

Article A Mixed Finite Element Method for the Multi-Term Time-Fractional Reaction–Diffusion Equations

Jie Zhao¹, Shubin Dong² and Zhichao Fang^{2,*}

- School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China; zhaoj@imufe.edu.cn
- ² School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China; madongshubin@126.com
- Correspondence: zcfang@imu.edu.cn

Abstract: In this work, a fully discrete mixed finite element (MFE) scheme is designed to solve the multi-term time-fractional reaction–diffusion equations with variable coefficients by using the well-known *L*1 formula and the Raviart–Thomas MFE space. The existence and uniqueness of the discrete solution is proved by using the matrix theory, and the unconditional stability is also discussed in detail. By introducing the mixed elliptic projection, the error estimates for the unknown variable *u* in the discrete $L^{\infty}(L^2(\Omega))$ norm and for the auxiliary variable λ in the discrete $L^{\infty}((L^2(\Omega))^2)$ and $L^{\infty}(H(\operatorname{div}, \Omega))$ norms are obtained. Finally, three numerical examples are given to demonstrate the theoretical results.

Keywords: multi-term time-fractional reaction–diffusion equations; mixed finite element method; *L*1 formula; unconditional stability; error estimate

1. Introduction

Fractional calculus and fractional partial differential equations (FPDEs) have been confirmed to be very important tools in describing some anomalous phenomena and processes with memory and nonlocal properties [1–6]. Moreover, some underlying and complex processes can be described more appropriately by multi-term FPDEs [7-9], as they contains multiple fractional derivative or calculus terms. In recent years, many numerical methods have been increasingly used by scholars to solve multi-term FPDEs. Liu et al. [10] constructed some finite difference (FD) schemes to solve the multi-term timefractional wave-diffusion equations by using two fractional predictor-corrector methods. Dehghan et al. [11] devised two high-order numerical schemes to solve the multi-term time-fractional diffusion-wave equations by using the compact FD method and Galerkin spectral technique. Ren and Sun [12] established an efficient compact FD scheme for the multi-term time-fractional diffusion-wave equation by using the L1 formula. Zheng et al. [13] proposed a high-order space-time spectral method for the multi-term timefractional diffusion equations by using the Legendre polynomials in the temporal direction and the Fourier-like basis functions in the spatial direction. Du and Sun [14] constructed an FD scheme for multi-term time-fractional mixed diffusion and wave equations by using the $L2 - 1_{\sigma}$ formula. Hendy and Zaky [15] proposed a spectral method for a coupled system of nonlinear multi-term time-space fractional diffusion equations by using the L1 formula on a time-graded mesh. Liu et al. [16] developed an ADI Legendre spectral method for solving a multi-term time-fractional Oldroyd-B fluid-type diffusion equation. Wei and Wang [17] constructed a higher-order numerical scheme for the multi-term variable-order time-fractional diffusion equation by using the local discontinuous Galerkin method. She et al. [18] considered a spectral method for solving the multi-term time-fractional diffusion problem by using a modified *L*1 formula.

Meanwhile, many scholars selected the finite element (FE) method for solving the multi-term FPDEs and have achieved excellent results. Jin et al. [19] developed an FE

Citation: Zhao, J.; Dong, S.; Fang, Z. A Mixed Finite Element Method for the Multi-Term Time-Fractional Reaction–Diffusion Equations. *Fractal Fract.* **2024**, *8*, 51. https://doi.org/ 10.3390/fractalfract8010051

Academic Editor: Jordan Hristov

Received: 5 December 2023 Revised: 4 January 2024 Accepted: 8 January 2024 Published: 12 January 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). method for a multi-term time-fractional diffusion equation and considered the case of smooth and nonsmooth initial data. Li et al. [20] proposed an FE method to solve a higherdimensional multi-term fractional diffusion equation on nonuniform time meshes. Zhou et al. [21] developed a weak Galerkin FE method for solving multi-term time-fractional diffusion equations by using a convolution quadrature formula. Bu et al. [22] proposed a space-time FE method for solving the multi-term time-space fractional diffusion equation based on the suitable graded time mesh. Feng et al. [23] proposed an FE method for a multi-term time-fractional mixed subdiffusion and diffusion-wave equation on the convex domain by using mixed L-type schemes. Meng and Stynes [24] considered an L1 FE method for a multi-term time-fractional initial-boundary value problem on the temporal graded mesh. Yin et al. [25] constructed a class of efficient time-stepping FE schemes for multi-term time-fractional reaction-diffusion-wave equations by using the shifted convolution quadrature method. Huang et al. [26] proposed an α -robust FE method for a multi-term time-fractional diffusion problem on a graded mesh by using the L1 formula. Liu et al. [27] proposed an FE method for solving a multi-term variable-order time-fractional diffusion equation and developed an efficient parallel-in-time algorithm to reduce the computational costs.

In this work, we will construct a fully discrete mixed finite element (MFE) scheme for the following multi-term time-fractional reaction–diffusion (TFRD) equations with variable coefficients:

$$\begin{cases} P(D_t)u(\mathbf{x},t) - \operatorname{div}(\mathcal{A}(\mathbf{x})\nabla u(\mathbf{x},t)) + p(\mathbf{x})u(\mathbf{x},t) = f(\mathbf{x},t), & (\mathbf{x},t) \in \Omega \times J, \\ u(\mathbf{x},t) = 0, & (\mathbf{x},t) \in \partial\Omega \times \overline{J}, \\ u(\mathbf{x},0) = u_0(\mathbf{x}), & \mathbf{x} \in \overline{\Omega}, \end{cases}$$
(1)

where $\Omega \subset R^2$ is a convex and bounded polygon region with boundary $\partial\Omega$, J = (0, T] with $0 < T < \infty$. We assume that the source function $f(\mathbf{x}, t)$, initial data $u_0(\mathbf{x})$, and non-negative coefficient $p(\mathbf{x})$ are smooth enough. Specifically, for the symmetric diffusion coefficient matrix $\mathcal{A}(\mathbf{x})$, we should assume that there exist two constants A_0 , $A_1 > 0$ such that

$$A_0 z^T z \leq z^T \mathcal{A}(x) z \leq A_1 z^T z, \forall z \in \mathbb{R}^2, \forall x \in \overline{\Omega}.$$

Moreover, the multi-term time-fractional derivative $P(D_t)u(x, t)$ is defined by

$$P(D_t)u(\mathbf{x},t) = \sum_{i=1}^m b_i D_t^{\alpha_i} u(\mathbf{x},t), 0 < \alpha_m < \alpha_{m-1} < \cdots < \alpha_1 < 1,$$

where b_i $(i = 1, 2, \dots, m)$ are the positive real numbers and $D_t^{\alpha_i} u$ is the Caputo time-fractional derivative as follows:

$$D_t^{\alpha_i}u(\mathbf{x},t) = \frac{1}{\Gamma(1-\alpha_i)} \int_0^t \frac{\partial u(x,s)}{\partial s} \frac{1}{(t-s)^{\alpha_i}} \mathrm{d}s,$$

where $\Gamma(\cdot)$ denotes the Γ -function.

It should be noted that the MFE method, as an important numerical calculation method, has been widely used to solve FPDEs [28–32], and some scholars have also used this method to solve the multi-term FPDEs [33–35]. In [33], Shi et al. proposed an H^1 -Galerkin mixed finite element (MFE) method for the multi-term time-fractional diffusion equations and gave a superconvergence result. In [34], Li et al. proposed an MFE method for the multi-term time-fractional diffusion and diffusion-wave equations by using an MFE space contained in $(L^2(\Omega))^d \times H^1_0(\Omega)$, where d = 2, 3. In [35], Cao et al. constructed a nonconforming MFE scheme for the multi-term time-fractional mixed diffusion and diffusion-wave equations. Motivated by the above excellent works, we will construct a fully discrete MFE scheme for the multi-term TFRD equation (1) by using the Raviart–Thomas MFE space and the L1 formula, analyze the existence, uniqueness, and unconditional

stability in detail, and give error estimates for *u* (in discrete $L^{\infty}(L^{2}(\Omega))$ norm) and auxiliary variable λ (in discrete $L^{\infty}((L^{2}(\Omega))^{2})$ and discrete $L^{\infty}(H(\operatorname{div}, \Omega))$ norms). Finally, we give numerical experiments to demonstrate the efficiency of the proposed method.

The remainder of this paper is arranged as follows. In Section 2, we construct a fully discrete MFE scheme for the multi-term TFRD equations by using the Raviart–Thomas MFE space and the *L*1 -formula. In Section 3, we give a fractional Grönwall inequality and analyze the existence and uniqueness of the discrete solution. We derive the unconditional stability results and a priori error estimates in detail in Sections 4 and 5, respectively. Finally, three numerical examples are given to verify the theoretical results.

2. Mixed Finite Element Method

We introduce the flux $\lambda(x, t) = -\mathcal{A}(x)\nabla u(x, t)$ as the auxiliary variable. Then, the original problem (1) can be rewritten as follows:

$$\begin{cases}
(a)P(D_t)u(\mathbf{x},t) + \operatorname{div}\lambda(\mathbf{x},t) + p(\mathbf{x})u(\mathbf{x},t) = f(\mathbf{x},t), & (\mathbf{x},t) \in \Omega \times J, \\
(b)\mathcal{A}^{-1}(\mathbf{x})\lambda(\mathbf{x},t) + \nabla u(\mathbf{x},t) = 0, & (\mathbf{x},t) \in \Omega \times J, \\
(c)u(\mathbf{x},t) = 0, & (\mathbf{x},t) \in \partial\Omega \times \overline{J}, \\
(d)u(\mathbf{x},0) = u_0(\mathbf{x}), & \mathbf{x} \in \overline{\Omega}.
\end{cases}$$
(2)

Let $V = L^2(\Omega)$ and $W = H(\operatorname{div}, \Omega) = \left\{ w \in (L^2(\Omega))^2 : \operatorname{div} w \in L^2(\Omega) \right\}$. Then, we obtain the mixed variational formulation of (2): find $(u, \lambda) \in V \times W$ such that

$$\begin{cases} (a)(P(D_t)u,v) + (\operatorname{div}\lambda,v) + (pu,v) = (f,v), & \forall v \in V, \\ (b)(\mathcal{A}^{-1}\lambda,w) - (u,\operatorname{div}w) = 0, & \forall w \in W, \\ (c)u(x,0) = u_0(x), & \forall x \in \overline{\Omega}. \end{cases}$$
(3)

Let K_h be a quasi-uniform triangulation of the domain Ω , h_T be the diameter of the triangle $T \in K_h$ and denote $h = \max\{h_T\}$. We select the Raviart–Thomas MFE space $V_h \times W_h \subset V \times W$, that is,

$$V_h(K) = \{ v_h \in V : v_h |_T \in P_r(T), \forall T \in K_h \},\$$
$$W_h(K) = \left\{ w_h \in W : w_h \Big|_T \in (P_r(T))^2 \oplus (\mathbf{x} P_r(T)), \forall T \in K_h \right\}$$

where the notation \oplus indicates a direct sum, $xP_r(T) = (x_1P_r(T), x_2P_r(T)), x = (x_1, x_2)$ and $r \ge 0$ is a given integer.

Let $\tau = T/N$ and $t_n = n\tau$ for $n = 0, 1, 2, \dots, N$, where *N* is a positive integer. For the parameters α_i and $i = 1, 2, \dots, m$, the Caputo time-fraction derivative $D_t^{\alpha_i} u(\mathbf{x}, t)$ at $t = t_n$ is approximated by using the well-known *L*1 formula [36,37] as follows:

$$D_{t}^{\alpha_{i}}u(\mathbf{x},t_{n}) = \frac{1}{\Gamma(1-\alpha_{i})} \int_{0}^{t_{n}} \frac{\partial u(x,s)}{\partial s} \frac{1}{(t_{n}-s)^{\alpha_{i}}} ds$$

$$= \frac{1}{\Gamma(2-\alpha_{i})} \sum_{k=0}^{n-1} \frac{u^{k+1}-u^{k}}{\tau} \Big[(t_{n}-t_{k})^{1-\alpha_{i}} - (t_{n}-t_{k+1})^{1-\alpha_{i}} \Big] + Q_{\alpha_{i}}^{n}(x)$$

$$= \frac{1}{\Gamma(2-\alpha_{i})} \left[d_{\alpha_{i},1}^{n}u^{n} + \sum_{k=1}^{n-1} \Big(d_{\alpha_{i},k+1}^{n} - d_{\alpha_{i},k}^{n} \Big) u^{n-k} - d_{\alpha_{i},n}^{n}u^{0} \right] + Q_{\alpha_{i}}^{n}(x)$$

$$= \frac{1}{\Gamma(2-\alpha_{i})} \sum_{k=0}^{n} \widetilde{d}_{\alpha_{i},k}^{n}u^{k} + Q_{\alpha_{i}}^{n}(x),$$
(4)

where $d_{\alpha_i,k}^n = \frac{(t_n - t_{n-k})^{1-\alpha_i} - (t_n - t_{n-k+1})^{1-\alpha_i}}{\tau}$, $\widetilde{d}_{\alpha_i,0}^n = -d_{\alpha_i,n}^n$, $\widetilde{d}_{\alpha_i,n}^n = -d_{\alpha_i,1}^n$, and $\widetilde{d}_{\alpha_i,k}^n = d_{\alpha_i,n-k+1}^n - d_{\alpha_i,n-k}^n (0 < k \le n-1)$. Setting $D_N^{\alpha_i} u^n = \frac{1}{\Gamma(2-\alpha_i)} \sum_{k=0}^n \widetilde{d}_{\alpha_i,k}^n u^k$, we have $D_t^{\alpha_i} u(x,t_n) = D_N^{\alpha_i} u^n + Q_{\alpha_i}^n(x)$, where $Q_{\alpha_i}^n(x)$ is the truncation error.

