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Abstract: Ultrafast diffusion disperses faster than super-diffusion, and this has been proven by several
theoretical and experimental investigations. The mean square displacement of ultrafast diffusion
grows exponentially, which provides a significant challenge for modeling. Due to the inhomogeneity,
nonlinear interactions, and high porosity of cement materials, the motion of particles on their
surfaces satisfies the conditions for ultrafast diffusion. The investigation of the diffusion behavior in
cementitious materials is crucial for predicting the mechanical properties of cement. In this study, we
first attempted to investigate the dynamic of ultrafast diffusion in cementitious materials underlying
the Riemann–Liouville nonlocal structural derivative. We constructed a Riemann–Liouville nonlocal
structural derivative ultrafast diffusion model with an exponential function and then extended the
modeling strategy using the Mittag–Leffler function. The mean square displacement is analogous
to the integral of the corresponding structural derivative, providing a reference standard for the
selection of structural functions in practical applications. Based on experimental data on cement
mortar, the accuracy of the Riemann–Liouville nonlocal structural derivative ultrafast diffusion
model was verified. Compared to the power law diffusion and the exponential law diffusion, the
mean square displacement with respect to the Mittag–Leffler law is closely tied to the actual data.
The modeling approach based on the Riemann–Liouville nonlocal structural derivative provides an
efficient tool for depicting ultrafast diffusion in porous media.

Keywords: ultrafast diffusion; nonlocal structural derivative; structural function; mean square
displacement; porous media

1. Introduction

In the fields of natural science and engineering, the classification of diffusion phenom-
ena primarily relies on the growth of the mean squared displacement (MSD) over time.
The normal diffusion process is based on the classic Brownian motion theory, in which
the MSD of a particle increases linearly with time [1]. A large number of experiments
have shown that anomalous diffusion is ubiquitous in complex systems such as physical,
chemical, and biological systems [2]. The main characteristic of anomalous diffusion is that
the corresponding MSD grows as a power law:

〈
x2(t)

〉
∼ tη [3], with η > 1, is used for

characterizing super-diffusion, and η < 1 can describe sub-diffusion. Ultrafast diffusion
disperses faster than super-diffusion, which has been proven by several theoretical and
experimental investigations [4–6]. Unlike anomalous diffusion, the MSD of ultrafast dif-
fusion increases exponentially over time, i.e.,

〈
x2(t)

〉
∼ et, posing a huge challenge to the

existing anomalous diffusion models [5]. From the time perspective, ultrafast diffusion
generally occurs quickly in the initial stage, characterizing the short-term evolution process
of particles. As a typical nonlocal and non-Markov process, ultrafast diffusion is influenced
by the external environment and internal structural characteristics including strong hetero-
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geneity, the dominant channels of the medium structure, and the mechanical properties of
particles [6].

Cement mortar plays an important role in the construction industry, in transportation,
in water conservation, and in other fields [7,8]. In order to enhance the strength, durabil-
ity, and hydration process of cementitious mortars, it is customary to introduce various
additives into their matrices, such as a superplasticizer and magnesium phosphate [9,10].
The incorporation of these additives can lead to the formation of various pores and cracks
in the internal microstructure [11]. Due to inhomogeneous and nonlinear interactions, the
motion of particles in porous media usually exhibits anomalous diffusion, which does
not satisfy the classic Fick law [12]. Even the dynamic behavior of certain particles in
cement mortar conforms to ultrafast diffusion [13,14]. Although the diffusion process of
suspended particulates in cement is difficult to observe, a microrheology analyzer can
measure the MSD of cement particles based on laser scattering [15]. At present, this process
is mainly performed using theoretical or empirical models. So, the investigation of the
ultrafast diffusion behavior in cementitious materials is crucial for predicting the long-term
performance of concrete structures.

The key to analyzing the dynamic behavior of a particle is to establish a reasonable
mechanical model. The fractional derivative and fractal derivative have been success-
fully applied to capture sub-diffusion behaviors and super-diffusion behaviors [16–18].
Fomin et al. employed the fractional derivative diffusion equations to model the anomalous
diffusion in cracked rock mass with altered crack regions [19]. Ref. [20] reported that the
fractal derivative diffusion model is suitable for simulating anomalies of moisture transport
in cement-based materials. Furthermore, continuous-time random walk (CTRW) mod-
els have been confirmed to be able to explain anomalous transport in three-dimensional
porous media with different cementation degrees [21]. These models use fractal geometry
to describe the irregularities in a porous medium. However, they cannot accurately ex-
plain the ultrafast diffusion process wherein the MSD does not conform to the power-law
characteristics. To solve such problems, O’Malley et al. proposed a statistical model of frac-
tional Brownian motion run with a nonlinear clock [22]. Xu et al. presented a spatial local
structural derivative diffusion model to describe the motion of nanoparticles suspended in
polymer solutions [23]. However, the understanding of nonlocality in ultrafast diffusion
is not yet fully developed. The primary challenge in this regard is determining how to
deduce the properties of the nonlinear functions based on dynamic processes.

