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Abstract: In this study, a nonlinear Archimedes wave swing (AWS) energy conversion system was
employed to enable the use of irregular sea waves to provide useful electricity. Instead of the
conventional PI controllers used in prior research, this study employed fractional-order PID (FOPID)
controllers to control the back-to-back configuration of AWS. The aim was to maximize the energy
yield from waves and maintain the grid voltage and the capacitor DC link voltage at predetermined
values. In this study, six FOPID controllers were used to accomplish the control goals, leading to
an array of thirty parameters required to be fine-tuned. In this regard, a hybrid jellyfish search
optimizer and particle swarm optimization (HJSPSO) algorithm was adopted to select the optimal
control gains. Verification of the performance of the proposed FOPID control system was achieved by
comparing the system results to two conventional PID controllers and one FOPID controller. The
conventional PID controllers were tuned using a recently presented metaheuristic algorithm called
the Coot optimization algorithm (COOT) and the classical particle swarm optimization algorithm
(PSO). Moreover, the FOPID was also tuned using the well-known genetic algorithm (GA). The
system investigated in this study was subjected to various unsymmetrical and symmetrical fault
disturbances. When compared with the standard COOT-PID, PSO-PID, and GA-FOPID controllers,
the HJSPSO-FOPID results show a significant improvement in terms of performance and preserving
control goals during system instability

Keywords: Archimedes wave swing; fractional-order controllers; optimization; PID controllers;
power system stability; wave energy

1. Introduction
1.1. Background and Motivation

Wave energy is one of the most abundant renewable energy resources that can provide
enough energy to satisfy the world’s needs. According to the World Energy Council, wave
energy has an estimated energy of 17.5 PWh/year, which is more than enough to fill the
estimated energy requirements of 16 PWh/year globally [1]. The benefits of using wave
energy include avoiding the need for expensive real estate, and a short distance between
wave energy converters and consumption because a large portion of the world lives on
the ocean’s shores, resulting in lower energy losses; lower investment in transmission
lines; and higher power density compared with other renewable resources, such as wind
and solar energies. Therefore, a large interest has developed toward convert wave energy
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into electricity, which led to the invention of numerous wave energy converters, like the
Oscillating Water Column, Archimedes Wave Swing (AWS), Wave Dragon, Pelamis Wave
Power, Aquabouy, and the Oyster [2]. The AWS converter was chosen by the authors for
use in this study because it is one of the most regularly used converters and is employed
by a well-known company (AWS Ocean Energy) [3,4].

For the AWS, two models were adopted in the literature, namely, the linear and
nonlinear models. The linear model is the AWS simplified version that was built by
Polinder during an experiment involving AWS in Portugal [5]. Since this version of AWS
modeling is based on an experiment with limitations on the generated power and many
forces were neglected for simplicity, a higher-order nonlinear model was needed for more
accurate results.

Numerous studies emphasized the importance of employing nonlinear models to
achieve precision in computational outcomes. For instance, a study presented in [6] de-
veloped a high-order and efficient numerical technique that was specifically designed for
solving the nonlocal neutron diffusion equation, which models neutron transport within a
nuclear reactor. In a separate investigation detailed in [7], an H1-norm error analysis of a
robust ADI method on graded meshes was conducted to address three-dimensional subdif-
fusion problems. Furthermore, another study [8] examined the preservation of positivity in
a nonlinear finite volume method tailored for multi-term fractional subdiffusion equations,
particularly on polygonal meshes. These nonlinear models are crucial for understanding
reactor behavior and optimizing reactor performance in various applications.

For the AWS, the time domain model of AWS was first introduced in [9] without any
practical values that can help build this model. Then, nonlinear model equations were
provided by Gieske in [10], along with the parameters’ values of the system. Then, the same
equations with a grid-connected system and a control system suitable for this nonlinear
system were introduced by the authors of this work [11]. This model was used in this study.

1.2. Literature Overview

A review of the control systems for AWS in the literature is helpful for comprehending
the contribution of this work fully. The first control strategy is the conventional PID
controller; this controller is adopted in many research works with different optimization
algorithms used. For example, in [12], Feng introduced how to obtain the maximum
energy from waves using dq current control with PI controllers. In [13], the water cycle
algorithm (WCA) [14] was employed to select the gains of six PI controllers to maximize
the energy harvest and maintain the DC link capacitor voltage (VDC) and the voltage at
the point of connection with the grid (point of common coupling) (VPCC) at the reference
values. This system required six conventional PI controllers. The results of this work were
compared with the genetic algorithm (GA), which showed a much better response. In [15],
the Coot optimization algorithm (COOT) [16] was employed to tune the same controllers.
In addition, an anti-windup technique that damps the overshooting of VPCC due to the
integrator part of the PI controller was added. The results of this algorithm were compared
with six other recent algorithms. The conclusion was that the addition of the anti-windup
technique enhanced the system’s transient behavior.