Based on the above definitions, and setting u_h^n and λ_h^n to be the discrete solutions of u and λ at $t = t_n$, respectively, then we can design a fully discrete MFE scheme for the original problem (1): find $(u_h^n, \lambda_h^n) \in V_h \times W_h$ such that

$$\begin{cases} (a) \left(\sum_{i=1}^{m} b_i D_N^{\alpha_i} u_h^n, v_h \right) + (\operatorname{div} \lambda_h^n, v_h) + (p u_h^n, v_h) = (f^n, v_h), & \forall v_h \in V_h, \\ (b) \left(\mathcal{A}^{-1} \lambda_h^n, w_h \right) - \left(u_h^n, \operatorname{div} w_h \right) = 0, & \forall w_h \in W_h, \end{cases}$$
(5)

where $(u_h^0, \lambda_h^0) \in V_h \times W_h$ satisfies

$$\begin{cases} (a) \left(\mathcal{A}^{-1} \boldsymbol{\lambda}_{h}^{0}, \boldsymbol{w}_{h} \right) - \left(\boldsymbol{u}_{h}^{0}, \operatorname{div} \boldsymbol{w}_{h} \right) = 0, & \forall \boldsymbol{w}_{h} \in \boldsymbol{W}_{h}, \\ (b) \left(\operatorname{div} \boldsymbol{\lambda}_{h}^{0}, \boldsymbol{v}_{h} \right) = \left(\operatorname{div} \boldsymbol{\lambda}_{0}, \boldsymbol{v}_{h} \right), & \forall \boldsymbol{v}_{h} \in V_{h}, \end{cases}$$
(6)

where $\lambda_0(\mathbf{x}) = -\mathcal{A}(\mathbf{x})\nabla u_0(\mathbf{x}).$

Remark 1. (I) In the MFE scheme (5)–(6), we particularly emphasize the calculation of initial values (u_h^0, λ_h^0) , as this calculation will be used in stability and convergence analyses. Moreover, from the mixed elliptic projection R_h defined in Section 5, we can see that $(u_h^0, \lambda_h^0) = (R_h u_0, R_h \lambda_0)$.

(II) Compared with the standard FE methods, it is well known that the MFE method can not only reduce the smoothness requirement of the finite element space, but also simultaneously calculate multiple physical quantities. These advantages are very important and popular in practical applications.

3. Existence and Uniqueness

In this section, we shall prove the existence and uniqueness for the MFE scheme (5)–(6). We first give some lemmas, which are important in subsequent theoretical analysis.

Lemma 1 ([38]). There exist two positive constants μ_0 and μ_1 such that

$$\|\boldsymbol{w}\|^2 \leq \|\boldsymbol{w}\|^2_{\mathcal{A}^{-1}} \leq \mu_1 \|\boldsymbol{w}\|^2$$
, where $\|\boldsymbol{w}\|^2_{\mathcal{A}^{-1}} = (\mathcal{A}^{-1}\boldsymbol{w}, \boldsymbol{w})$, $\forall \boldsymbol{w} \in \boldsymbol{W}$.

Lemma 2 ([28]). Let $\{z^n\}_{n=0}^{\infty}$ be a sequence on W_h . Then, the following identity holds:

$$\sum_{k=0}^{n} \widetilde{d}^{n}_{\alpha_{i},k} \left(\mathcal{A}^{-1} z^{k}, z^{n} \right) = \frac{1}{2} \left[\widetilde{d}^{n}_{\alpha_{i},n} \left(\mathcal{A}^{-1} z^{n}, z^{n} \right) + \sum_{k=0}^{n-1} \widetilde{d}^{n}_{\alpha_{i},k} \left(\mathcal{A}^{-1} z^{k}, z^{k} \right) \right]$$
$$+ \sum_{k=0}^{n-1} \widetilde{d}^{n}_{\alpha_{i},k} \left(\mathcal{A}^{-1} \left(z^{n} - z^{k} \right), z^{n} - z^{k} \right].$$

Lemma 3. Let $\{\varphi^k : 0 \le k \le N\}$ be a non-negative sequence, $\{\xi^k : 0 \le k \le N\}$ be a nondecreasing positive sequence, and $C_0 \ge 1$ be a constant, which satisfy

$$\sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \widetilde{d}^n_{\alpha_i,n} \varphi^n \le -C_0 \sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \sum_{k=0}^{n-1} \widetilde{d}^n_{\alpha_i,k} \varphi^k + \boldsymbol{\xi}^n, 1 \le n \le N.$$
(7)

Then, we have

$$\varphi^{n} \leq C_{0}^{n}(\varphi^{0} + \frac{1}{\sum\limits_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} d_{\alpha_{i},n}^{n}} \boldsymbol{\xi}^{n}), 1 \leq n \leq N.$$
(8)

Further, we can further write (8) as

$$\varphi^n \le C_0^n (\varphi^0 + \sum_{i=1}^m \frac{\Gamma(1-\alpha_i)t_n^{\alpha_i}}{b_i} \boldsymbol{\xi}^n), 1 \le n \le N.$$
(9)

Proof. When n = 1 in (7), we have

$$\sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \tilde{d}^{1}_{\alpha_i,1} \varphi^1 \le -C_0 \sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \tilde{d}^{1}_{\alpha_i,0} \varphi^0 + \boldsymbol{\xi}^1.$$
(10)

Noting that $\widetilde{d}_{\alpha_i,0}^n = -d_{\alpha_i,n}^n$, $\widetilde{d}_{\alpha_i,n}^n = d_{\alpha_i,1}^n$, we have

$$\sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} d^1_{\alpha_i,1} \varphi^1 \le C_0 \sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} d^1_{\alpha_i,1} \varphi^0 + \xi^1.$$
(11)

Then, we can obtain

$$\varphi^{1} \leq C_{0}(\varphi^{0} + \frac{1}{\sum\limits_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} d_{\alpha_{i},1}^{1}} \boldsymbol{\xi}^{1}).$$
(12)

It means that the conclusion (8) is valid for the case of n = 1. Assume that (8) is valid for $n = 1, 2, \dots, r$. We now need to prove that it also holds for n = r + 1. Selecting n = r + 1 in (7), we obtain

$$\sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \tilde{d}_{\alpha_{i},j+1}^{j+1} \varphi^{j+1} \\
\leq -C_{0} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \sum_{k=0}^{j} \tilde{d}_{\alpha_{i},k}^{j+1} \varphi^{k} + \boldsymbol{\xi}^{j+1} \\
= C_{0} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \sum_{k=1}^{j} \left(d_{\alpha_{i},j-k+1}^{j+1} - d_{\alpha_{i},j-k+2}^{j+1} \right) \varphi^{k} + C_{0} \sum_{i=1}^{m} b_{i} d_{\alpha_{i},j+1}^{j+1} \varphi^{0} + \boldsymbol{\xi}^{j+1} \\
= C_{0} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \sum_{k=0}^{j-1} \left(d_{\alpha_{i},k+1}^{j+1} - d_{\alpha_{i},k+2}^{j+1} \right) \varphi^{j-k} + C_{0} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} d_{\alpha_{i},j+1}^{j+1} \varphi^{0} + \boldsymbol{\xi}^{j+1}.$$
(13)

Noting that $0 < d_{\alpha_i,k+1}^{k+1} < d_{\alpha_i,k}^k$ and $0 < d_{\alpha_i,k+1}^n < d_{\alpha_i,k}^n$ $(k = 0, 1 \cdots j)$, we have

$$\begin{split} &\sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \tilde{d}_{\alpha_{i},j+1}^{j+1} \varphi^{j+1} \\ \leq &C_{0} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \sum_{k=0}^{j-1} \left(d_{\alpha_{i},k+1}^{j+1} - d_{\alpha_{i},k+2}^{j+1} \right) [C_{0}^{j-k}(\varphi^{0} + \frac{1}{\sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})}} d_{\alpha_{i},j-k}^{j-k} \xi^{j-k})] \\ &+ C_{0} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} d_{\alpha_{i},j+1}^{j+1}(\varphi^{0} + \frac{1}{\sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})}} d_{\alpha_{i},j+1}^{j+1} \xi^{j+1}) \\ \leq &C_{0}^{j+1} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} [\sum_{k=0}^{j-1} \left(d_{\alpha_{i},k+1}^{j+1} - d_{\alpha_{i},k+2}^{j+1} \right) + d_{\alpha_{i},j+1}^{j+1}](\varphi^{0} + \frac{1}{\sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})}} d_{\alpha_{i},j+1}^{j+1} \xi^{j+1}) \\ \leq &C_{0}^{j+1} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} d_{\alpha_{i},1}^{j+1}(\varphi^{0} + \frac{1}{\sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})}} d_{\alpha_{i},j+1}^{j+1} \xi^{j+1}). \end{split}$$

Therefore, using the mathematical induction method, we can complete the proof of (8). From [37], we know $n^{\alpha_i} \left(n^{1-\alpha_i} - (n-1)^{1-\alpha_i} \right) \ge 1 - \alpha_i$, and then

$$d_{\alpha_{i},n}^{n} = \frac{(n\tau)^{1-\alpha_{i}} - (n\tau - \tau)^{1-\alpha_{i}}}{\tau} = \frac{\left(n^{1-\alpha_{i}} - (n-1)^{1-\alpha_{i}}\right)}{\tau^{\alpha_{i}}} \ge \frac{(1-\alpha_{i})}{\tau^{\alpha_{i}}n^{\alpha_{i}}}.$$
 (15)

Thus, making use of (8) and (15), we can complete the proof of (9). \Box

Next, we give the existence and uniqueness results for the MFE scheme (5).

Theorem 1. The MFE scheme (5) has a unique solution.

Proof. Let $V_h = \text{span}\{\phi_1, \phi_2, \dots, \phi_{M_1}\}$ and $W_h = \text{span}\{\psi_1, \psi_2, \dots, \psi_{M_2}\}$. Then, u_h^n and λ_h^n can be written as

$$u_h^n = \sum_{i=1}^{M_1} \widetilde{u}_i^n \phi_i, \lambda_h^n = \sum_{j=1}^{M_2} \widetilde{s}_j^n \psi_j.$$
(16)

Substituting 16 into (5) and selecting $v_h = \phi_i$ $(i = 1, 2, \dots, M_1)$ and $w_h = \psi_j$ $(j = 1, 2, \dots, M_2)$, we have

$$\begin{bmatrix} \sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \widetilde{d}^n_{\alpha_i,n} B_1 + B_3 & D^T \\ -D & B_2 \end{bmatrix} \begin{bmatrix} U^n \\ L^n \end{bmatrix} = \begin{bmatrix} F^n - \sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \sum_{k=0}^{n-1} \widetilde{d}^n_{\alpha_i,k} B_1 U^k \\ 0 \end{bmatrix}, \quad (17)$$

where

$$\begin{aligned} U^{n} &= \left(\tilde{u}_{1}^{n}, \tilde{u}_{2}^{n}, \cdots, \tilde{u}_{M_{1}}^{n} \right)^{I}, \quad L^{n} &= \left(\tilde{s}_{1}^{n}, \tilde{s}_{2}^{n}, \cdots, \tilde{s}_{M_{2}}^{n} \right)^{I}, \\ B_{1} &= \left((\phi_{i}, \phi_{j}) \right)_{M_{1} \times M_{1}}, \qquad B_{2} &= \left((\mathcal{A}^{-1} \psi_{i}, \psi_{j}) \right)_{M_{2} \times M_{2}}, \\ B_{3} &= \left((p\phi_{i}, \phi_{j}) \right)_{M_{1} \times M_{1}}, \qquad D &= \left((\operatorname{div} \psi_{i}, \phi_{j}) \right)_{M_{2} \times M_{1}'}, \\ F^{n} &= \left((f^{n}, \phi_{i}) \right)_{M_{1} \times 1'} \end{aligned}$$

Noting that B_1 and B_2 are symmetric positive definite matrices and B_3 is a symmetric semi-positive matrix, we have

$$\begin{bmatrix} E & -D^T B_2^{-1} \\ 0 & E \end{bmatrix} \begin{bmatrix} \sum_{i=1}^m \frac{b_i}{\Gamma(2-\alpha_i)} \widetilde{d}^n_{\alpha_i,n} B_1 + B_3 & D^T \\ -D & B_2 \end{bmatrix} = \begin{bmatrix} G & 0 \\ -D & B_2 \end{bmatrix}.$$
 (18)

where $G = \sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \tilde{d}^n_{\alpha_i,n} B_1 + B_3 + D^T B_2^{-1} D$. It is easy to see that *G* is invertible, so the coefficient matrix of linear Equation (17) is invertible. This means that the MFE scheme (5) has a unique solution. \Box

Remark 2. For Lemma 3, when $C_0 = 1$, a similar conclusion can be seen from the proof of Theorem 3.1 in [20]. When $C_0 > 1$, some special applications can be seen from [39]. It should be noted that this lemma can be considered a fractional Grönwall inequality without any other conditions for its existence, which will play a crucial role in the subsequent proof process of stability and convergence analyses.