The structural derivatives, including the local operator and the nonlocal operator,
were proposed by Chen et al. [24]. The local structural derivative and the nonlocal struc-
tural derivative are extensions of the Hausdorff derivative and the fractional derivative,
respectively. In comparison with the classical derivatives, the structural derivatives are a
generalization of the space-time fractal power law scale. Usually, structural functions are
used to determine the quantitative relationship between the time scale or the medium struc-
ture and some physical parameters of mathematical mechanical models [4]. At the same
time, the structural function plays a leading role in determining the form and properties of
the structural derivative and is suitable for describing dynamic processes with a memory
effect [25]. Moreover, the fundamental solution of the corresponding structural derivative
diffusion equation can reflect the statistical law of diffusion [23]. At present, theoretical
models and numerical algorithms of the structural derivatives have been successfully used
to describe various complex mechanical problems. The nonlocal structural derivative
diffusion model with the inverse Mittag–Leffler (ML) function has been applied to simulate
ultraslow diffusion in dense colloids over long time scales [25].

The geometric foundation of non-local structural derivatives is rooted in Euclidean
distance. This framework can capture local features under non-uniform scales and with
long-memory properties [4]. Additionally, by implementing structural functions (arbitrary
functions of space time), the research scope extends to more intricate structural systems.
Given the intricacies of the computational process and the challenging nature of modeling,
the research on nonlocal structural derivatives primarily focuses on exploring the time-
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dependent stochastic processes. At present, the Riemann–Liouville nonlocal structural
derivative has gained attention for modeling the ultraslow creep of non-Newtonian flu-
ids [26,27]. But the application of cementitious materials is in its nascent stages. This study
concentrates on investigating ultrafast diffusion in a cement system and further analyzing
the influential mechanism underlying the Riemann–Liouville nonlocal structural derivative.
As in the generation of the Riemann–Liouville fractional derivative, the Riemann–Liouville
nonlocal structural derivative retains the convolution operator for describing the memory
and widens the prediction and simulation range through its kernel function or structural
function [24]. In this study, we constructed a Riemann–Liouville nonlocal structural deriva-
tive ultrafast diffusion model with an exponential function and extended the modeling
strategy through the ML function to analyze the mechanical properties of cement. The
accuracy of the model is substantiated via a test conducted on magnesium phosphate
cement mortar [28].

The subsequent sections of this study are structured as follows. In Section 2, we
provide the Riemann–Liouville nonlocal structural derivative and propose a Riemann–
Liouville nonlocal structural derivative ultrafast diffusion model with an exponential
function and an ML function. In Section 3, the dynamics processes of several particles in
cement materials are simulated using the proposed model. Some discussion is provided in
Section 4. Section 5 summarizes the conclusions.

2. Theory
2.1. The Riemann–Liouville Nonlocal Structural Derivative

Traditional integer-order derivatives are limited to characterizing the local diffusion
effects of particles. Non-integer-order derivatives can capture non-local properties, long-
range memory, and the non-stationary evolution of statistical characteristics over time [16].
The most common non-integer-order derivatives are fractal derivatives and fractional
derivatives; the Riemann–Liouville nonlocal structural derivative can be regarded as an
extension of the Riemann–Liouville fractional derivative. If P(x, t) is a continuous derivable
function in (0,+∞), the Riemann–Liouville nonlocal structural derivative can be defined
as follows [25]:

RL
0 D1−K

t P(x, t) =
∂

∂t

∫ t

0
K(t − τ) · P(x, τ)dτ. (1)

Here, RL
0 D1−K

t is the time Riemann–Liouville nonlocal structural derivative operator;
the time structural function K(t) is arbitrary. When K(t) is a power-law function,

K(t) =
tα−1

Γ(α)
, (2)

Equation (1) can be transformed into the classical Riemann–Liouville fractional deriva-
tive [10]:

RL
0 D1−K

t P(x, t) = RL
0 D1−α

t P(x, t) =
1

Γ(α)
∂

∂t

∫ t

0
(t − τ)α−1 · P(x, τ)dτ, (3)

where RL
0 D1−α

t is the Riemann–Liouville fractional derivative operator. It is worth noting
that the dynamic behavior of different media structures can be determined by transforming
the structural function. For complex systems with extremely irregular structures, the
structural metric can be used to effectively describe diffusion mechanisms and media
complexity, which can be defined as

Ks = |K(t2 − t0)− K(t1 − t0)|, (4)
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where Ks denotes structural time. The time local structural derivative can be derived from
the velocity of a moving particle in structural time:

∂P(x, t)
∂K(t)

= lim
t1→t

P(x, t1)− P(x, t)
K(t1)− K(t)

. (5)

Compared with the Riemann–Liouville nonlocal structural derivative, the local struc-
tural derivative of Equation (5) is based on non-Euclidean distances, and the operator itself
does not have memory.