Similarly, in [17], the salp swarm algorithm [18] was employed to find the optimal
gains of the PI controllers, and the system behavior was observed in the presence of irregular
waves. In [19], a supercapacitor with a bidirectional converter was connected in parallel to
a DC link to provide constant power to the grid. In [20], the supercapacitor technique was
also employed in a hybrid wave–solar power plant to provide constant power to a version
three (V3) supercharging station that charges Tesla cars. The golden jackal algorithm [21]
tuned the gains of the controllers. Alongside the supercharging station, which is related
to the DC microgrid, several research works involved the DC grid. For instance, in [22],
the gravitational search algorithm [23] was employed to set the optimal gains of three PI
controllers that achieved a successful connection to the DC grid. The gravitational search
results were compared with the GA during fault conditions. In [11], the six PI controllers
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were tuned using the hybrid augmented grey wolf optimizer and cuckoo search (AGWO-
CS) algorithm [24]. The results were compared with PI controllers optimized using COOT
and PSO during different grid faults. Moreover, OP4510, along with the RT-Lab program,
was employed to conduct a real-time simulation of the AWS system to experimentally
validate the accuracy of results. Other than the PID controllers, other techniques were
implemented. For example, in [10,25], a model predictive control was employed for the
generator-side converter to maximize energy harvesting. For the same objective, neural
network models were established in [26], along with different control strategies.

1.3. Objectives and Contributions

Our main objective was to implement a control strategy that had not been employed
before for the nonlinear AWS grid-connected system. In this regard, we investigated
adopting a fractional-order PID (FOPID) in the back–back configuration controllers as
a replacement for the conventional PID adopted in the literature for AWS. The FOPID
controllers have several merits compared with the conventional PID controllers. For
example, the presence of fractional orders in the integrator and differentiator provides
more flexible tuning (extra degrees of freedom) that leads to more stability and robustness
in highly nonlinear systems, like AWS. Furthermore, as will be proven in this work, the
FOPID controllers lead to a better response of the system and reduced overshooting
during transient states. Moreover, the FOPID controllers could lead to lower energy
consumption as a result of their fine-tuning control action, as in [27]. Additionally, the
FOPID controllers were employed in different renewable energy resources, like wind
energy [28], solar energy [29], fuel cells [30], and hydroelectric [31]. In addition, the
FOPID control strategy was utilized in the speed control of a PMSM [32]. Furthermore,
the control of an automatic voltage regulator using FOPID was achieved in [33,34]. Also,
improved frequency controllers based on the FOPID strategy regulated the frequency
of inter-connected power grids [35]. Moreover, a modified version of FOPID was used
to regulate a hybrid inter-connected system formed of various renewable resources [36].
To implement the FOPID control strategy, a comprehensive understanding of the AWS
connected to the power grid is mandatory. The AWS device requires a back–back converter
configuration for a successful grid connection. The rectifier’s controllers minimize generator
losses and generate maximum power from waves by controlling the stator dq currents.
Furthermore, the inverter’s controllers ensure 1 p.u VPCC and VDC by controlling the output
dq currents of the inverter. This back–back configuration requires six fractional-order PID
controllers. Each one requires five gains to be tuned using a powerful algorithm. In this
work, a hybrid algorithm formed from the jellyfish search optimizer and particle swarm
optimization (HJSPSO) was employed [37]. The HJSPSO is a hybrid algorithm that takes
advantage of the exploitation ability of the jellyfish optimizer (JO) [38] in addition to the
exploration advantage of the particle swarm optimization algorithm (PSO) [39]. The results
were compared with two conventional PID controllers that were optimized using the
PSO [39] and COOT [16], in addition to controllers’ gains that were tuned using the GA.

The work’s main contributions are summarized as follows:

• A thorough mathematical modeling of the grid-connected AWS, including the back-
to-back converter controllers, is presented, together with all of the system’s parame-
ter values.

• The proposed FOPID controllers, the number of gains that must be tuned, and the
HJSPSO method utilized for selecting the best gains are all detailed.

• The HJSPSO-FOPID controllers were compared with two conventional PID controllers
that were tuned using PSO and COOT, in addition to FOPID controllers that were
tuned using the GA.

• The controllers’ effectiveness and reliability were demonstrated by subjecting the
grid-connected system to various unsymmetrical and symmetrical fault disturbances.
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1.4. Organization

For a better understanding of this work, it was divided into multiple sections. In the
Section 2, the modeling of the nonlinear AWS with detailed equations and parameters’
values is presented. In the Section 3, the grid-connected system with the inverter and
rectifier in addition to the control system is elaborated. Furthermore, the FOPID controller
strategy is explained. In the Section 4, the optimization algorithm of the HJSPSO, the
final errors of the different algorithms, and the optimal gains are also presented. In the
Section 5, the system’s results during steady and transient states and the performance of
each controller are discussed in detail. Finally, the Section 6, namely, the conclusion section,
contains a summary of this work and future work suggestions.