4. Stability Analysis

In this section, we will discuss the unconditional stability for the MFE scheme (5)-(6).

Theorem 2. Let $(u_h^n, \lambda_h^n)_{n=1}^N$ be the solutions of the MFE scheme (5). Then, there exists a constant C > 0 independent of h and N such that

$$\| u_h^n \| \le \| u_h^0 \| + \sum_{i=1}^m \frac{\Gamma(1-\alpha_i) t_n^{\alpha_i}}{b_i} \sup_{t \in [0,T]} \| f(t) \| \triangleq U_h^\diamond,$$

$$\| \lambda_h^n \| \le C \left(\| \lambda_h^0 \| + \left(\sum_{i=1}^m \frac{\Gamma(1-\alpha_i) t_n^{\alpha_i}}{b_i} \right)^{1/2} (\sup_{t \in [0,T]} \| f(t) \| + \| p \|_{\infty} U_h^\diamond) \right).$$

Proof. Taking $v_h = u_h^n$ and $w_h = \lambda_h^n$ in (5), we have

$$\left(\sum_{i=1}^{m} b_i D_N^{\alpha_i} u_h^n, u_h^n\right) + \left(\mathcal{A}^{-1} \lambda_h^n, \lambda_h^n\right) + \left(p u_h^n, u_h^n\right) = (f^n, u_h^n).$$
(19)

Using Lemma 1 and the definition of $D_N^{\alpha_i} u_h^n$, we have

$$\sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \widetilde{d}^n_{\alpha_i,n}(u_h^n, u_h^n) + \mu_0 \|\lambda_h^n\|^2 \le \sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \sum_{k=0}^{n-1} \widetilde{d}^n_{\alpha_i,k}\left(u_h^k, u_h^n\right) + (f^n, u_h^n).$$
(20)

Applying the Cauchy-Schwarz inequality yields

$$\sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \tilde{d}^n_{\alpha_i,n} \| u_h^n \| \le \sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \sum_{k=0}^{n-1} \tilde{d}^n_{\alpha_i,k} \| u_h^k \| + \| f^n \|.$$
(21)

Using Lemma 3, we obtain

$$\| u_h^n \| \le \| u_h^0 \| + \sum_{i=1}^m \frac{\Gamma(1-\alpha_i) t_n^{\alpha_i}}{b_i} \sup_{t \in [0,T]} \| f(t) \| \triangleq U_h^\diamond.$$
(22)

Next, using (5) (*b*) and (6) (*a*), we have

$$\left(A^{-1}\sum_{i=1}^{m}b_{i}D_{N}^{\alpha_{i}}\boldsymbol{\lambda}_{h}^{n},\boldsymbol{w}_{h}\right)-\left(\sum_{i=1}^{m}b_{i}D_{N}^{\alpha_{i}}\boldsymbol{u}_{h}^{n},\operatorname{div}\boldsymbol{w}_{h}\right)=0,\forall\boldsymbol{w}_{h}\in\boldsymbol{W}_{h}.$$
(23)

Choosing $v_h = \sum_{i=1}^m b_i D_N^{\alpha_i} u_h^n$ and $w_h = \lambda_h^n$ in (5) (*a*) and (23), respectively, we obtain

$$\|\sum_{i=1}^{m} b_i D_N^{\alpha_i} u_h^n\|^2 + \left(A^{-1} \sum_{i=1}^{m} b_i D_N^{\alpha_i} \lambda_h^n, \lambda_h^n\right) + \left(p u_h^n, \sum_{i=1}^{m} b_i D_N^{\alpha_i} u_h^n\right) = \left(f^n, \sum_{i=1}^{m} b_i D_N^{\alpha_i} u_h^n\right).$$
(24)

Using Lemma 2 in (24) yields

$$\left\| \sum_{i=1}^{m} b_i D_N^{\alpha_i} u_h^n \right\|^2 + \frac{1}{2} \sum_{i=0}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \left[\widetilde{d}_{\alpha_i,n}^n \left(A^{-1} \lambda_h^n, \lambda_h^n \right) + \sum_{k=0}^{n-1} \widetilde{d}_{\alpha_i,k}^n \left(A^{-1} \lambda_h^k, \lambda_h^k \right) - \sum_{k=0}^{n-1} \widetilde{d}_{\alpha_i,k}^n \left(A^{-1} \left(\lambda_h^n - \lambda_h^k \right), \lambda_h^n - \lambda_h^k \right) \right] = \left(f^n, \sum_{i=1}^{m} b_i D_N^{\alpha_i} u_h^n \right) - \left(p u_h^n, \sum_{i=1}^{m} b_i D_N^{\alpha_i} u_h^n \right).$$

$$(25)$$

Because of $\tilde{d}^n_{\alpha_i,k} < 0, 0 < k \le n - 1$, we have

$$\left\| \sum_{i=1}^{m} b_i D_N^{\alpha_i} u_h^n \right\|^2 + \frac{1}{2} \sum_{i=0}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \widetilde{d}_{\alpha_i,n}^n \left(A^{-1} \lambda_h^n, \lambda_h^n \right)$$

$$\leq -\frac{1}{2} \sum_{i=0}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \sum_{k=0}^{n-1} \widetilde{d}_{\alpha_i,k}^n \left(A^{-1} \lambda_h^k, \lambda_h^k \right)$$

$$+ \left(f^n, \sum_{i=1}^{m} b_i D_N^{\alpha_i} u_h^n \right) - \left(p u_h^n, \sum_{i=1}^{m} b_i D_N^{\alpha_i} u_h^n \right).$$

$$(26)$$

Apply the Cauchy-Schwarz inequality and the Young inequality in (26) to obtain

$$\|\sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} u_{h}^{n}\|^{2} + \frac{1}{2} \sum_{i=0}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \widetilde{d}_{\alpha_{i},n}^{n} \left(A^{-1} \lambda_{h}^{n}, \lambda_{h}^{n}\right)$$

$$\leq -\frac{1}{2} \sum_{i=0}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \sum_{k=0}^{n-1} \widetilde{d}_{\alpha_{i},k}^{n} \left(A^{-1} \lambda_{h}^{k}, \lambda_{h}^{k}\right)$$

$$+\frac{1}{2} \|\sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} u_{h}^{n}\|^{2} + \|f^{n}\|^{2} + \|p\|_{\infty}^{2} \|u_{h}^{n}\|^{2}.$$
(27)

Using Lemma 3 in (27), we obtain

$$\|\lambda_{h}^{n}\| \leq C \left(\|\lambda_{h}^{0}\| + \left(\sum_{i=1}^{m} \frac{\Gamma(1-\alpha_{i})t_{n}^{\alpha_{i}}}{b_{i}}\right)^{1/2} (\sup_{t \in [0,T]} \|f(t)\| + \|p\|_{\infty}U_{h}^{\diamond}) \right).$$
(28)

Thus, we complete the proof. \Box

5. Convergence Analysis

In this section, we will present the convergence results. For this purpose, we first introduce the mixed elliptic projection $(R_h u, R_h \lambda) \in V_h \times W_h$ defined by

$$\begin{cases} (a) \left(\mathcal{A}^{-1} (\boldsymbol{\lambda} - R_h \boldsymbol{\lambda}), \boldsymbol{w}_h \right) - (u - R_h u, \operatorname{div} \boldsymbol{w}_h) = 0, & \forall \boldsymbol{w}_h \in \boldsymbol{W}_h, \\ (b) (\operatorname{div} (\boldsymbol{\lambda} - R_h \boldsymbol{\lambda}), \boldsymbol{v}_h) = 0, & \forall \boldsymbol{v}_h \in V_h. \end{cases}$$
(29)

Then, the above projection satisfies the classical estimates as follows.

Lemma 4 ([40,41]). There exists a constant C > 0 independent of h and N such that

$$\| \boldsymbol{\lambda} - R_{h}\boldsymbol{\lambda} \| \leq Ch^{r+1} \| \boldsymbol{\lambda} \|_{r+1}, \text{for}\boldsymbol{\lambda} \in \left(H^{r+1}(\Omega)\right)^{2}, \\ \| \operatorname{div}(\boldsymbol{\lambda} - R_{h}\boldsymbol{\lambda}) \| \leq Ch^{r+1} \| \operatorname{div}\boldsymbol{\lambda} \|_{r+1}, \text{fordiv}\boldsymbol{\lambda} \in H^{r+1}(\Omega), \\ \| \boldsymbol{u} - R_{h}\boldsymbol{u} \| \leq Ch^{r+1} \left(\| \boldsymbol{u} \|_{r+1} + \| \boldsymbol{\lambda} \|_{r+1} \right), \text{for}\boldsymbol{u} \in H^{r+1}(\Omega), \boldsymbol{\lambda} \in \left(H^{r+1}(\Omega)\right)^{2}.$$

For the truncation error $Q_{\alpha_i}^n$ $(i = 1, 2, \dots, m)$ of the *L*1 formula, from [36,37], we give the following estimates.

Lemma 5. Let $u \in C^2(\overline{J}, L^2(\Omega))$. Then, we have

$$\| Q_{\alpha_i}^n \| \le CN^{-(2-\alpha_i)}, i = 1, 2, \cdots, m$$
$$\| \sum_{i=1}^m b_i Q_{\alpha_i}^n \| \le CN^{-(2-\alpha_1)},$$

where C > 0 is a constant independent of h and N.

Now, we write the errors $u(t_n) - u_h^n = u(t_n) - R_h u(t_n) + R_h u(t_n) - u_h^n = \rho^n + \theta^n$ and $\lambda(t_n) - \lambda_h^n = \lambda(t_n) - R_h \lambda(t_n) + R_h \lambda(t_n) - \lambda_h^n = \xi^n + \eta^n$. From (3) and (5), making use of the mixed elliptic projection R_h , we have the following error equations:

$$\begin{cases} (a) \left(\sum_{i=1}^{m} b_i D_N^{\alpha_i}(\theta^n + \rho^n), v_h \right) + (\operatorname{div} \boldsymbol{\eta}^n, v_h) + (p(\theta^n + \rho^n), v_h) \\ = -\left(\sum_{i=1}^{m} b_i Q_{\alpha_i}^n, v_h \right), & \forall v_h \in V_h, \\ (b) \left(\mathcal{A}^{-1} \boldsymbol{\eta}^n, \boldsymbol{w}_h \right) - (\theta^n, \operatorname{div} \boldsymbol{w}_h) = 0, & \forall \boldsymbol{w}_h \in \mathbf{W}_h. \end{cases}$$
(30)

Noting that $(u_h^0, \lambda_h^0) = (R_h u_0, R_h \lambda_0)$, we have $\theta^0 = 0$ and $\eta^0 = 0$. We next give the convergence results for the MFE scheme (5)–(6).

Theorem 3. Let $(u^n, \lambda^n) \in V \times W$ and $(u_h^n, \lambda_h^n) \in V_h \times W_h$ be the solutions of (3) and (5), respectively. Assume that $u, div\lambda \in C^2(\overline{J}, H^{r+1}(\Omega)), \lambda \in C^2(\overline{J}, (H^{r+1}(\Omega))^2)$. Then, we have

$$\max_{1 \le n \le N} \| u(t_n) - u_h^n \| + \max_{1 \le n \le N} \| \lambda(t_n) - \lambda_h^n \| \le C \Big(h^{r+1} + N^{-(2-\alpha_1)} \Big),$$
$$\max_{1 \le n \le N} \| \lambda(t_n) - \lambda_h^n \|_{H(\operatorname{div},\Omega)} \le C \Big(1 + N^{\frac{\alpha_m}{2}} \Big) \Big(h^{r+1} + N^{-(2-\alpha_1)} \Big),$$

where C > 0 is a constant independent of h and N.