2.2. The Ultrafast Diffusion Model via Riemann–Liouville Nonlocal Structural Derivative

As an effective method for simulating non-Markovian processes in complex systems,
the Riemann–Liouville fractional derivative anomalous diffusion equation over time can
be directly derived using a CTRW model [18]. Its mathematical expression consists of
replacing the traditional first-order derivative with the fractional derivative, as follows [3]:

∂P(x, t)
∂t

= RL
0 D1−α

t Ds
∂2P(x, t)

∂x2 . (6)

Here, Ds is known as a generalized diffusion coefficient and its dimensions depend
on the structural function. RL

0 D1−α
t is the Riemann–Liouville fractional derivative in

Equation (3). P(x, t) denotes the probability density function (PDF) of concentration in x at
time t. Using the integral operation

∫ +∞
−∞ x2dx, Equation (6) can be transformed into

∂

∂t

∫ +∞

−∞
P(x, t) · x2dx = RL

0 D1−α
t Ds

∫ +∞

−∞

∂2P(x, t)
∂x2 · x2dx. (7)

Through derivation, Equation (7) can be transformed into [18]

d
dt

〈
x2(t)

〉
= 2RL

0 D1−α
t Ds. (8)

Then, substituting Equation (3) into Equation (8), we can obtain

d
dt

〈
x2(t)

〉
=

2Ds

Γ(α)
tα−1. (9)

The corresponding MSD can be acquired through the integration of the variable t,
which increases the power law.

Considering the propensity of the MSD to undergo ultrafast diffusion in cement
materials, we suppose the time structural function is an exponential function:

K(t) = λeλt, λ > 0. (10)

The corresponding Riemann–Liouville nonlocal structural derivative is

RL
0 D1−K

t U(x, t) =
∂

∂t

∫ t

0
λeλ(t−τ) · U(x, τ)dτ. (11)

Similar to the properties of the fractional derivative, Equation (10) obeys the fol-
lowing relationship: RL

0 D1−K
t = ∂

∂t
RL
0 D−K

t . According to the theoretical analysis of the
Riemann–Liouville fractional derivative diffusion model, the time Riemann–Liouville
nonlocal structural derivative ultrafast diffusion model in Equation (11) is

∂U(x, t)
∂t

= RL
0 D1−K

t Ds
∂2U(x, t)

∂x2 , (12)
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where U(x, t) denotes the PDF of the particles in cement materials at x at time t. After
applying the integration operator

∫ +∞
−∞ x2dx to both sides of Equation (12), we obtain

∫ +∞

−∞
x2 · ∂U(x, t)

∂t
dx =

∫ +∞

−∞
x2 · RL

0 D1−K
t Ds

∂2U(x, t)
∂x2 dx. (13)

Based on the properties of calculus, Equation (13) can be rewritten as follows:

∂

∂t

∫ +∞

−∞
x2 · U(x, t)dx =

∫ +∞

−∞
x2 · RL

0 D1−K
t Ds

∂2U(x, t)
∂x2 dx. (14)

Because the definition of the MSD is〈
x2(t)

〉
=

∫ +∞

−∞
x2 · U(x, t)dx, (15)

Equation (14) becomes
d
〈

x2(t)
〉

dt
= RL

0 D1−K
t 2Ds. (16)

Due to integration with respect to t the value of the MSD at t = 0 needs to be 0. So,
the MSD can be derived based on Equation (15):〈

x2(t)
〉
= 2Ds

∫ t

0
λeλ(t−τ)dτ = eλt − 1. (17)

Indeed, the relationship between
〈
x2(t)

〉
and K(t) can also be inferred from Equation (15),

leading to 〈
x2(t)

〉
= 2Ds

∫ t

0
K(τ) dτ. (18)

The ML function is also commonly used to analyze the properties of fractional integral
equations and fractional derivative equations [29]. Recent studies indicate that the ML
function and its inverse function have great application potential in physics, biology, and
engineering, especially in regard to anomalous diffusion for complex systems [29,30].
Ref. [30] analyzed ultrafast diffusion using the fractional Brownian motion run with the
ML clock; the MSD was calculated as:〈

x2(t)
〉
= Eα(t) =

+∞

∑
k=0

tk

Γ(αk + 1)
. (19)