2. Modeling of the AWS Wave Energy Conversion System

The wave energy conversion device consists of a floater that moves upward and
downward due to the pressure variation on the floater due to the wave crest and trough.
The floater’s motion generates electricity by employing a linear synchronous generator
that converts the vertical motion into three-phase output power. This work adopts the
nonlinear version of the AWS explained in [8]. The general expression for the nonlinear
model is formulated as follows:

m f
dv
dt

= Fdrag+Fgrav+FhS+Frad+Fsp+Fwb+Fgen+Fend+Fe+Fbear, (1)

v =
dx
dt

, (2)

In these equations, the velocity of the floater and the current floater position are
denoted by v and x, respectively. The gravitational force (Fgrav) and the drag force of water
(Fdrag) are mathematically represented as follows:

Fdrag =

{
− 1

2 ρSFv|v|CDUP, v ≥ 0
− 1

2 ρSFv|v|CDDW , v < 0
(3)

Fgrav= −m f g, (4)

Fgrav is the gravitational force pushing the device’s floater downward. This force
relies on the mass of the floater (m f ) and the gravitational acceleration (g), whereas Fdrag
represents the opposite force acting from the fluid (water) against the motion of the floater.
This force is controlled by the outer area of the device floater (SF), v, and the seawater
density (ρ), in addition to the upward drag coefficient (CDUP) during the positive velocity
and downward coefficient (CDDW) during the negative velocity. Moreover, in the model’s
main equation, we have the end force (Fend) exerting a large force when the floater hits an
end position (θ), after which the floater will be damaged. The spring force (Fsp) that returns
the floater to the equilibrium position when no waves are available. The water brakes’
force (Fwb) acts when a certain vertical violation is reached. These forces are represented
as follows:

Fend = −
v
(

madd + m f

)
0.1

, x ≥ θ (5)

Fsp = Fsp−eq

(
Leq

Leq+x−xeq

)γ

, (6)

Fsp−eq= −FhS−eq−Fgrav, (7)

Leq =
γFsp−eq(

wn2
(

madd + m f

)
+ ρgS f

) , (8)

Fwb = −βwbv|v|, x ≥ ψ or x ≤ −ψ (9)
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In the previous formulas, the end position, the added mass, and the applied force
of the spring at the equilibrium position (xeq) at which all of the forces cancel each other,
the spring length at equilibrium, the hydrostatic force at equilibrium, the angular tuning
frequency, the heat capacity rate, the position at which the brakes will be activated, and
the brakes’ coefficient are all denoted by θ, madd, Fsp−eq, Leq, FhS−eq, wn, γ, ψ, and βwb,
respectively. The radiation force (Frad) represents a load on the floater when new radiated
waves are created due to the floater’s motion, the hydrostatic force (FhS) represents the
force affecting the AWS floater due to the pressure of seawater, and the approximated
radiation force adopted (Frad−approx) are expressed as follows [5,10]:

Frad = −madd
dv
dt

−
∫ t

0
R(t − τ)v(τ)dτ, (10)

Rt =


64, 286wn − 8214.3, wn < 0.75

40, 000, wn < 0.89
−52, 632wn + 86, 842, wn < 1.08
−71, 429wn + 107, 140, wn > 1.08

(11)

Frad−approx = −madd
dv
dt

− 2Rtv, (12)

FhS= −SF

(
ρg
(

d f + η − x
)
+ pamp

)
+
(

SF − S f

)(
ρg
(

d f + η + h f − x
)
+ pamp

)
, (13)

where the fluid’s retardation function, the ambient pressure, the tide level, the inner
crossectional area of the floater, the depth at mid-position, and the height of the floater are
denoted by Rt, pamp, η, S f , d f , and h f . Frad−approx is very difficult to calculate precisely, and
thus, the expressions obtained by Gieske in (11) and (12) are adopted [10].

Furthermore, the approximated excitation forces of sea waves (Fe) and the generator
force (Fgen ) can be expressed as follows:

Fe = ρgSF η(t)Kp, (14)

η(t) =
N

∑
i=1

Hi
2

sin (ωit + θi), (15)

Ai =
Hi
2

=
√

2S(ωi)∆ωi, (16)

S(ω) =
486 Hs

2

Tp
4ω5

e
− 1948.2

Tp4ω4 , (17)

Kp =
cosh(k(h − d))

cosh(kh)
, (18)

ω2 = gktanh(kh), (19)

Fgen =
P
v
=

3ωgeniqψPM

2v
, (20)

In the previous equations, the elevation of the resultant sea waves, the wave num-
ber, the sea depth, the current depth, the wave decay factor, the elevation of each wave,
the phase shift, the angular frequency, the frequency interval, the peak energy density
period, the significant wave height of the irregular waves, the spectral density, the wave
amplitude, the number of waves, the generator power, the flux linkage of the permanent
magnets of the linear generator’s translator, the quadrature axis current, and the stator
angular frequency are symbolized by η(t), k, h, d, Kp, Hi, θi, ωi, ∆ωi, Tp, Hs, S(ωi), Ai, N,
P, ψPM, iq, and ωgen

(
ωgen = 2πv

λ

)
, respectively.