Proof. Taking $v_h = \theta^n$ and $w_h = \eta^n$ in (30), we can obtain

$$\left(\sum_{i=1}^{m} b_i D_N^{\alpha_i} \theta^n, \theta^n\right) + \left(\mathcal{A}^{-1} \boldsymbol{\eta}^n, \boldsymbol{\eta}^n\right) + \left(p \theta^n, \theta^n\right) \\
= -\left(\sum_{i=1}^{m} b_i Q_{\alpha_i}^n, \theta^n\right) - \left(p \rho^n, \theta^n\right) - \left(\sum_{i=1}^{m} b_i D_N^{\alpha_i} \rho^n, \theta^n\right).$$
(31)

Noting that $p(\mathbf{x}) \ge 0$, using the Lemma 1 and the definition of $D_N^{\alpha_i} u_h^n$, we have

$$\sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \widetilde{d}^{n}_{\alpha_i,n}(\theta^n, \theta^n) + \mu_0 \| \boldsymbol{\eta}^n \|^2$$

$$\leq -\sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \sum_{k=0}^{n-1} \widetilde{d}^{n}_{\alpha_i,k}(\theta^k, \theta^n) - \left(\sum_{i=1}^{m} b_i Q^n_{\alpha_i}, \theta^n\right) - (p\rho^n, \theta^n) - \left(\sum_{i=1}^{m} b_i D^{\alpha_i}_N \rho^n, \theta^n\right).$$
(32)

Applying the Cauchy-Schwarz inequality, we obtain

$$\sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \widetilde{d}_{\alpha_{i},n}^{n} \| \theta^{n} \|^{2} + \mu_{0} \| \eta^{n} \|^{2}$$

$$\leq -\sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \sum_{k=0}^{n-1} \widetilde{d}_{\alpha_{i},k}^{n} \| \theta^{k} \| \| \theta^{n} \|$$

$$+ (\| \sum_{i=1}^{m} b_{i} Q_{\alpha_{i}}^{n} \| + \| p \|_{\infty} \| \rho \| + \| \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \rho^{n} \|) \| \theta^{n} \|,$$
(33)

and then

$$\sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \widetilde{d}_{\alpha_{i},n}^{n} \| \theta^{n} \|^{2} \leq -\sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \sum_{k=0}^{n-1} \widetilde{d}_{\alpha_{i},k}^{n} \| \theta^{k} \| + (\| \sum_{i=1}^{m} b_{i} Q_{\alpha_{i}}^{n} \| + \| p \|_{\infty} \| \rho \| + \| \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \rho^{n} \|).$$

$$(34)$$

Using Lemmas 4 and 5, we obtain

$$\sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \widetilde{d}^n_{\alpha_i,n} \| \theta^n \| \le -\sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \sum_{k=0}^{n-1} \widetilde{d}^n_{\alpha_i,k} \| \theta^k \| + C \Big(N^{-(2-\alpha_1)} + h^{r+1} \Big).$$
(35)

Noting that $\theta^0 = 0$ and using Lemma 3, we obtain

$$\| \theta^n \| \le C \Big(h^{r+1} + N^{-(2-\alpha_1)} \Big).$$
 (36)

Now, from (30) (b), we obtain

$$\left(\mathcal{A}^{-1}\sum_{i=1}^{m}b_{i}D_{N}^{\alpha_{i}}\boldsymbol{\eta}^{n},\boldsymbol{w}_{h}\right)-\left(\sum_{i=1}^{m}b_{i}D_{N}^{\alpha_{i}}\boldsymbol{\theta}^{n},\operatorname{div}\boldsymbol{w}_{h}\right)=0,\forall\boldsymbol{w}_{h}\in\boldsymbol{W}_{h}.$$
(37)

Choosing $v_h = \sum_{i=1}^m b_i D_N^{\alpha_i} \theta^n$ and $w_h = \eta^n$ in (30) (*a*) and (37), respectively, we can obtain

$$\|\sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \theta^{n} \|^{2} + \left(\mathcal{A}^{-1} \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \eta^{n}, \eta^{n} \right)$$

$$= -\left(\sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \rho^{n}, \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \theta^{n} \right) - \left(p(\rho^{n} + \theta^{n}), \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \theta^{n} \right) - \left(\sum_{i=1}^{m} b_{i} Q_{\alpha_{i}}^{n}, \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \theta^{n} \right).$$

$$(38)$$

Using Lemma 2, we have

$$\| \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \theta^{n} \|^{2} + \frac{1}{2} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} [\widetilde{d}_{\alpha_{i},n}^{n} \left(\mathcal{A}^{-1} \eta^{n}, \eta^{n} \right) - \sum_{k=0}^{n-1} \widetilde{d}_{\alpha_{i},k}^{n} \left(\mathcal{A}^{-1} \left(\eta^{n} - \eta^{k}, \eta^{n} - \eta^{k} \right) \right)]$$

$$= -\frac{1}{2} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \sum_{k=0}^{n-1} \widetilde{d}_{\alpha_{i},k}^{n} \left(\mathcal{A}^{-1} \eta^{k}, \eta^{k} \right) - \left(\sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \rho^{n}, \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \theta^{n} \right)$$

$$- \left(\sum_{i=1}^{m} b_{i} Q_{\alpha_{i}}^{n}, \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \theta^{n} \right) - \left(p(\rho^{n} + \theta^{n}), \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \theta^{n} \right).$$

$$(39)$$

Noting that $\widetilde{d}^n_{\alpha_i,k} < 0, 0 < k \le n-1$ and using Lemma 1, we obtain

$$\begin{split} \left\|\sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \theta^{n}\right\|^{2} &+ \frac{1}{2} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \widetilde{d}_{\alpha_{i},n}^{n} \left(\mathcal{A}^{-1} \boldsymbol{\eta}^{n}, \boldsymbol{\eta}^{n}\right) \\ \leq &- \frac{1}{2} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \sum_{k=0}^{n-1} \widetilde{d}_{\alpha_{i},k}^{n} \left(\mathcal{A}^{-1} \boldsymbol{\eta}^{k}, \boldsymbol{\eta}^{k}\right) - \left(\sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \rho^{n}, \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \theta^{n}\right) \\ &- \left(\sum_{i=1}^{m} b_{i} Q_{\alpha_{i}}^{n}, \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \theta^{n}\right) - \left(p(\rho^{n}+\theta^{n}), \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \theta^{n}\right). \end{split}$$
(40)

Applying the Cauchy-Schwarz and the Young inequality in (40) yields

$$\| \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \theta^{n} \|^{2} + \frac{1}{2} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \widetilde{d}_{\alpha_{i},n}^{n} \left(\mathcal{A}^{-1} \eta^{n}, \eta^{n} \right)$$

$$\leq -\frac{1}{2} \sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} \sum_{k=0}^{n-1} \widetilde{d}_{\alpha_{i},k}^{n} \left(\mathcal{A}^{-1} \eta^{k}, \eta^{k} \right) + \frac{1}{2} \| \sum_{i=1}^{m} b_{i} D_{N}^{\alpha} \theta^{n} \|^{2}$$

$$+ 2 \left(\| \sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \rho^{n} \| + \| \sum_{i=1}^{m} b_{i} Q_{\alpha_{i}}^{n} \|^{2} + \| p \|_{\infty}^{2} (\| \rho^{n} \|^{2} + \| \theta^{n} \|^{2}) \right).$$

$$(41)$$

Using Lemmas 4 and 5, we obtain

$$\sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \widetilde{d}^n_{\alpha_i,n} \left(\mathcal{A}^{-1} \boldsymbol{\eta}^n, \boldsymbol{\eta}^n \right)$$

$$\leq -\sum_{i=1}^{m} \frac{b_i}{\Gamma(2-\alpha_i)} \sum_{k=0}^{n-1} \widetilde{d}^n_{\alpha_i,k} \left(\mathcal{A}^{-1} \boldsymbol{\eta}^k, \boldsymbol{\eta}^k \right) + C \left(N^{-2(2-\alpha_1)} + h^{2r+2} \right).$$
(42)

Noting that $\eta^0 = 0$ and using Lemma 3, we obtain

$$\|\eta^{n}\| \leq C\Big(h^{r+1} + N^{-(2-\alpha_{1})}\Big).$$
 (43)

We now estimate $\| \lambda^n - \lambda_h^n \|_{H(\operatorname{div},\Omega)}$. Taking $v_h = \sum_{i=1}^m b_i D_N^{\alpha_i} \theta^n$ and $w_h = \eta^n$ in (30) (*a*) and (37), respectively, we have

$$\|\operatorname{div}\boldsymbol{\eta}^{n}\|^{2} = -\left(\mathcal{A}^{-1}\sum_{i=1}^{m}b_{i}D_{N}^{\alpha_{i}}\boldsymbol{\eta}^{n},\boldsymbol{\eta}^{n}\right) - \left(\sum_{i=1}^{m}b_{i}D_{N}^{\alpha_{i}}\rho^{n},\operatorname{div}\boldsymbol{\eta}^{n}\right) - \left(p(\rho^{n}+\theta^{n}),\operatorname{div}\boldsymbol{\eta}^{n}\right) - \left(\sum_{i=1}^{m}b_{i}Q_{\alpha_{i}}^{n},\operatorname{div}\boldsymbol{\eta}^{n}\right).$$

$$(44)$$

For the term $-\left(\mathcal{A}^{-1}\sum_{i=1}^{m}b_{i}D_{N}^{\alpha_{i}}\boldsymbol{\eta}^{n},\boldsymbol{\eta}^{n}\right)$, noting that $\sum_{k=0}^{n-1}\left(-\widetilde{d}_{\alpha_{i},k}^{n}\right) = T^{-\alpha_{i}}N^{\alpha_{i}}$, we obtain $-\left(\mathcal{A}^{-1}\sum_{i=1}^{m}b_{i}D_{N}^{\alpha_{i}}\boldsymbol{\eta}^{n},\boldsymbol{\eta}^{n}\right) = -\sum_{i=1}^{m}\frac{b_{i}}{\Gamma(2-\alpha_{i})}\left(\sum_{k=0}^{n-1}\widetilde{d}_{\alpha_{i},k}^{n}\left(\mathcal{A}^{-1}\boldsymbol{\eta}^{k},\boldsymbol{\eta}^{n}\right) + \widetilde{d}_{\alpha_{i},n}^{n}\left(\mathcal{A}^{-1}\boldsymbol{\eta}^{n},\boldsymbol{\eta}^{n}\right)\right)$ $\leq \mu_{1}\sum_{i=1}^{m}\frac{b_{i}}{\Gamma(2-\alpha_{i})}\sum_{k=0}^{n-1}\left(-\widetilde{d}_{\alpha_{i},k}^{n}\right)\parallel\boldsymbol{\eta}^{k}\parallel\parallel\boldsymbol{\eta}^{n}\parallel$ $\leq C\sum_{i=1}^{m}\frac{b_{i}}{\Gamma(2-\alpha_{i})}T^{-\alpha_{i}}N^{\alpha_{i}}\left(N^{-(2-\alpha_{1})}+h^{r+1}\right)^{2}.$ (45)

Then, it holds from (45) that

$$\|\operatorname{div}\boldsymbol{\eta}^{n}\|^{2} = 2\left(\|\sum_{i=1}^{m} b_{i} D_{N}^{\alpha_{i}} \rho^{n}\| + \|\sum_{i=1}^{m} b_{i} Q_{\alpha_{i}}^{n}\|^{2} + \|p\|_{\infty}^{2} (\|\rho^{n}\|^{2} + \|\theta^{n}\|^{2})\right) + C\sum_{i=1}^{m} \frac{b_{i}}{\Gamma(2-\alpha_{i})} T^{-\alpha_{i}} N^{\alpha_{i}} \left(N^{-(2-\alpha_{1})} + h^{r+1}\right)^{2} + \frac{1}{2} \|\operatorname{div}\boldsymbol{\eta}^{n}\|^{2}.$$

$$(46)$$

Using Lemmas 4 and 5, we have

$$\|\operatorname{div} \boldsymbol{\eta}^{n}\| \leq C \Big(1 + N^{\frac{\alpha_{m}}{2}}\Big) \Big(h^{r+1} + N^{-(2-\alpha_{1})}\Big).$$
 (47)

Then, we finish the proof. \Box

Remark 3. (I) For variables u and λ , we define the discrete norms of the errors as follows:

$$\begin{aligned} \| u - u_h \|_{\hat{L}^{\infty}(L^2(\Omega))} &= \max_{1 \le n \le N} \| u(t_n) - u_h^n \|, \\ \| \lambda - \lambda_h \|_{\hat{L}^{\infty}((L^2(\Omega))^2)} &= \max_{1 \le n \le N} \| \lambda(t_n) - \lambda_h^n \|, \\ \| \lambda - \lambda_h \|_{\hat{L}^{\infty}(H(\operatorname{div},\Omega))} &= \max_{1 \le n \le N} \| \lambda(t_n) - \lambda_h^n \|_{H(\operatorname{div},\Omega)} \end{aligned}$$

From Theorem 3, we obtain the optimal a priori error estimate results for u in the discrete $L^{\infty}(L^{2}(\Omega))$ norm and λ in the discrete $L^{\infty}((L^{2}(\Omega))^{2})$ norm and obtain the suboptimal error estimate for λ in the discrete $L^{\infty}(\mathbf{H}(\operatorname{div}, \Omega))$ norm. In the actual calculation in the next section, we achieve the optimal convergence rates for variables u and λ based on the above discrete norms.