In order to increase the applicability of the model in complex practical systems, we
assume that the structural function is mainly composed of an ML function

K(t) = η[Eα(t)]
η−1Eα

′(t). (20)

where Eα
′(t) is the first-order derivative of the ML function. Then, the Riemann–Liouville

nonlocal structural derivative ultrafast diffusion model with an ML function can be estab-
lished. Combining Equations (14) and (16), the MSD is an ML function that satisfies the
following form: 〈

x2(t)
〉
= [Eα(t)]

η , η > 0. (21)

Overall, the structural function can be seen as a memory kernel that is related to
complex medium structures, and it mainly depends on the characteristics of dynamic
behavior. Equation (17) directly indicates the equivalence of the MSD and the integration
of a structural function over t. This law will provide a reference standard for the selection
of structural functions in practical applications.
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3. Applications and Results

In the work above, Riemann–Liouville nonlocal structural derivative ultrafast diffusion
models were established theoretically, but further research is needed to validate their
effectiveness in capturing the intricacies of particle transport. This section focuses on
exploring the accuracy of the models based on experimental data on magnesium phosphate
cement mortar [28]. The corresponding parameters and fitting errors of the models were
estimated through nonlinear least squares fitting, and the MATLAB simulation analysis
tool was used to achieve this.

Magnesium phosphate cement (MPC) mortar, also known as phosphate chemical
ceramic bonding material, is one of the hotspots in the research on new cementitious
materials [31]. It has very good application prospects regarding building repair engineering
materials, the solidification of heavy metals and pollutants, refractory materials, and
biomedical engineering materials [32,33]. To investigate the mechanical properties and
water resistance of MPC mortar, Hou et al. prepared magnesium sodium phosphate cement
and magnesium potassium phosphate cement and then analyzed the microstructure of their
hydration product, struvite-K [28]. The experimental results indicated that the compressive
strength of MPC mortar can be evaluated by referring to the mobility of different atoms in
struvite-K. Expressed with dual logarithm coordinates, the MSD of oxygen atoms in water
and K ions for the struvite-K near-water solution does not follow a linear relationship with
time but shows an exponential growth trend. This result could potentially provide insights
into the pronounced cracking observed for the MPC paste immersed in the water solution.
Further elaboration on the experiments and the corresponding experimental data can be
found in Ref. [28].

In order to test the feasibility of the Riemann–Liouville nonlocal structural derivative
ultrafast diffusion model, the experimental data characterizing the MSD of particles in
cement mortar were simulated using the power law diffusion with η > 1, the exponential
law diffusion in Equation (16), and the Mittag–Leffler law diffusion in Equation (19).
Figures 1 and 2 describe the fitting results for different models when simulating the
experimental data of the MSD for the oxygen atoms and the K ions on MPC, respectively.
The black filled circles are the experimental data measured in cement mortar; the red solid
line is the fitting result of the Riemann–Liouville nonlocal structural derivative diffusion
model with the ML function in Equation (19),

〈
x2(t)

〉
∼ [Eα(t)]

η ; the blue line is the fitting
result of the exponential law diffusion in Equation (16),

〈
x2(t)

〉
∼ eλt − 1; and the pink

dashed line is the fitting result of the power law model,
〈

x2(t)
〉
∼ tη . Tables 1 and 2 provide

the corresponding parameters and the fitting errors of the models.
The observed data indicate the validity of all the diffusion laws as temporal progres-

sion occurs. Particularly within a limited time range, the curves of the ML diffusion law
adeptly capture the experimental data in Figure 1. The maximum absolute and mean
squared errors of the Riemann–Liouville nonlocal structural derivative ultrafast diffusion
model with ML diffusion in Table 1 are less than those of the other diffusion laws. At
the same time, there is little difference in the parameters of the three models. It can be
observed from Figure 2 that the overall trend of the experimental data is more consistent
with ultrafast diffusion, but the accuracy of the models is difficult to evaluate in the initial
stage. With the passage of time, the Riemann–Liouville nonlocal structural derivative
diffusion model with the ML function is gradually highlighted. The errors in Table 2 can
also reflect this point very well. In fact, the phenomenon of ultrafast diffusion occurs
quickly and unstably, so it is difficult to capture the relevant experimental data. This is
perhaps why the experimental data cannot match the model perfectly in Figure 2.
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Figure 1. Fitting results regarding power law diffusion (
〈

x2(t)
〉
∼ tη , η = 1.95), exponential law

diffusion (
〈

x2(t)
〉
∼ eλt − 1, λ = 2.2), and Mittag–Leffler law diffusion (

〈
x2(t)

〉
∼ [Eα(t)]

η , α = 0.95,
η = 2) for the MSD of oxygen atoms in water. The experimental data were sourced from [28].