The generated elevation of sea waves and the corresponding excitation force based on
the Bretschneider spectrum is shown in Figure 1 [40].
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To understand the expression of Fgen , we need to obtain the generated three-phase
terminal voltage (vabc) during the positive and negative velocities of the floater. vabc is
expressed as follows [15]:

vabc = −Riabc +
d(−Liabc + ψPM−abc)

dt
, when v > 0 (21)

vabc = −Riabc +
d(Liabc + ψPM−abc)

dt
, when v < 0 (22)

L =

Lss M M
M Lss M
M M Lss

, (23)

ψPM−abc =

 ψPMsin
( 2πx

λ

)
ψPMsin

(
2πx/λ − 2π

3
)

ψPMsin
(
2πx/λ + 2π

3
)
, (24)

where the three-phase flux linkage, the self-inductance, the mutual inductance, the induc-
tance matrix, and the resistance of the three-phase system are symbolized by ψPM−abc, Lss,
M, and R.

In addition, the generator dq axis model for controlling the AWS during both the
positive and negative motion of the floater is mandatory. This expression can be obtained
by applying Park’s transformation to the three-phase voltages during both motions. The
Park’s transformation and the dq currents during both motions are expressed as follows [41]:

[K] = (
2
3
)


cos(θt) cos

(
θt − 2π

3
)

cos
(

θt − 4π
3

)
− sin(θt) − sin

(
θt − 2π

3
)

− sin
(

θt − 4π
3

)
1
2

1
2

1
2

, (25)
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vdq0 = [K]vabc, (26)

vd = −Rid + Xs iq − Ls
ωgen∣∣ωgen

∣∣ did
dt

, (27)

vq = −Riq − Xs id − Ls
ωgen∣∣ωgen

∣∣ diq
dt

+ ωgenψPM, (28)

where the linear generator dq and voltages are symbolized by id, iq, vd, and vq. More-
over, the synchronous reactance, the width of the generator pole, and the transformation
angle from the abc frame to the dq frame are denoted by Xs (Xs =

∣∣ωgen
∣∣Ls), λ, and

θt1 (θt1 = 2πx/λ − π/2), respectively.
Finally, the frictional bearing force (Fbear) due to the friction in the bearings of the

floater as a result of the applied horizontal force of waves (FH) on the AWS floater bearings
is expressed as follows:

Fbear= −µ sign(v) |FH |, (29)

dFH(z, t)= cMρ
π

4
dout

2 .
u(z, t)dz+cDρ

1
2

doutu(z, t)|u(z, t)|dz, (30)

FH =
∫ z=h f

z=0
dFH(z, t), (31)

u =
Hω

2
cosh(k(h − d))

sinhkh
cos (ωt), (32)

.
u = −Hω2

2
cosh(k(h − d))

sinhkh
sin (ωt), (33)

d = d f + h f − z, (34)

where cD, dout, µ, cM, u, and
.
u represent the drag coefficient of water, the outer diameter of

the floater, the friction coefficient, the inertia coefficient, the horizontal velocity of waves,
and the horizontal acceleration of the waves. To sum up, the values of all the nonlinear
model coefficients are shown in Table 1 [10,11].

Table 1. The values of the model parameters.

Parameter Value Parameter Value Parameter Value

m f 4 × 105 kg γ 1.4 ψPM 23 Wb
madd 3.55 × 105 kg θ 4.5 m λ 0.1 m

ρ 1025 kg/m3 Hs 4 m CDDW 0.4
pamp 1 × 105 N/m2 Tp 8 s CDUP 0.2
βwb 1.5 × 106 kg/m ψ 4 m R 0.29 Ω

h 43 m µ 0.1 Ls 0.031 H
d f 11 m η 0 h f 28.5 m
cD 1 cM 2 dout 11 m
g 9.8 m/s2 S f 79 m2 SF 95 m2

3. The Grid-Connected System: Block Diagram

The AWS-generated real power is transferred to the power grid via a back–back
converter configuration formed of a rectifier and an inverter. The output of the grid-side
inverter is filtered using a series RL filter, after which the output will be provided to a power
transformer that increases the output voltage to the grid level. Then, the transformer’s
output is linked to the electrical grid via two parallel transmission lines. The overall
system’s parameters are listed in Table 2 and the grid-connected system block diagram is
depicted in Figure 2.



Fractal Fract. 2024, 8, 6 8 of 21

Table 2. The grid-connected system values.