(II) It should be pointed out that the solutions of many FPDEs have an initial layer at t = 0 (see [42,43]). To overcome this difficulty, some scholars have adopted nonuniform mesh methods and achieved excellent results [24,26,42,44–46]. Moreover, it is noted that $\{\xi^k : 0 \le k \le N\}$ in Lemma 3 is required to be a nondecreasing positive sequence, so the error estimates for the MFE scheme (5)–(6) with the temporal nonuniform method should adopt some other techniques. It is gratifying that the numerical results in Example 3 show that the MFE scheme (5)–(6) with the temporal graded mesh is feasible and effective.

6. Numerical Examples

In this section, we given three test examples to verify the effectiveness and convergence accuracy of the proposed MFE scheme (5)–(6) and adopt the lowest-order Raviart–Thomas MFE space for variables u and λ in the numerical experiments.

Example 1. Consider the following two-term TFRD equation:

$$\begin{cases} D_t^{\alpha_1}u(\mathbf{x},t) + D_t^{\alpha_2}u(\mathbf{x},t) - \Delta u(\mathbf{x},t) + p(\mathbf{x})u(\mathbf{x},t) = f(\mathbf{x},t), & (\mathbf{x},t) \in \Omega \times J, \\ u(\mathbf{x},t) = 0, & (\mathbf{x},t) \in \partial\Omega \times \overline{J}, \\ u(\mathbf{x},0) = u_0(\mathbf{x}), & \mathbf{x} \in \overline{\Omega}, \end{cases}$$
(48)

where J = (0,1], $\Omega = (0,1)^2$, $p(x) = 1 + x_1^2 + x_2^2$, $x = (x_1, x_2) \in \Omega$, u(x,0) = 0, and the source function f is taken by

$$f(\mathbf{x},t) = \left(\frac{\Gamma(3+\alpha_1+\alpha_2)}{\Gamma(3+\alpha_2)}t^{2+\alpha_2} + \frac{\Gamma(3+\alpha_1+\alpha_2)}{\Gamma(3+\alpha_1)}t^{2+\alpha_1} + (2\pi^2+p(\mathbf{x}))t^{2+\alpha_1+\alpha_2}\right) \\ \times \sin(\pi x_1)\sin(\pi x_2).$$

And we can find the analytical solutions for variables u and λ as follows:

$$u(\mathbf{x},t) = t^{2+\alpha_1+\alpha_2} \sin(\pi x_1) \sin(\pi x_2),$$

$$\lambda(\mathbf{x},t) = -\pi t^{2+\alpha_1+\alpha_2} (\cos(\pi x_1) \sin(\pi x_2), \sin(\pi x_1) \cos(\pi x_2)).$$

In the numerical simulation, we select fractional parameters $\alpha_1 = 0.9$, 0.7, 0.5 and $\alpha_2 = 0.1$, 0.4 in Equation (48) and know that among these different fractional parameters, the convergence rates are only related to the largest fractional parameter α_1 from Theorem 3. By taking N = 5, 8, 10, 16 and the corresponding $h = \sqrt{2}/N^{2-\alpha_1}$, we give the error results and convergence rates in Tables 1–3 for the MFE scheme (5)–(6), which show that the convergence rates in the temporal direction for u (in the discrete $L^{\infty}(L^2(\Omega))$ norm) and λ (in the discrete $L^{\infty}((L^2(\Omega))^2)$ and $L^{\infty}(H(\operatorname{div}, \Omega))$ norms) are close to $2 - \alpha_1$. Moreover, in order to test convergence rates in the spatial direction, by fixing N = 100 and taking $h = \sqrt{2}/4$, $\sqrt{2}/8$, $\sqrt{2}/16$, $\sqrt{2}/32$, we give the error results and convergence rates in Tables 4–6, which show that the convergence rates in the temporal direction for u (in the spatial direction for u (in the spatial direction for u (in the spatial direction) and the convergence rates in the spatial direction of λ (in the discrete $L^{\infty}((L^2(\Omega))^2)$ and $L^{\infty}(H(\operatorname{div}, \Omega))$ norms) are close to $2 - \alpha_1$. Moreover, in order to test convergence rates in the spatial direction, by fixing N = 100 and taking $h = \sqrt{2}/4$, $\sqrt{2}/8$, $\sqrt{2}/16$, $\sqrt{2}/32$, we give the error results and convergence rates in Tables 4–6, which show that the convergence rates in the spatial direction for u (in the spatial direction) for u (spatial direction)

α2	N	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(\operatorname{div}))$	Rates
0.1	5	$8.6930 imes 10^{-2}$	_	$3.3630 imes 10^{-1}$	_	$1.7545\times10^{+0}$	_
	8	$5.2424 imes 10^{-2}$	1.0760	$2.0229 imes10^{-1}$	1.0814	$1.0569\times10^{+0}$	1.0784
	10	$4.0389 imes10^{-2}$	1.1687	$1.5578 imes10^{-1}$	1.1709	$8.1390 imes10^{-1}$	1.1708
	16	$2.3908 imes 10^{-2}$	1.1157	$9.2174 imes10^{-2}$	1.1165	$4.8141 imes10^{-1}$	1.1172
0.4	5	$8.7218 imes 10^{-2}$	_	$3.3776 imes 10^{-1}$	_	$1.7631\times10^{+0}$	_
	8	$5.2624 imes 10^{-2}$	1.0750	$2.0332 imes10^{-1}$	1.0799	$1.0619\times10^{+0}$	1.0786
	10	$4.0555 imes 10^{-2}$	1.1674	$1.5663 imes 10^{-1}$	1.1692	$8.1786 imes10^{-1}$	1.1704
	16	$2.4011 imes 10^{-2}$	1.1153	$9.2701 imes 10^{-2}$	1.1160	$4.8371 imes 10^{-1}$	1.1175

Table 1. Numerical results with $h \approx \sqrt{2}/N^{2-\alpha_1}$ and $\alpha_1 = 0.9$ in Example 1.

Table 2. Numerical results with $h \approx \sqrt{2}/N^{2-\alpha_1}$ and $\alpha_1 = 0.7$ in Example 1.

α2	N	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(\operatorname{div}))$	Rates
0.1	5	6.5262×10^{-2}	_	2.5184×10^{-1}	_	$1.3146 \times 10^{+0}$	_
	8	3.4916×10^{-2}	1.3308	1.3451×10^{-1}	1.3344	7.0291×10^{-1}	1.3321
	10	$2.6204 imes 10^{-2}$	1.2863	$1.0092 imes10^{-1}$	1.2875	$5.2740 imes 10^{-1}$	1.2873
	16	$1.4175 imes 10^{-2}$	1.3073	$5.4581 imes 10^{-2}$	1.3077	$2.8520 imes10^{-1}$	1.3080
0.4	5	$6.5379 imes 10^{-2}$	_	$2.5244 imes10^{-1}$	_	$1.3184 imes10^{+0}$	_
	8	$3.4998 imes 10^{-2}$	1.3296	$1.3493 imes10^{-1}$	1.3328	$7.0499 imes10^{-1}$	1.3318
	10	$2.6269 imes 10^{-2}$	1.2858	$1.0125 imes 10^{-1}$	1.2869	$5.2895 imes 10^{-1}$	1.2875
	16	1.4212×10^{-2}	1.3070	$5.4771 imes 10^{-2}$	1.3073	$2.8602 imes 10^{-1}$	1.3081

Table 3. Numerical results with $h \approx \sqrt{2}/N^{2-\alpha_1}$ and $\alpha_1 = 0.5$ in Example 1.

α2	N	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(ext{div}))$	Rates
0.1	5	4.7518×10^{-2}	_	$1.8311 imes10^{-1}$	_	$9.5625 imes10^{-1}$	_
	8	$2.2765 imes 10^{-2}$	1.5657	$8.7633 imes 10^{-2}$	1.5679	$4.5800 imes10^{-1}$	1.5663
	10	$1.6367 imes 10^{-2}$	1.4786	$6.2996 imes 10^{-2}$	1.4792	$3.2925 imes10^{-1}$	1.4791
	16	$8.1859 imes10^{-3}$	1.4742	$3.1504 imes10^{-2}$	1.4743	1.6465×10^{-1}	1.4744
0.4	5	$4.7568 imes 10^{-2}$	_	$1.8337 imes10^{-1}$	_	$9.5799 imes 10^{-1}$	_
	8	$2.2802 imes 10^{-2}$	1.5645	$8.7824 imes10^{-2}$	1.5662	$4.5893 imes10^{-1}$	1.5658
	10	$1.6396 imes 10^{-2}$	1.4781	6.3145×10^{-2}	1.4785	3.2993×10^{-1}	1.4790
	16	$8.2016 imes 10^{-3}$	1.4738	$3.1585 imes 10^{-2}$	1.4739	1.6499×10^{-1}	1.4744

Table 4. Numerical results with $\tau = T/N = 1/100$ and $\alpha_1 = 0.9$ in Example 1.

α2	h	$u - \hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(\operatorname{div}))$	Rates
0.1	$\sqrt{2}/4$	$1.2927 imes 10^{-1}$	_	$5.0254 imes10^{-1}$	_	$2.5970 imes 10^{+0}$	_
	$\sqrt{2}/8$	6.5234×10^{-2}	0.9867	$2.5171 imes10^{-1}$	0.9975	$1.3118\times10^{+0}$	0.9853
	$\sqrt{2}/16$	$3.2696 imes 10^{-2}$	0.9965	1.2589×10^{-1}	0.9996	$6.5762 imes 10^{-1}$	0.9963
	$\sqrt{2}/32$	1.6361×10^{-2}	0.9989	6.2964×10^{-2}	0.9996	3.2908×10^{-1}	0.9988
0.4	$\sqrt{2}/4$	1.2926×10^{-1}	_	$5.0244 imes10^{-1}$	_	$2.5971\times10^{+0}$	_
	$\sqrt{2}/8$	6.5231×10^{-2}	0.9866	2.5169×10^{-1}	0.9973	$1.3119\times10^{+0}$	0.9853
	$\sqrt{2}/16$	$3.2696 imes 10^{-2}$	0.9964	$1.2589 imes10^{-1}$	0.9995	$6.5766 imes10^{-1}$	0.9962
	$\sqrt{2}/32$	$1.6363 imes 10^{-2}$	0.9987	$6.2973 imes 10^{-2}$	0.9994	3.2913×10^{-1}	0.9987

α2	h	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(\operatorname{div}))$	Rates
0.1	$\sqrt{2}/4$	1.2929×10^{-1}	_	$5.0266 imes 10^{-1}$	_	$2.5969 imes 10^{+0}$	_
	$\sqrt{2}/8$	$6.5241 imes10^{-2}$	0.9867	$2.5174 imes10^{-1}$	0.9976	$1.3118 imes 10^{+0}$	0.9853
	$\sqrt{2}/16$	$3.2698 imes 10^{-2}$	0.9966	$1.2590 imes 10^{-1}$	0.9997	$6.5757 imes 10^{-1}$	0.9963
	$\sqrt{2}/32$	1.6359×10^{-2}	0.9991	$6.2954 imes10^{-2}$	0.9999	$3.2900 imes 10^{-1}$	0.9991
0.4	$\sqrt{2}/4$	$1.2928 imes10^{-1}$	_	$5.0258 imes10^{-1}$	_	$2.5970 imes 10^{+0}$	_
	$\sqrt{2}/8$	$6.5239 imes 10^{-2}$	0.9867	2.5173×10^{-1}	0.9975	$1.3118\times 10^{+0}$	0.9853
	$\sqrt{2}/16$	3.2697×10^{-2}	0.9966	$1.2590 imes 10^{-1}$	0.9996	$6.5758 imes10^{-1}$	0.9963
	$\sqrt{2}/32$	$1.6359 imes 10^{-2}$	0.9991	$6.2954 imes 10^{-2}$	0.9999	3.2900×10^{-1}	0.9990

Table 5. Numerical results with $\tau = T/N = 1/100$ and $\alpha_1 = 0.7$ in Example 1.

Table 6. Numerical results with $\tau = T/N = 1/100$ and $\alpha_1 = 0.5$ in Example 1.

