a0 −
12µν

(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)

cot2((ξ − ξ0)
√

µν
)

k1
, µ < 0, ν < 0. (68)

u7(x, y, z, t) = a0 +
12µν

(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)

coth2(
√−µν(ξ − ξ0))

k1
, µ > 0, µ < 0. (69)

u8(x, y, z, t) = a0 +
12µν

(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)

coth2(
√−µν(ξ + ξ0))

k1
, µ < 0, µ > 0. (70)

Family 3: For ν = λ = 0,

u9(x, y, z, t) = a0 −
12
(
α2

1k2 +
(
α2

2 + α2
3
)
k3
)

k1(ξ + ξ0)
2 . (71)

4. Stability Analysis

Now, using a conventional linear stability analysis [], we look at the modulational
instability of model (17). For model (17), the steady-state solution takes the following form:

u(x, y, z, t) =
√

P + Φ(x, y, z, t)eφ(t), φ(t) = βεPt, (72)

where P is the normalized optical power. In order for Φ <<
√

P, perturbation Φ(x, y, z, t)
is introduced. By linearizing and substituting Equation (72) into Equation (17), we obtain

∂Φ

∂t
+ k2

∂3Φ

∂x3 + k3
∂

∂x

(
∂2Φ

∂y2 +
∂2Φ

∂z2

)
+ k1
√

P
∂Φ

∂x
+ βPεΦ = 0. (73)

considering the solution of Equation (73) takes

Φ(x, y, z, t) = ρeδ1x+δ2y+δ3z−νt, (74)

where δ1, δ2, δ3, and ν are the wave numbers and normalized frequency of Φ(x, y, z, t),
respectively. When Equation (74) is substituted into Equation (73), the relation is as follows:

ν = δ3
1k2 + k3δ1

(
δ2

2 + δ2
3

)
+ δ1k1

√
P + βPε. (75)



Fractal Fract. 2023, 7, 691 10 of 16

The dispersion relation in Equation (75) shows that the wave number, modulation of self-
phase, and stimulating Raman scattering have an impact on the steady-state stability. For
all wave numbers δ1, δ2, and δ3, the ν in Equation (75) real and the steady-state is stable
alongside small perturbations.

5. Physical Interpretation and Discussion of Results

The results presented in this article differ from those obtained by various researchers
because Equations (3) and (14) deviate from established methods. By assigning specific param-
eter values, distinct families of solutions for the ordinary differential Equations (3) and (14)
have been obtained. The extended Zakharov–Kuznetsov equation has been investigated by
many researchers through different techniques. The authors in [42,43] employed the extended
tanh method, the sine-Gordon expansion method, and (1/G′)-expansion method to derive
new periodic solitary wave solutions of the extended Zakharov–Kuznetsov equation. In refer-
ence [3], the authors applied the modified extended direct algebraic method and abundant
wave solutions were established. In this study, several novel and innovative outcomes have
been achieved which have not been previously documented.

The obtained solutions of the eZK equation are illustrated graphically to clarify their
physical significance. The graphs of the acquired solutions consist of the bright–dark
solitons, kink soliton, kink- and anti-kink-type breather waves, multi-peak solitons, and
periodic solitary waves having different amplitudes. In Figure 1, by setting parameters
to appropriate values, result (26) is obtained and illustrated. Figure 1a depicts the dark
solitons, (b) their 2D cross-section, and (c,d) their electric field ~E1 and magnetic field ~B1,
respectively. In Figure 2, by setting parameters to appropriate values, result (27) is obtained
and illustrated. Figure 2a depict the two-peak solitons, (b) their 2D cross-section, and
(c,d) their electric field ~E2 and magnetic field ~B2, respectively. By setting parameters to
appropriate values, result (28) is obtained and illustrated. Figure 3a depicts the bright
solitons, (b) their 2D cross-section, and (c,d) their electric field ~E3 and magnetic field ~B3,
respectively. In Figure 4, by setting parameters to appropriate values, result (29) is obtained
and illustrated. Figure 4a depicts the multi-peak solitons, (b) their 2D cross-section, and
(c,d) their electric field ~E4 and magnetic field ~B4, respectively.