Parameter Value Parameter Value

DC link capacitance 15 mF Frequency 50 Hz
Ztrans f ormer j0.05 p.u Base power 1 MVA

Filter’s resistance and
inductance R = 0.01 Ω and L = 0.0072 H Zper transmission line 0.02 + j0.14 p.uFractal Fract. 2024, 7, x FOR PEER REVIEW 9 of 23 

 

 

 
Figure 2. The grid-connected system block diagram. 
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3.1. The Fractional PID (FOPID) Control Strategy

The FOPID controller is considered one of the applications of fractional calculus. This
controller is considered an enhanced, extended, and generalized form of the well-known
linear PID controller. The FOPID can be mathematically formulated as follows [42,43]:

C(s) = Kp + KiS−α + KdSβ, (35)

The proportional, integral, and derivative gains are denoted by Kp, Ki, and Kd, respec-
tively. Furthermore, the integrator’s fractional order and the derivative’s fractional order
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are denoted by α and β, respectively. Those fractional order values are selected between
0 and 2 [44]. To obtain the conventional linear PID controller, α and β are set to 1.

3.2. The Back-to-Back Converter Configuration

The back-to-back converter configuration that is used to establish a successful connec-
tion with the grid is achieved by using a rectifier connected to a DC link and then connected
to an inverter. The control loops for the rectifier and inverter are shown in Figure 2.

The rectifier’s controllers produce the utmost power from sea waves by maintaining
the linear generator’s dq currents at the reference currents Iq−re f and Id−re f [11]:

Iq−re f= 138v, (36)

Id−re f= 0, (37)

The required control signals are provided by two FOPID controllers that comprise the
errors of these dq currents as the input. By using the Park transformation and comparing
the reference Va,b,c−re f with a 1 kHz triangular waveform, the required pulses are given to
the six IGBTs of the rectifier. For the grid-side inverter, both VPCC and VDC are required
to be maintained at 1 p.u. By using a cascaded FOPID configuration, the errors of these
voltages are provided to two FOPID controllers in the outer loop that will give the reference
values of the dq currents. These values are given to the inner loop consisting of two
FOPID controllers that will compare the reference and actual dq currents to generate the
appropriate dq voltage signals.

Similar to the rectifier, by using the Park transformation and comparing the reference
Va,b,c−re f with the 1 kHz triangular waveform, the required pulses are given to the six IGBTs
of the inverter. Unlike the rectifier, in this control loop, the required transformation angle
is provided by the phase-locked loop (PLL) by measuring the three-phase voltages at the
grid side.

To sum up, the control system consists of six FOPID controllers. Each of these con-
trollers has five control parameters that need to be tuned. This leads to a total of thirty
parameters that can be represented by an array r = [r[1], r[2], m[3], r[4], r[5], . . ., r[30]], where
r[1], r[2], r[3], r[4], and r[5] represent the five control gains of FOPID-1, where r[1] = Kp,
r[2] = Ki, r[3] = α, r[4] = Kd, and r[5] = β. Similarly, the FOPID-2 gains are represented
by r[6], r[7], r[8], r[9], and r[10]. Furthermore, the rest of the FOPID controllers’ gains are
obtained similarly.

4. Hybrid Jellyfish Search Optimizer and Particle Swarm Optimization (HJSPSO)

The HJSPSO is a hybrid algorithm that takes advantage of the exploitation ability
of the jellyfish optimizer (JO) [38], in addition to the exploration merit of the particle
swarm optimization algorithm (PSO) [39]. The tuning process alternates between the two
algorithms using a time control technique to find the finest solution. Moreover, the hybrid
algorithm includes several coefficients that achieve consistency between exploitation and
exploration. The hybrid algorithm flowchart is illustrated in Figure 3.

4.1. HJSPSO Algorithm Steps

The HJSPSO algorithm starts with the initialization of the positions of jellyfish when
searching for food using the following equations:

Xi= LB + (UB − LB)Li, 1 ≤ i ≤ N (38)

Li
t+1= ηLi

t(1 − Li
t), 0 < Li

0 < 1 (39)

where the ith jellyfish’s current position, the gains’ lower boundaries, the upper boundaries
of the gains, the ith jellyfish’s logistic value, the initial logistic value of the jellyfish, the
swarm number, and the current iteration are denoted by Xi, LB, UB, Li, Li

0, N, and t,
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respectively. In addition, η = 4 [37]. The fitness values of these positions are evaluated
using the following equations [13]:

ISE1 =
∫ t

0

(
e2

id + e2
iq

)
dt, (40)

ISE2 =
∫ t

0

(
e2

VDC + e2
VPCC + e2

idn + e2
iqn

)
dt, (41)

ISE = w1 ISE1 + w2 ISE2, (42)

where the generator-side converter integral squared error of the direct axis current (id )
and quadrature axis current