α2	h	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(\mathrm{div}))$	Rates
0.1	$\sqrt{2}/4$	1.2930×10^{-1}	_	5.0273×10^{-1}	_	$2.5969\times10^{+0}$	_
	$\sqrt{2}/8$	$6.5243 imes10^{-2}$	0.9868	$2.5176 imes10^{-1}$	0.9977	$1.3118 imes 10^{+0}$	0.9852
	$\sqrt{2}/16$	$3.2699 imes 10^{-2}$	0.9966	1.2591×10^{-1}	0.9997	$6.5756 imes 10^{-1}$	0.9963
	$\sqrt{2}/32$	$1.6359 imes 10^{-2}$	0.9991	$6.2955 imes 10^{-2}$	0.9999	$3.2899 imes10^{-1}$	0.9991
0.4	$\sqrt{2}/4$	$1.2929 imes 10^{-1}$	_	$5.0266 imes 10^{-1}$	_	$2.5969\times10^{+0}$	_
	$\sqrt{2}/8$	$6.5242 imes 10^{-2}$	0.9867	2.5175×10^{-1}	0.9976	$1.3118\times 10^{+0}$	0.9853
	$\sqrt{2}/16$	$3.2698 imes 10^{-2}$	0.9966	$1.2590 imes 10^{-1}$	0.9997	$6.5757 imes 10^{-1}$	0.9963
	$\sqrt{2}/32$	1.6359×10^{-2}	0.9991	$6.2955 imes 10^{-2}$	0.9999	$3.2899 imes 10^{-1}$	0.9991

Example 2. Consider the following three-term TFRD equation:

$$\begin{cases} D_t^{\alpha_1}u(\mathbf{x},t) + D_t^{\alpha_2}u(\mathbf{x},t) + D_t^{\alpha_3}u(\mathbf{x},t) - \Delta u(\mathbf{x},t) + p(\mathbf{x})u(\mathbf{x},t) = f(\mathbf{x},t), & (\mathbf{x},t) \in \Omega \times J, \\ u(\mathbf{x},t) = 0, & (\mathbf{x},t) \in \partial\Omega \times \overline{J}, \\ u(\mathbf{x},0) = u_0(\mathbf{x}), & \mathbf{x} \in \overline{\Omega}, \end{cases}$$
(49)

where the spatial domain Ω , temporal domain J, coefficient $p(\mathbf{x})$, and initial data $u(\mathbf{x}, 0)$ are as in *Example 1* and the source function f is taken by

$$f(\mathbf{x},t) = \left(\frac{\Gamma(3+\alpha_1+\alpha_2+\alpha_3)}{\Gamma(3+\alpha_2+\alpha_3)}t^{2+\alpha_2+\alpha_3} + \frac{\Gamma(3+\alpha_1+\alpha_2+\alpha_3)}{\Gamma(3+\alpha_1+\alpha_3)}t^{2+\alpha_1+\alpha_3} + \frac{\Gamma(3+\alpha_1+\alpha_2+\alpha_3)}{\Gamma(3+\alpha_1+\alpha_2)}t^{2+\alpha_1+\alpha_2} + (2\pi^2+p(\mathbf{x}))t^{2+\alpha_1+\alpha_2+\alpha_3}\right)\sin(\pi x_1)\sin(\pi x_2).$$

And we can also find the analytical solutions for variables u and λ as follows:

$$u(\mathbf{x},t) = t^{2+\alpha_1+\alpha_2+\alpha_3} \sin(\pi x_1) \sin(\pi x_2),$$

$$\lambda(\mathbf{x},t) = -\pi t^{2+\alpha_1+\alpha_2+\alpha_3} (\cos(\pi x_1) \sin(\pi x_2), \sin(\pi x_1) \cos(\pi x_2)).$$

In this example, since the Equation (49) contains three Caputo time-fractional derivative terms, we specifically take the fractional parameters $\alpha_1 = 0.9$, 0.7, 0.5 and $(\alpha_2, \alpha_3) = (0.4, 0.2), (0.3, 0.1)$. From Theorem 3, we also point out that the convergence rates are only related to the maximum fractional parameter α_1 . In Tables 7–9, for different N = 5, 8, 10, 16, we give the error results and convergence rates for the MFE scheme (5)–(6), where the spatial grid sizes are also taken as $h = \sqrt{2}/N^{2-\alpha_1}$. We can also see that the convergence rates in the temporal direction for u (in the discrete $L^{\infty}(L^2(\Omega))$ norm) and λ (in the discrete $L^{\infty}((L^2(\Omega))^2)$ and $L^{\infty}(H(\operatorname{div}, \Omega))$ norms) are close to $2 - \alpha_1$. Furthermore, in Tables 10–12, we also fix N = 100 and take $h = \sqrt{2}/4, \sqrt{2}/8, \sqrt{2}/16, \sqrt{2}/32$, give

the error results and convergence rates, and see that the convergence rates in the spatial direction for u and λ in the above corresponding discrete norms are also close to 1.

Table 7. Numerical results with $h \approx \sqrt{2}/N^{2-\alpha_1}$ and $\alpha_1 = 0.9$ in Example 2.

α2	α3	N	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(\mathrm{div}))$	Rates
0.4	0.2	5	$8.7400 imes 10^{-2}$	_	3.3868×10^{-1}	_	$1.7681\times 10^{+0}$	_
		8	$5.2741 imes 10^{-2}$	1.0747	$2.0392 imes10^{-1}$	1.0795	$1.0648 imes10^{+0}$	1.0790
		10	$4.0650 imes 10^{-2}$	1.1670	$1.5711 imes10^{-1}$	1.1686	$8.2004 imes10^{-1}$	1.1704
		16	$2.4067 imes 10^{-2}$	1.1152	$9.2988 imes 10^{-2}$	1.1159	$4.8494 imes10^{-1}$	1.1177
0.3	0.1	5	$8.7138 imes 10^{-2}$	_	$3.3735 imes10^{-1}$	_	$1.7608 imes10^{+0}$	_
		8	$5.2567 imes 10^{-2}$	1.0753	$2.0303 imes10^{-1}$	1.0804	$1.0605 imes10^{+0}$	1.0788
		10	$4.0507 imes 10^{-2}$	1.1679	$1.5638 imes10^{-1}$	1.1698	$8.1673 imes10^{-1}$	1.1706
		16	$2.3980 imes 10^{-2}$	1.1154	$9.2546 imes 10^{-2}$	1.1162	$4.8304 imes10^{-1}$	1.1175

Table 8. Numerical results with $h \approx \sqrt{2}/N^{2-\alpha_1}$ and $\alpha_1 = 0.7$ in Example 2.

α2	α3	N	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(\operatorname{div}))$	Rates
0.4	0.2	5	$6.5465 imes 10^{-2}$	_	2.5288×10^{-1}	_	$1.3208\times10^{+0}$	_
		8	$3.5052 imes10^{-2}$	1.3291	$1.3521 imes10^{-1}$	1.3321	7.0629×10^{-1}	1.3319
		10	2.6310×10^{-2}	1.2857	$1.0146 imes10^{-1}$	1.2868	$5.2989 imes10^{-1}$	1.2877
		16	$1.4234 imes10^{-2}$	1.3070	$5.4886 imes10^{-2}$	1.3073	$2.8651 imes 10^{-1}$	1.3083
0.3	0.1	5	$6.5343 imes 10^{-2}$	—	$2.5225 imes 10^{-1}$	_	$1.3173 imes10^{+0}$	—
		8	$3.4972 imes 10^{-2}$	1.3300	$1.3479 imes 10^{-1}$	1.3334	$7.0434 imes10^{-1}$	1.3321
		10	$2.6247 imes 10^{-2}$	1.2860	$1.0114 imes10^{-1}$	1.2872	$5.2845 imes10^{-1}$	1.2876
		16	$1.4200 imes 10^{-2}$	1.3071	$5.4707 imes 10^{-2}$	1.3075	$2.8575 imes 10^{-1}$	1.3082

Table 9. Numerical results with $h \approx \sqrt{2}/N^{2-\alpha_1}$ and $\alpha_1 = 0.5$ in Example 2.

α2	α3	N	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(\operatorname{div}))$	Rates
0.4	0.2	5	4.7614×10^{-2}	_	$1.8360 imes10^{-1}$	_	$9.5930 imes10^{-1}$	_
		8	$2.2831 imes 10^{-2}$	1.5638	$8.7972 imes 10^{-2}$	1.5654	$4.5961 imes10^{-1}$	1.5656
		10	1.6417×10^{-2}	1.4779	$6.3255 imes 10^{-2}$	1.4782	$3.3041 imes10^{-1}$	1.4790
		16	$8.2126 imes 10^{-3}$	1.4738	$3.1641 imes 10^{-2}$	1.4738	$1.6523 imes10^{-1}$	1.4745
0.3	0.1	5	$4.7550 imes 10^{-2}$	—	$1.8327 imes 10^{-1}$	_	$9.5743 imes10^{-1}$	—
		8	$2.2788 imes 10^{-2}$	1.5650	8.7752×10^{-2}	1.5669	$4.5859 imes 10^{-1}$	1.5661
		10	$1.6385 imes 10^{-2}$	1.4783	$6.3087 imes 10^{-2}$	1.4788	$3.2967 imes 10^{-1}$	1.4791
		16	$8.1952 imes 10^{-3}$	1.4740	$3.1552 imes 10^{-2}$	1.4742	$1.6486 imes10^{-1}$	1.4745

Table 10. Numerical results with $\tau = T/N = 1/100$ and $\alpha_1 = 0.9$ in Example 2.

α2	α3	h	$u - \hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(\operatorname{div}))$	Rates
0.4	0.2	$\sqrt{2}/4$	$1.2924 imes10^{-1}$	_	$5.0230 imes10^{-1}$	-	$2.5973\times10^{+0}$	_
		$\sqrt{2}/8$	6.5229×10^{-2}	0.9865	$2.5168 imes10^{-1}$	0.9970	$1.3119\times10^{+0}$	0.9853
		$\sqrt{2}/16$	$3.2696 imes 10^{-2}$	0.9964	$1.2589 imes10^{-1}$	0.9994	$6.5768 imes10^{-1}$	0.9962
		$\sqrt{2}/32$	1.6364×10^{-2}	0.9986	$6.2979 imes 10^{-2}$	0.9992	$3.2916 imes10^{-1}$	0.9986
0.3	0.1	$\sqrt{2}/4$	$1.2925 imes10^{-1}$	—	$5.0236 imes10^{-1}$	—	$2.5972\times10^{+0}$	_
		$\sqrt{2}/8$	$6.5231 imes 10^{-2}$	0.9865	$2.5169 imes10^{-1}$	0.9971	$1.3119 imes10^{+0}$	0.9853
		$\sqrt{2}/16$	$3.2696 imes 10^{-2}$	0.9964	$1.2589 imes 10^{-1}$	0.9995	$6.5765 imes 10^{-1}$	0.9962
		$\sqrt{2}/32$	1.6362×10^{-2}	0.9988	$6.2971 imes 10^{-2}$	0.9994	$3.2912 imes 10^{-1}$	0.9987

α2	α3	h	$u - \hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(ext{div}))$	Rates
0.4	0.2	$\sqrt{2}/4$	$1.2926 imes 10^{-1}$	_	$5.0244 imes10^{-1}$	_	$2.5971\times10^{+0}$	_
		$\sqrt{2}/8$	$6.5237 imes10^{-2}$	0.9866	$2.5172 imes10^{-1}$	0.9972	$1.3118 imes10^{+0}$	0.9853
		$\sqrt{2}/16$	$3.2697 imes 10^{-2}$	0.9965	$1.2590 imes 10^{-1}$	0.9996	6.5758×10^{-1}	0.9963
		$\sqrt{2}/32$	1.6359×10^{-2}	0.9991	$6.2954 imes10^{-2}$	0.9999	$3.2901 imes10^{-1}$	0.9990
0.3	0.1	$\sqrt{2}/4$	1.2927×10^{-1}	_	5.0249×10^{-1}	_	$2.5970\times10^{+0}$	_
		$\sqrt{2}/8$	6.5238×10^{-2}	0.9866	$2.5172 imes10^{-1}$	0.9973	$1.3118 imes 10^{+0}$	0.9853
		$\sqrt{2}/16$	3.2697×10^{-2}	0.9965	$1.2590 imes 10^{-1}$	0.9996	$6.5758 imes 10^{-1}$	0.9963
		$\sqrt{2}/32$	1.6359×10^{-2}	0.9991	6.2954×10^{-2}	0.9999	3.2900×10^{-1}	0.9991

Table 11. Numerical results with $\tau = T/N = 1/100$ and $\alpha_1 = 0.7$ in Example 2.

Table 12. Numerical results with $\tau = T/N = 1/100$ and $\alpha_1 = 0.5$ in Example 2.