In Figure 5, by setting parameters to appropriate values, result (54) is obtained and
illustrated. Figure 5a depicts the bright multi-peak solitons, (b) their 2D cross-section, and
(c,d) their electric field ~E1 and magnetic field ~B1, respectively. By setting parameters to
appropriate values, the result (58) in Figure 6 is illustrated as: Figure 6a depicts the peak
solitons, (b) their 2D cross-section, and (c,d) their electric field ~E2 and magnetic field ~B2,
respectively. In Figure 7, by setting parameters to appropriate values, the result (64) is
illustrated as: Figure 7a depicts the bright-type peak solitons, (b) their 2D cross-section, and
(c,d) their electric field ~E5 and magnetic field ~B5, respectively. The relation in Equation (75)
between ν and δ1, δ2, and δ3 is shown in Figure 8.
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Figure 1. By setting parameters to appropriate values, result (26) is obtained. (a) Depicts the dark
solitons, (b) their 2D cross-section, and (c,d) its electric field ~E1 and magnetic field ~B1, respectively.

Figure 2. By setting parameters to appropriate values, result (27) is obtained. (a) Depicts the two-peak
solitons, (b) their 2D cross-section, and (c,d) their electric field ~E2 and magnetic field ~B2, respectively.
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Figure 3. By setting parameters to appropriate values, result (28) is obtained. (a) Depicts the bright
solitons, (b) their 2D cross-section, and (c,d) their electric field ~E3 and magnetic field ~B3, respectively.

Figure 4. By setting parameters to appropriate values, result (29) is obtained. (a) Depicts the multi-
peak solitons of diverse amplitudes, (b) their 2D cross-section, and (c,d) their electric field ~E4 and
magnetic field ~B4, respectively.
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Figure 5. By setting parameters to appropriate values, result (54) is obtained. (a) Depicts the bright
multi-peak solitons, (b) their 2D cross-section, and (c,d) their electric field ~E1 and magnetic field ~B1,
respectively.

Figure 6. By setting parameters to appropriate values, result (58) is obtained. (a) Depicts the peak
solitons having diverse amplitudes, (b) their 2D cross-section, and (c,d) their electric field ~E2 and
magnetic field ~B2, respectively.
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Figure 7. By setting parameters to appropriate values, the result (64) is obtained. (a) Depicts the
bright-type peak solitons having diverse amplitudes, (b) their 2D cross-section, and (c,d) their electric
field ~E5 and magnetic field ~B5, respectively.

Figure 8. The relation in Equation (75) between ν and δ1, δ2, and δ3 is shown in (a,b) (three- and
two-dimensional) respectively.

6. Conclusions

We have effectively applied the presented techniques in this work to the (3+1)-
dimensional eZK equation. This dynamical equation is used to describe nonlinear dust-ion-
acoustic solitary waves of three dimensions in a magnetized two-ion-temperature dusty
plasma. By using the projected methods on this dynamical model, various forms of analyti-
cal solutions, including solitons, solitary waves, rational solutions, trigonometric solutions,
hyperbolic function solutions, and other wave solutions, have been developed in this re-
search. It has been possible to obtain soliton solutions in a variety of shapes, including kink
and anti-kink waves, dark and bright solitons, kink solitons, and multi-peak solitons, etc.
With the help of software, the solitary wave results (that signify the electrostatic potential
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field), electric and magnetic fields, and quantum statistical pressures are also constructed.
These solutions have numerous applications in various areas of applied sciences. Graphical
representations of some of the obtained results, and the electric and magnetic fields as
well as the electrostatic field potential are also presented. These results demonstrate the
effectiveness of the proposed techniques, which will also be useful in solving many other
nonlinear physical models that arise in several diverse areas of applied sciences.
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