(
iq ) are denoted by ISE1. In addition, the inverter integral

squared error of the VPCC, VDC, direct axis current (idn ), and quadrature axis current
(
iqn )

are combined in ISE2. Finally, these integral squared errors form the final objective function
(ISE) that is adopted in MATLAB. Due to the same importance of the two controllers, the
weighting factors w1 and w2 are set to 0.5.
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To decide between the selection of PSO or JO for updating the position, the following
equations are computed:

w= wmin + (wmax − wmin)

(
1 − t

T

)β1

, (43)

c1= cmin + (cmax − cmin)sin
(

π

2

(
1 − t

T

))
, (44)

c2= cmin + (cmax − cmin)cos
(

π

2

(
1 − t

T

))
, (45)

c(t)=
∣∣∣∣(1 − t

T

)
(2r − 1)

∣∣∣∣, (46)

where r is a random value generated by the code between zero and one and T denotes
the iteration number performed by the algorithm. If c(t) ≥ 0.5, then PSO is selected for
updating the position as follows:

Vi
t+1= wVi

t + c1r1

(
Pbesti

t − Xi
t
)
+ c2r2

(
Gbestt − Xi

t
)

, (47)

Xi
t+1= Xi

t + Vi
t+1, 1 ≤ i ≤ N (48)

where wmin, wmax, β1, cmin, and cmax are equal to 0.4, 0.9, 0.1, 0.5, and 2.5, respectively.
Also, r1 and r2 are random values generated by the code in the range [0 1]. Moreover, the
velocity of ith particle, the optimal personal position, and the global optimal position are
denoted by Vi, Pbest, and Gbest, respectively.

Otherwise, the JO is used to update the position. However, the JO is divided into dif-
ferent movements: either passive (around its current position) or active (update relative to
a randomly selected jth jellyfish). The position update of the two mechanisms is expressed
as follows:

Xi
t+1= Xi

t + wr1
(
X∗ − 3r2Xi

t), 1 ≤ i ≤ N, passive when (1 − c(t)) > r (49)

Xi
t+1= Xi

t + wr1
→

Step, 1 ≤ i ≤ N, active when (1 − c(t)) < r (50)

→
Step=

{
Xi

t − Xj
t, i f f

(
Xi

t) < f
(
Xj

t)
Xj

t − Xi
t, i f f

(
Xj

t) < f
(
Xi

t) , (51)

where X∗ is the current swarm’s best position. The optimal values obtained using the
HJSPSO for FOPID, GA for FOPID, the COOT for linear PID, and the PSO for linear PID
are given in Table 3. The final errors for each algorithm after 50 iterations are shown in
Figure 4.

Table 3. The optimal controller gains.

Controller Algorithm Gains

FOPID HJSPSO
r = [519.27 438 0.065 1.022 0.95 542.46 792 0.24 0.82 0.93
4.22 61.31 0.14 0.32 0.27 0.32 3.44 1.33 0.004 0.19 19.92

2.01 0.14 1.05 0.34 0.11 0.22 0.88 0.18 0.33]

FOPID GA
r = [667.16 570.88 0.085 1.76 0.62 494.42 610.30 0.44 1.75
0.7 1.91 87.02 0.03 0.88 0.79 0.94 3.49 1.44 0.09 0.15 16.99

3.17 0.11 1.17 0.3 0.08 0.46 0.82 0.2 0.22]

PID COOT r = [554 694.4 1 0 1 728 1355 1 0 1 7.6 90 1 0 1 1.17 21.8 1 0
1 2.88 239.1 1 0 1 2.43 27.8 1 0 1]

PID PSO r = [374 878 1 0 1 747 1364 1 0 1 6.65 76 1 0 1 1.08 23.7 1 0
1 4.3 216.11 1 0 1 2.3 24.16 1 0 1]
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4.2. HJSPSO Algorithm Computational Complexity

The computational complexity of an algorithm refers to the amount of resources
required to execute the algorithm, such as time and memory. In the case of the HJSPSO
algorithm, its computational complexity can be evaluated by measuring its execution
time and comparing it with other optimization algorithms, such as PSO, COOT, and GA.
The execution time of an algorithm is affected by various factors, including the size of
the problem, the hardware used, and the implementation of the algorithm. The three
algorithms, including COOT, PSO, and HJSPSO, had a population size of 20 and iterations
of 50. The function evaluations of COOT, PSO, and HJSPSO were calculated as population
size multiplied by the number of iterations, yielding a total of 1000 function evaluations.
For GA, employing a population size of 15, a generation count of 50, a mutation rate set at
0.01, and a crossover rate of 0.4 were anticipated to yield evaluations closely aligned with
those of other algorithms. This configuration is essential for ensuring a valid and equitable
comparison between different algorithms.