α2	α3	h	$u - \hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(\operatorname{div}))$	Rates
0.4	0.2	$\sqrt{2}/4$	1.2927×10^{-1}	_	$5.0252 imes 10^{-1}$	_	$2.5970\times10^{+0}$	_
		$\sqrt{2}/8$	6.5240×10^{-2}	0.9866	$2.5173 imes 10^{-1}$	0.9973	$1.3118\times10^{+0}$	0.9853
		$\sqrt{2}/16$	3.2698×10^{-2}	0.9965	$1.2590 imes 10^{-1}$	0.9996	$6.5757 imes 10^{-1}$	0.9963
		$\sqrt{2}/32$	1.6359×10^{-2}	0.9991	$6.2955 imes 10^{-2}$	0.9999	$3.2899 imes10^{-1}$	0.9991
0.3	0.1	$\sqrt{2}/4$	$1.2928 imes10^{-1}$	—	$5.0257 imes 10^{-1}$	—	$2.5970\times10^{+0}$	—
		$\sqrt{2}/8$	$6.5241 imes 10^{-2}$	0.9866	$2.5174 imes10^{-1}$	0.9974	$1.3118 imes10^{+0}$	0.9853
		$\sqrt{2}/16$	$3.2698 imes 10^{-2}$	0.9966	$1.2590 imes 10^{-1}$	0.9996	$6.5757 imes 10^{-1}$	0.9963
		$\sqrt{2}/32$	$1.6359 imes 10^{-2}$	0.9991	$6.2955 imes 10^{-2}$	0.9999	$3.2899 imes 10^{-1}$	0.9991

Based on the numerical results in Tables 1–12 obtained from the above two test examples, we can see that the convergence rates in the spatial and temporal directions for *u* (in the discrete $L^{\infty}(L^2(\Omega))$ norm) and λ (in the discrete $L^{\infty}((L^2(\Omega))^2)$) norm) are in agreement with the theoretical results in Theorem 3, and those for λ (in the discrete $L^{\infty}(H(\operatorname{div}, \Omega))$) norm) are higher than the theoretical result. These results fully demonstrate that the proposed MFE method for the multi-term TFRD equations is effective.

Example 3. Consider the two-term TFRD equation in Example 1 with weak regularity solutions near the initial time t = 0, where the source function *f* is taken by

$$\begin{split} f(\mathbf{x},t) = & \left(\frac{2}{\Gamma(3-\alpha_1)}t^{2-\alpha_1} + \Gamma(1+\alpha_1) + \frac{\Gamma(2+\alpha_2)}{\Gamma(2+\alpha_2-\alpha_1)}t^{1+\alpha_2-\alpha_1} \right. \\ & \left. + \frac{2}{\Gamma(3-\alpha_2)}t^{2-\alpha_2} + \frac{\Gamma(1+\alpha_1)}{\Gamma(1+\alpha_1-\alpha_2)}t^{\alpha_1-\alpha_2} + \Gamma(2+\alpha_2)t \right. \\ & \left. + \left(2\pi^2 + p(\mathbf{x})\right)\left(t^2 + t^{\alpha_1} + t^{1+\alpha_2}\right)\right)\sin(\pi x_1)\sin(\pi x_2). \end{split}$$

And we can also find the analytical solutions for variables u and λ as follows:

$$u(\mathbf{x},t) = \left(t^2 + t^{\alpha_1} + t^{1+\alpha_2}\right) \sin(\pi x_1) \sin(\pi x_2),$$

$$\lambda(\mathbf{x},t) = -\pi \left(t^2 + t^{\alpha_1} + t^{1+\alpha_2}\right) (\cos(\pi x_1) \sin(\pi x_2), \sin(\pi x_1) \cos(\pi x_2)).$$

In this example, we will select the graded mesh to discretize the interval [0, T] and set $t_n = T(n/N)^{\gamma}$, for $n = 0, 1, 2, \dots, N$, where constant $\gamma \ge 1$ is the temporal graded mesh parameter. The ideal optimal error estimates for u (in the discrete $L^{\infty}(L^2(\Omega))$ norm) and λ (in the discrete $L^{\infty}((L^2(\Omega))^2)$ and $L^{\infty}(H(\operatorname{div}, \Omega))$ norms) should be $O(N^{-\min\{\gamma \alpha_1, 2-\alpha_1\}} + h)$. Here, we will mainly test the convergence rates in the temporal direction with the graded mesh parameter $\gamma = 1$ and $(2 - \alpha_1)/\alpha_1$. We first conduct numerical experiments with

 $\gamma = 1$. Then, the optimal convergence rate in the temporal direction is α_1 . For fractional parameters $\alpha_1 = 0.9, 0.7, 0.5$ and $\alpha_2 = 0.1, 0.4$, we take the time mesh parameter N = 20, 40, 80, 160 and special spatial grid parameters: (i) when $\alpha_1 = 0.9$, take $h \approx 2\sqrt{2}/N^{\alpha_1}$; (ii) when $\alpha_1 = 0.7$, take $h \approx \sqrt{2}/N^{\alpha_1}$; (iii) when $\alpha_1 = 0.5$, take $h \approx \sqrt{2}/(2N^{\alpha_1})$. Then, we give the numerical results in Tables 13–15, which show that the convergence rates in the temporal direction for *u* (in the discrete $L^{\infty}(L^2(\Omega))$ norm) and λ (in the discrete $L^{\infty}((L^2(\Omega))^2)$) and $L^{\infty}(H(\operatorname{div}, \Omega))$ norms) are close to α_1 .

Table 13. Numerical results with $\alpha_1 = 0.9$ and graded mesh parameter $\gamma = 1$ in Example 3.

α2	N	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	λ – \hat{L}^{∞} (H(div))	Rates
0.1	20	$1.9572 imes 10^{-1}$	_	7.5520×10^{-1}	_	$3.9354\times10^{+0}$	_
	40	$1.1208 imes10^{-1}$	0.8042	$4.3165 imes10^{-1}$	0.8070	$2.2539\times10^{+0}$	0.8041
	80	$6.0396 imes 10^{-2}$	0.8920	$2.3245 imes10^{-1}$	0.8930	$1.2146 imes10^{+0}$	0.8920
	160	$3.2722 imes 10^{-2}$	0.8842	$1.2591 imes 10^{-1}$	0.8845	$6.5806 imes10^{-1}$	0.8842
0.4	20	$1.9571 imes 10^{-1}$	_	$7.5516 imes10^{-1}$	_	$3.9354 imes10^{+0}$	_
	40	$1.1208 imes10^{-1}$	0.8042	$4.3164 imes10^{-1}$	0.8069	$2.2540 imes10^{+0}$	0.8041
	80	$6.0396 imes 10^{-2}$	0.8920	$2.3244 imes10^{-1}$	0.8929	$1.2146\times10^{+0}$	0.8920
	160	3.2722×10^{-2}	0.8842	1.2591×10^{-1}	0.8845	$6.5806 imes 10^{-1}$	0.8842

Table 14. Numerical results with $\alpha_1 = 0.7$ and graded mesh parameter $\gamma = 1$ in Example 3.

α2	N	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(\mathrm{div}))$	Rates
0.1	20	$1.9573 imes 10^{-1}$	_	7.5526×10^{-1}	_	$3.9353\times10^{+0}$	_
	40	$1.2068 imes 10^{-1}$	0.6976	$4.6487 imes10^{-1}$	0.7002	$2.4269\times10^{+0}$	0.6974
	80	$7.4765 imes 10^{-2}$	0.6908	$2.8779 imes 10^{-1}$	0.6918	$1.5035\times10^{+0}$	0.6907
	160	$4.4872 imes 10^{-2}$	0.7365	$1.7268 imes10^{-1}$	0.7369	$9.0241 imes10^{-1}$	0.7365
0.4	20	$1.9572 imes 10^{-1}$	_	$7.5523 imes 10^{-1}$	_	$3.9354 imes10^{+0}$	_
	40	$1.2068 imes10^{-1}$	0.6976	$4.6486 imes10^{-1}$	0.7001	$2.4269\times10^{+0}$	0.6974
	80	$7.4765 imes 10^{-2}$	0.6908	$2.8779 imes 10^{-1}$	0.6918	$1.5035\times10^{+0}$	0.6907
	160	$4.4872 imes 10^{-2}$	0.7365	$1.7268 imes 10^{-1}$	0.7369	9.0241×10^{-1}	0.7365

Table 15. Numerical results with $\alpha_1 = 0.5$ and graded mesh parameter $\gamma = 1$ in Example 3.

α2	N	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(\mathrm{div}))$	Rates
0.1	20	$1.7410 imes 10^{-1}$	_	$6.7141 imes10^{-1}$	_	$3.5006 imes 10^{+0}$	_
	40	$1.2069 imes 10^{-1}$	0.5286	$4.6487 imes10^{-1}$	0.5303	$2.4269\times10^{+0}$	0.5285
	80	$8.7212 imes 10^{-2}$	0.4687	$3.3576 imes 10^{-1}$	0.4694	$1.7538\times10^{+0}$	0.4686
	160	$6.2812 imes 10^{-2}$	0.4735	$2.4175 imes10^{-1}$	0.4739	$1.2632\times10^{+0}$	0.4735
0.4	20	$1.7410 imes10^{-1}$	_	$6.7139 imes10^{-1}$	_	$3.5006 imes10^{+0}$	—
	40	$1.2069 imes 10^{-1}$	0.5286	$4.6487 imes10^{-1}$	0.5303	$2.4269\times10^{+0}$	0.5285
	80	$8.7212 imes 10^{-2}$	0.4687	$3.3576 imes 10^{-1}$	0.4694	$1.7538\times10^{+0}$	0.4686
	160	$6.2812 imes 10^{-2}$	0.4735	2.4175×10^{-1}	0.4739	$1.2632\times10^{+0}$	0.4735

Next, we conduct numerical experiments with $\gamma = (2 - \alpha_1)/\alpha_1$. Then, the optimal convergence rate is $2 - \alpha_1$. We take the time mesh parameter N = 5, 8, 10, 16 and the spatial grid parameter $h = \sqrt{2}/N^{2-\alpha_1}$. Then, we give the numerical results in Tables 16–18 and find that the convergence rates in the temporal direction for u (in the discrete $L^{\infty}(L^2(\Omega))$) norm) and λ (in the discrete $L^{\infty}((L^2(\Omega))^2)$ and $L^{\infty}(H(\operatorname{div}, \Omega))$ norms) are close to $2 - \alpha_1$. Based on the above discussion, we know that the MFE scheme (5)–(6) with the temporal graded mesh for solving the multi-term TFRD equations with the initial layer is also feasible and effective.

α2	N	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	λ – \hat{L}^{∞} (H(div))	Rates
0.1	5	2.6024×10^{-1}	_	$1.0062\times10^{+0}$	_	$5.2342\times10^{+0}$	_
	8	$1.5673 imes10^{-1}$	1.0789	$6.0412 imes10^{-1}$	1.0855	$3.1526\times10^{+0}$	1.0787
	10	$1.2067 imes 10^{-1}$	1.1718	$4.6479 imes10^{-1}$	1.1750	$2.4273 imes 10^{+0}$	1.1718
	16	$7.1368 imes 10^{-2}$	1.1175	$2.7470 imes 10^{-1}$	1.1189	$1.4355\times10^{+0}$	1.1176
0.4	5	$2.6021 imes 10^{-1}$	_	$1.0060 imes10^{+0}$	_	$5.2351\times10^{+0}$	_
	8	$1.5673 imes10^{-1}$	1.0787	$6.0410 imes10^{-1}$	1.0852	$3.1531\times10^{+0}$	1.0787
	10	$1.2067 imes10^{-1}$	1.1716	$4.6479 imes10^{-1}$	1.1748	$2.4276 imes 10^{+0}$	1.1718
	16	7.1372×10^{-2}	1.1174	$2.7472 imes 10^{-1}$	1.1188	$1.4357 imes 10^{+0}$	1.1176

Table 16. Numerical results with $\alpha_1 = 0.9$ and graded mesh parameter $\gamma = \frac{2-\alpha_1}{\alpha_1}$ in Example 3.

Table 17. Numerical results with $\alpha_1 = 0.7$ and graded mesh parameter $\gamma = \frac{2-\alpha_1}{\alpha_1}$ in Example 3.

α2	N	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	$\lambda - \hat{L}^{\infty}(H(\mathrm{div}))$	Rates
0.1	5	$1.9568 imes 10^{-1}$	_	7.5499×10^{-1}	_	$3.9360\times10^{+0}$	_
	8	$1.0462 imes10^{-1}$	1.3323	$4.0284 imes10^{-1}$	1.3365	$2.1043 imes10^{+0}$	1.3323
	10	$7.8497 imes 10^{-2}$	1.2872	$3.0217 imes10^{-1}$	1.2887	$1.5789\times10^{+0}$	1.2873
	16	$4.2450 imes 10^{-2}$	1.3079	$1.6336 imes10^{-1}$	1.3086	$8.5380 imes10^{-1}$	1.3081
0.4	5	$1.9566 imes 10^{-1}$	_	$7.5492 imes 10^{-1}$	_	$3.9370 imes 10^{+0}$	_
	8	$1.0462 imes 10^{-1}$	1.3320	$4.0289 imes10^{-1}$	1.3361	$2.1049 imes10^{+0}$	1.3323
	10	$7.8506 imes 10^{-2}$	1.2870	$3.0221 imes 10^{-1}$	1.2885	$1.5793 imes 10^{+0}$	1.2874
	16	$4.2457 imes 10^{-2}$	1.3078	1.6339×10^{-1}	1.3084	8.5400×10^{-1}	1.3081

Table 18. Numerical results with $\alpha_1 = 0.5$ and graded mesh parameter $\gamma = \frac{2-\alpha_1}{\alpha_1}$ in Example 3.