Table 1. The fitting results for oxygen atoms in water for different models and their errors (the
diffusion coefficient is dimensionless).

Models Power Law Diffusion Exponential Law
Diffusion

Mittag–Leffler Law
Diffusion

η η = 1.95 η = 2
λ λ = 2.2
α α = 0.95

Maximum absolute error 0.0995 0.0446 0.0201
Mean square error 0.0314 0.0341 0.0017

Table 2. The fitting results for K ions from different models and their errors (the diffusion coefficient
is dimensionless).

Models Power Law Diffusion Exponential Law
Diffusion

Mittag–Leffler Law
Diffusion

η η = 1.8 η = 2.5
λ λ = 2.7
α α = 0.98

Maximum absolute error 0.0671 0.0567 0.0418
Mean square error 0.0390 0.0371 0.0252
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Figure 2. Fitting results regarding super-diffusion power law diffusion (
〈

x2(t)
〉
∼ tη , η = 1.8),

exponential diffusion law diffusion (
〈

x2(t)
〉
∼ eλt − 1, λ = 2.7), and Mittag–Leffler law diffusion

(
〈

x2(t)
〉
∼ [Eα(t)]

η , α = 0.98, η = 2.5) for the MSD of K ions. The experimental data were sourced
from [28].

4. Discussion

In this study, the dynamics of ultrafast diffusion in cementitious materials underlying
the Riemann–Liouville nonlocal structural derivative diffusion model were investigated.
Similar to the fractional-order derivatives, the analytical solution of the Riemann–Liouville
nonlocal structural derivative diffusion model is difficult to deduce due to the convolution
operators. The numerical solutions of the fractional differential equations are still important
topics [34]. For the same reason, there is little theoretical research on spatial Riemann–
Liouville nonlocal structural derivatives. Even if the analytical solution can be obtained,
the form of the solution is often a complex special function or an infinite series, which
are difficult to directly apply in practical applications. Therefore, finding an effective and
high-precision numerical solution method has a strong effect on the practical application of
Riemann–Liouville nonlocal structural derivative equations.

Significantly, the macroscopic constitutive model based on a differential equation is
empirical, which is helpful for understanding and predicting the dynamic processes of
complex systems. From a statistical mechanics point of view, the microscopic statistical
models can accurately describe the transitions, collisions, and other behaviors of particles
between different energy levels based on their behavior and thus reveal the corresponding
laws and properties of motion [30]. The continuous-time random walk model provides
a framework for describing the anomalous diffusion of particles and establishes a strong
relationship between the microscopic mechanism and macroscopic equations [18]. The
focus of our future work will be to analyze the statistical characteristics of the waiting time
and jump length of ultrafast diffusion and then explain the microscopic mechanism of
particle diffusion.
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This study verifies the effectiveness of the Riemann–Liouville nonlocal structural
derivative ultrafast diffusion model on the basis of analyzing the theories and experimental
results. The model is in a simple form and is convenient to program without considering
the effects of convection and adsorption. However, the physical significance of the param-
eters and the relationship between the structural function and the medium structure are
still undetermined. Experimental data are direct evidence that can be used to determine
the physical meaning of parameters. The results of the comparison between experiments
and models will provide important clues for the accuracy evaluation and parameter op-
timization of the model. In future studies, the physical meanings of parameters and the
applications for the Riemann–Liouville nonlocal structural derivative diffusion model will
be explored with more practical applications.

5. Conclusions

In this study, we investigated the macroscopic mechanical constitutive models for the
ultrafast diffusion of particles in cement paste and qualitatively analyzed the influence mecha-
nism. The following conclusions can be drawn from the preceding results and discussions:

1. The Riemann–Liouville nonlocal structural derivative diffusion equation has the advan-
tages of strong application potential, high flexibility, and a mean square displacement
that is analogous to the integral form of the corresponding structural function.

2. The physical mechanism of the Riemann–Liouville nonlocal structural derivative
diffusion model is obvious, and the law of the ultrafast diffusion in cement mortar
over a short time scale satisfies the inverse Mittag–Leffler function.

3. The verification of the experimental results indicated that the Riemann–Liouville
nonlocal structural derivative diffusion model is more effective at depicting ultrafast
diffusion behavior in cement mortar, as evidenced by the fitting curves and errors.
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