When comparing the computational complexity of the HJSPSO algorithm with other
optimization algorithms, such as PSO, COOT, and GA, it is essential to ensure that the
comparison is valid by executing the algorithms on the same hardware specifications. The
comparative analysis involved two distinct computing systems. The initial system, namely,
the Legion Y520, was equipped with a seventh-generation Intel Core i7-7700HQ processor,
a GTX 1060 graphics card with 6 GB GDDR5 VRAM, 16 GB of DDR4 RAM, and a 256 GB
SSD. Conversely, the second system, namely, the Legion 5 Pro, featured an eight-core
Ryzen 7 5800H processor, an RTX 3070 graphics card with 8 GB GDDR6 VRAM, 16 GB of
DDR4 RAM operating at a frequency of 3200 MHz, and a 1 TB SSD. The execution times of
different algorithms could provide insights into their relative efficiency and effectiveness in
solving optimization problems. Figure 5 can be used to visually represent the comparison
of execution times of different algorithms on the two computing systems, allowing readers
to quickly understand the differences in their computational complexity.

As illustrated in Figure 5, the COOT and PSO algorithms were executed almost simul-
taneously, completing one run and tuning 12 gains for the conventional PID controllers. In
contrast, the GA and HJSPSO algorithms tuned 30 gains for the FOPID controllers, resulting
in longer computational times. Specifically, the HJSPSO took 8.01 h on the Legion 5 Pro
and 13.37 h on the Legion Y520, while GA took 18.42 h on the Legion Y520 and 13.37 h on
the Legion 5 Pro. Despite this, the HJSPSO outperformed GA in terms of computational
time and results, making it a promising choice for the investigated application.

Also, we conducted a comparison of the COOT, PSO, and HJSPSO algorithms on
the Legion 5 Pro by optimizing only the 12 gains of a conventional PID controller to
assess the complexity of the hybrid algorithm in comparison to PSO and COOT. The
results are presented in Figure 6. The computational times of the three algorithms are very
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similar. However, due to the higher complexity of the HJSPSO algorithm, it required more
computational time than the PSO and COOT algorithms.
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5. Nonlinear Grid-Connected AWS System Steady and Transient Responses

In this part, the results are presented for the AWS grid-connected system that was
modeled using MATLAB Simulink with a sampling time of 10 microseconds. To verify the
robustness of our proposed controller (HJSPSO-FOPID), the system is first presented during
the steady state without any fault condition. Then, the system was subjected at point “F”
depicted in Figure 2 to different faults, including unsymmetrical and symmetrical faults.

The Simulink results involve the current position and velocity of the wave energy
conversion system with respect to time, the three-phase currents, the stator dq currents, the
generated power, the DC link voltage, the grid voltage, the responses of real and reactive
powers at the connection point with the grid (point of common coupling (PCC)), and the
dq currents at the grid side. Starting with connecting the system and supplying electrical
power to the power grid for 100 s, the simulation results during the steady state of normal
operation are provided in Figure 7.

The results show that the dq currents were maintained at the reference values expressed
in (36) and (37). This led to the maximization of the generated power similar to [11,20] and
the minimization of the stator losses. For the grid-side inverter controllers, both VPCC and
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VDC were maintained at 1 p.u as intended. Also, the power injected was very close to the
generated power; in addition, the reactive power fluctuated around zero. This confirms
that the controllers achieved the desired goals.

However, as with any type of controller, the steady-state performance is insufficient
to test these controllers’ actual performance and reliability. That is why the system was
first subjected to a symmetrical 3LG fault after 6.1 s at point F in Figure 2. In this scenario,
the breakers successfully cleared the faulty line after 0.1 s of fault occurrence and then
successfully reclosed after 0.8 s. The test results are shown in Figure 8.
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Figure 7. (a) x and v of the wave energy conversion device, (b) the quadrature and direct axis currents
of the stator, (c) the three-phase generated currents (“Ia” (black), “Ib” (red), and “Ic” (blue)), (d) the
real power produced by the linear generator, (e) VPCC and VDC, (f) the injected real power (PPCC),
and (g) the injected reactive power (QPCC).
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A numerical comparison between the performance of these controllers with respect to
VPCC, VDC, PPCC, and QPCC is provided in Table 4.

Table 4. Summary of the performance of the controllers.

Point of Comparison (p.u) PSO-PID COOT-PID GA-FOPID HJSPSO-FOPID Optimal Controller

Overshooting in VPCC ~0.28 p.u ~0.23 p.u ~0.0 p.u ~0.0 p.u HJSPSO- and GA-FOPID
Overshooting in VDC ~0.03 p.u ~0.03 p.u ~0.007 p.u ~0.006 p.u HJSPSO-FOPID
Undershooting in VDC ~0.02 p.u ~0.02 p.u ~0.02 p.u ~0.01 p.u HJSPSO-FOPID
Overshooting in QPCC ~0.23 p.u ~0.5 p.u ~0.3 p.u ~0.1 p.u HJSPSO-FOPID
Undershooting in QPCC ~0.37 p.u ~0.02 p.u ~0.22 p.u ~0.13 p.u COOT-PID