α2	N	$u-\hat{L}^{\infty}(L^2)$	Rates	$\lambda - \hat{L}^{\infty}((L^2)^2)$	Rates	λ – \hat{L}^{∞} (H(div))	Rates
0.1	5	$1.4253 imes 10^{-1}$	_	$5.4923 imes10^{-1}$	_	$2.8673\times10^{+0}$	_
	8	$6.8272 imes 10^{-2}$	1.5661	$2.6278 imes 10^{-1}$	1.5685	$1.3733\times10^{+0}$	1.5663
	10	$4.9083 imes 10^{-2}$	1.4788	$1.8890 imes10^{-1}$	1.4794	$9.8727 imes10^{-1}$	1.4790
	16	$2.4548 imes 10^{-2}$	1.4742	$9.4464 imes 10^{-2}$	1.4744	$4.9373 imes10^{-1}$	1.4744
0.4	5	$1.4255 imes10^{-1}$	_	$5.4933 imes10^{-1}$	_	$2.8688\times10^{+0}$	_
	8	$6.8306 imes 10^{-2}$	1.5654	$2.6296 imes10^{-1}$	1.5675	$1.3743 imes10^{+0}$	1.5659
	10	4.9113×10^{-2}	1.4783	$1.8905 imes10^{-1}$	1.4788	$9.8804 imes10^{-1}$	1.4787
	16	2.4567×10^{-2}	1.4739	9.4561×10^{-2}	1.4740	4.9416×10^{-1}	1.4742

7. Conclusions

This work presents a Raviart–Thomas MFE method for solving the multi-term TFRD equations with variable coefficients by using the well-known *L*1 formula. The existence, uniqueness, and unconditional stability of the discrete solution are discussed, and the optimal a priori error estimates for *u* (in the discrete $L^{\infty}(L^2(\Omega))$ norm) and λ (in the discrete $L^{\infty}((L^2(\Omega))^2)$) norm) and the suboptimal a priori error estimate for λ (in the discrete $L^{\infty}(H(\operatorname{div}, \Omega))$) norm) are obtained in this work. In addition, some numerical results are given to demonstrate the effectiveness of the proposed MFE method. In future research, we will try to give theoretical analysis for the MFE method with the temporal graded mesh to solve some FPDEs with the initial layer at t = 0 and apply the MFE method to solve more FPDEs in scientific and engineering fields.

Author Contributions: Conceptualization, J.Z. and S.D.; methodology, Z.F.; software, Z.F.; validation, J.Z., S.D. and Z.F.; formal analysis, J.Z. and S.D.; writing—original draft preparation, J.Z. and S.D.; writing—review and editing, J.Z. and Z.F.; funding acquisition, J.Z. and Z.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (11701299), the Scientific Research Projection of Higher Schools of the Inner Mongolia Autonomous Region

(NJZY23055), and the Central Government Guided Local Science and Technology Development Fund Project of China (2022ZY0175).

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors are very grateful to the editors and reviewers for their helpful comments and suggestions on improving this work.

Conflicts of Interest: The authors declares no conflicts of interest.

References

- 1. Ross, B. Fractional Calculus and Its Applications; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1975.
- 2. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.
- 3. Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010.
- 4. Hendy, M.H.; Amin, M.M.; Ezzat, M.A. Two-dimensional problem for thermoviscoelastic materials with fractional order heat transfer. *J. Therm. Stress.* **2019**, *42*, 1298–1315. [CrossRef]
- 5. Zhou, J.C.; Salahshour, S.; Ahmadian, A.; Senu, N. Modeling the dynamics of COVID-19 using fractal-fractional operator with a case study. *Results Phys.* **2022**, *33*, 105103. [CrossRef] [PubMed]
- Shymanskyi, V.; Sokolovskyy, I.; Sokolovskyy, Y.; Bubnyak, T. Variational Method for Solving the Time-Fractal Heat Conduction Problem in the Claydite-Block Construction. In *Advances in Computer Science for Engineering and Education. ICCSEEA 2022*; Hu, Z., Dychka, I., Petoukhov, S., He, M., Eds.; Lecture Notes on Data Engineering and Communications Technologies; Springer: Cham, Switzerland, 2022; Volume 134.
- 7. Bagley, R.L.; Torvik, R.J. On the appearance of the fractional derivative in the behaviour of real materials. *Appl. Mech.* **1984**, *51*, 294–298.
- 8. Ming, C.Y.; Liu, F.W.; Zheng, L.C.; Turner, I.; Anh, V. Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid. *Comput. Math. Appl.* **2006**, *72*, 2084–2097. [CrossRef]
- 9. Fetecau, C.; Athar, M.; Fetecau, C. Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate. *Comput. Math. Appl.* 2009, *57*, 596–603. [CrossRef]
- 10. Liu, F.W.; Meerschaert, M.M.; McGough, R.J.; Zhuang, P.H.; Liu, Q.X. Numerical methods for solving the multi-term timefractional wave-diffusion equation. *Fract. Calc. Appl. Anal.* **2013**, *16*, 9–25. [CrossRef]
- 11. Dehghan, M.; Safarpoor, M.; Abbaszadeh, M. Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. *J. Comput. Appl. Math.* **2015**, *290*, 174–195. [CrossRef]
- 12. Ren, J.C.; Sun, Z.Z. Efficient Numerical Solution of the Multi-Term Time Fractional Diffusion-Wave Equation. *East Asian J. Appl. Math.* **2015**, *5*, 1–28. [CrossRef]
- 13. Zheng, M.; Liu, F.W.; Anh, V.; Turner, I. A high-order spectral method for the multi-term time-fractional diffusion equations. *Appl. Math. Model.* **2016**, *40*, 4970–4985. [CrossRef]
- 14. Du, R.L.; Sun, Z.Z. Temporal second-order difference methods for solving multi-term time fractional mixed diffusion and wave equations. *Numer. Algorithms* **2021**, *88*, 191–226. [CrossRef]
- 15. Hendy, A.S.; Zaky, M.A. Graded mesh discretization for coupled system of nonlinear multi-term time-space fractional diffusion equations. *Eng. Comput.* **2022**, *38*, 1351–1363. [CrossRef]
- Liu, Y.Q.; Yin, X.L.; Liu, F.W.; Xin, X.Y.; Shen, Y.F.; Feng, L.B. An alternating direction implicit Legendre spectral method for simulating a 2D multi-term time-fractional Oldroyd-B fluid type diffusion equation. *Comput. Math. Appl.* 2022, 113, 160–173. [CrossRef]
- 17. Wei, L.L.; Wang, H.H. Local discontinuous Galerkin method for multi-term variable-order time fractional diffusion equation. *Math. Comput. Simulat.* **2023**, 203, 685–698. [CrossRef]
- 18. She, M.F.; Li, D.F.; Sun, H.W. A transformed *L*1 method for solving the multi-term time-fractional diffusion problem. *Math. Comput. Simulat.* **2022**, 193, 584–606. [CrossRef]
- 19. Jin, B.T.; Lazarov, R.; Liu, Y.K.; Zhou, Z. The Galerkin finite element method for a multi-term time-fractional diffusion equation. *J. Comput. Phys.* **2015**, *281*, 825–843. [CrossRef]
- 20. Li, M.; Huang, C.M.; Jiang, F.Z. Galerkin finite element method for higher dimensional multi-term fractional diffusion equation on non-uniform meshes. *Appl. Anal.* 2017, *96*, 1269–1284. [CrossRef]
- Zhou, J.; Xu, D.; Chen, H.B. A Weak Galerkin Finite Element Method for Multi-Term Time-Fractional Diffusion Equations. *East Asian J. Appl. Math.* 2018, *8*, 181–193. [CrossRef]
- 22. Bu, W.P.; Shu, S.; Xue, X.Q.; Xiao, A.G.; Zeng, W. Space-time finite element method for the multi-term time-space fractional diffusion equation on a two-dimensional domain. *Comput. Math. Appl.* **2019**, *78*, 1367–1379. [CrossRef]
- 23. Feng, L.B.; Liu, F.W.; Turner, I. Finite difference/finite element method for a novel 2D multi-term time-fractional mixed subdiffusion and diffusion-wave equation on convex domains. *Commun. Nonlinear Sci. Numer. Simulat.* 2019, 70, 354–371. [CrossRef]
- 24. Meng, X.Y.; Stynes, M. Barrier function local and global analysis of an *L*1 finite element method for a multiterm time-fractional initial-boundary value problem. *J. Sci. Comput.* **2020**, *84*, 5. [CrossRef]

- 25. Yin, B.L.; Liu, Y.; Li, H.; Zeng, F.H. A class of efficient time-stepping methods for multi-term time-fractional reaction-diffusionwave equations. *Appl. Numer. Math.* 2021, 165, 56–82. [CrossRef]
- 26. Huang, C.B.; Stynes, M.; Chen, H. An α-robust finite element method for a multi-term time-fractional diffusion problem. *J. Comput. Appl. Math.* **2021**, *389*, 113334. [CrossRef]
- 27. Liu, H.; Zheng, X.C.; Fu, H.F. Analysis of a multi-term variable-order time-fractional diffusion equation and its Galerkin finite element approximation. *J. Comput. Math.* 2022, 40, 814–834. [CrossRef]
- Zhao, Y.M.; Chen, P.; Bu, W.P.; Liu, X.T.; Tang, Y.F. Two mixed finite element methods for time-fractional diffusion equations. J. Sci. Comput. 2017, 70, 407–428. [CrossRef]
- 29. Liu, Y.; Fang, Z.C.; Li, H.; He, S. A mixed finite element method for a time-fractional fourth-order partial differential equation. *Appl. Math. Comput.* **2014**, *243*, 703–717. [CrossRef]
- 30. Li, X.C.; Yang, X.Y.; Zhang, Y.H. Error estimates of mixed finite element methods for time-fractional Navier-Stokes equations. *J. Sci. Comput.* **2017**, *70*, 500–515. [CrossRef]
- 31. Liu, Y.; Du, Y.W.; Li, H.; Li, J.C.; He, S. A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative. *Comput. Math. Appl.* **2015**, *70*, 2474–2492. [CrossRef]
- Li, X.W.; Tang, Y.L. Interpolated coefficient mixed finite elements for semilinear time fractional diffusion equations. *Fractal Fract.* 2023, 7, 482. [CrossRef]
- 33. Shi, Z.G.; Zhao, Y.M.; Tang, Y.F.; Wang, F.L.; Shi, Y.H. Superconvergence analysis of an *H*¹-Galerkin mixed finite element method for two-dimensional multi-term time fractional diffusion equations. *Int. J. Comput. Math.* **2018**, *95*, 1845–1857. [CrossRef]
- 34. Li, M.; Huang, C.M.; Ming, W.Y. Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations. *Comp. Appl. Math.* **2018**, *37*, 2309–2334. [CrossRef]
- Cao, F.F.; Zhao, Y.M.; Wang, F.L.; Shi, Y.H.; Yao, C.H. Nonconforming mixed FEM analysis for multi-term time-fractional mixed sub-diffusion and diffusion-wave equation with time-space coupled derivative. *Adv. Appl. Math. Mech.* 2023, 15, 322–358. [CrossRef]
- 36. Sun, Z.Z.; Wu, X.N. A fully discrete scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56, 193–209. [CrossRef]
- Lin, Y.M.; Xu, C.J. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225, 1533–1552. [CrossRef]
- 38. Sinha, R.K.; Ewing, R.E.; Lazarov, R.D. Mixed finite element approximations of parabolic integro-differential equations with nonsmooth initial data. *SIAM J. Numer. Anal.* 2009, 47, 3269–3292. [CrossRef]
- 39. Fang, Z.C.; Zhao, J.; Li, H.; Liu, Y. Finite volume element methods for two-dimensional time fractional reaction-diffusion equations on triangular grids. *Appl. Anal.* 2023, *102*, 2248–2270. [CrossRef]
- 40. Douglas, J.; Roberts, J.E. Global Estimates for Mixed Methods for Second Order Elliptic Equations. *Math. Comput.* **1985**, 44, 39–52. [CrossRef]
- 41. Durán, R.G. *Mixed Finite Element Methods*; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 1939.
- 42. Stynes, M.; O'Riordan, E.; Gracia, J.L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. *SIAM J. Numer. Anal.* 2017, *55*, 1057–1079. [CrossRef]
- 43. Jin, B.T.; Li, B.Y.; Zhou, Z. Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 2018, 56, 1–23. [CrossRef]
- 44. Liao, H.L.; Li, D.F.; Zhang, J.W. Sharp error estimate of the nonuniform *L*1 formula for linear reaction-subdiffusion equations. *SIAM J. Numer. Anal.* **2018**, *56*, 1112–1133. [CrossRef]
- 45. Ren, J.C.; Liao, H.L.; Zhang, Z.M. Superconvergence error estimate of a finite element method on nonuniform time meshes for reaction-subdiffusion equations. *J. Sci. Comput.* **2020**, *84*, 38. [CrossRef]
- 46. Huang, C.B.; Stynes, M. Optimal *H*¹ spatial convergence of a fully discrete finite element method for the time-fractional Allen-Cahn equation. *Adv. Comput. Math.* **2020**, *46*, 63. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.