The results show that the HJSPSO-FOPID and the GA-FOPID controllers showed
ideal performance in preventing VPCC from overshooting above 1 p.u compared with
the conventional PID controllers. Furthermore, VDC had the lowest overshooting and
dip in the case of HJSPSO. The PPCC response had the lowest fluctuations and a very
quick return to the steady state value of the power in the case of HJSPSO-FOPID. The dq
currents at the grid side were also maintained under 1 p.u during the fault conditions.
Finally, QPCC had the best combination of a reasonable balance between overshooting and
undershooting compared with the others. For more validation of the FOPID performance,
the unsymmetrical fault responses are shown in Figure 9.
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The performance of the four controllers during the unsymmetrical faults is summa-
rized in Table 5.

Similar to the symmetrical fault results, the HJSPSO-FOPID controllers outperformed
the GA-FOPID, PSO-PID, and COOT-PID controllers and prevented VPCC from overshoot-
ing above 1 p.u. In summary, without any doubt, the HJSPSO-FOPID had a much better
capability in achieving the control goals compared with the GA-FOPID, PSO-PID, and
COOT-PID controllers. This made it a more favorable and reliable choice when controlling
the grid-connected AWS.
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Table 5. Comparison between the performances of the controllers.

Point of Comparison (p.u) PSO-PID COOT-PID GA-FOPID HJSPSO-FOPID Optimal Controller

Overshooting in VPCC
during LG fault ~0.16 p.u ~0.25 p.u ~0.2 p.u ~0.0 p.u HJSPSO-FOPID

Undershooting in VPCC
during LG fault ~0.59 p.u ~0.58 p.u ~0.48 p.u ~0.46 p.u HJSPSO-FOPID

Overshooting in VPCC
during LLG fault ~0.23 p.u ~33% p.u ~0.2% p.u ~0.0 p.u HJSPSO- and GA-FOPID

Overshooting in VPCC
during LL fault ~0.3 p.u ~0.36 p.u ~0.05 p.u ~0.0 p.u HJSPSO-FOPID

6. Conclusions

This paper presents fractional-order PID controllers for successfully connecting the
AWS to the electrical power grid and obtaining the maximum energy harvest from waves.
These goals require a back–back converter configuration with six controllers.

In this work, six fractional-order PID controllers were proposed as a replacement for
the conventional PID controllers. Each FOPID required five gains to be tuned, leading to a
total of thirty gains that needed to be adjusted. That is why the HJSPSO optimization algo-
rithm was employed to obtain the controllers’ gains that minimized the cost function. The
performance of this control system was evaluated against the conventional PID controllers
that were tuned using the PSO and COOT algorithms and FOPID controllers that were
tuned using the GA. The system was subjected to 3LG, 2LG, LG, and LL grid faults during
the success of the breakers’ reclosure. The fractional order PID using HJSPSO prevented the
grid voltage from overshooting above 1 p.u. The overshooting of VPCC in the three-phase
to ground fault was roughly ~0.0 p.u in the cases of HJSPSO- and GA-FOPID. However,
the overshooting was ~0.28 p.u using the PSO-PID and ~0.23 p.u using the COOT-PID.
Additionally, VDC had the lowest overshooting (~0.006 p.u) and dip (0.01 p.u) in the case
of HJSPSO compared with an overshooting of ~0.007 p.u in the GA-FOPID and ~0.03 p.u
in both PSO- and COOT-PID. Furthermore, the PPCC had the lowest fluctuations with a
rapid return to the actual generated power in the steady state. The grid dq currents were
preserved under 1 p.u during the fault conditions. Finally, QPCC had the best combination
of a reasonable balance between overshooting (~0.1 p.u) and undershooting (~0.13 p.u)
compared with overshooting (~0.23 p.u) and undershooting (~0.37 p.u) in the PSO-PID
case, overshooting (~0.5 p.u) and undershooting (~0.02 p.u) in the COOT-PID case, and
overshooting (~0.3 p.u) and undershooting (~0.22 p.u) in the GA-FOPID case. The perfor-
mance was also assessed in the case of unsymmetrical faults. Similarly, the grid voltage
VPCC had an ideal overshooting of ~0.0 p.u in all unsymmetrical faults. For example, in
the LG fault, PSO-PID, COOT-PID, and GA-FOPID had overshooting values of ~0.16 p.u,
~0.25 p.u, and ~0.02 p.u, respectively, compared with the ~0.0 p.u overshooting in the case
of HJSPSO-FOPID.

Based on the results, the conclusion was that adopting FOPID controllers provided
superior results relative to conventional PID controllers. Consequently, this led to an
improvement in the system response during grid instabilities. Future research will focus on
implementing more complex and nonlinear controllers suitable for the irregular behavior
of waves.
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