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Abstract: The two-parameter Wright special function is an interesting mathematical object that
arises in the theory of the space and time-fractional diffusion equations. Moreover, many other
special functions are particular instantiations of the Wright function. The article demonstrates finite
representations of the Wright function in terms of sums of generalized hypergeometric functions,
which in turn provide connections with the theory of the Gaussian, Airy, Bessel, and Error functions,
etc. The main application of the presented results is envisioned in computer algebra for testing
numerical algorithms for the evaluation of the Wright function.
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1. Introduction

The Wright function was introduced in two seminal publications by the British mathe-
matician Sir E.M. Wright, discussing the theory of partitions of numbers [1,2]. The function
received renewed interest from the mathematical community when it was demonstrated
that the space–time fractional diffusion equation with the temporal Caputo derivative
can be solved in terms of Wright functions [3]. It was also discovered that the Wright
function provides a unified treatment of several classes of special functions, notably the
Bessel functions, the probability integral erf, the Airy Ai, Bi, and the Whittaker functions,
among others. The Wright function was originally defined by the infinite series [1]:

W(a, b| z) :=
+∞

∑
k=0

zk

k! Γ(ak + b)
, z ∈ C,

under the conditions b ∈ C and a > −1, where Γ denotes Euler’s Gamma function. Later
works on the function include the articles of Gorenflo, Luchko, and Mainardi [4], and
Luckko [5] among some others. Based on the sign of its first parameter, later, Mainardi
classified the function into two types: the Wright function of the first type, if a ≥ 0, and the
Wright function of the second type, for −1 < a < 0 [6,7]. This function fits into the more
general theory of the Fox–Wright (FW) functions as will be discussed in Section 3.

The Wright function is closely related to the theory of the generalized hypergeometric
(GHG) functions. Notably, for rational parameter values, the Wright function can be
represented as a finite sum of GHG functions. The link comes directly via the theory of
Euler’s Gamma function. Formulas for the Wright function representation of the first type
have been published in [4,8] and have been derived via its representation as a Meijer G
function. Recently, Apelblat and Gonzales-Santander have tabulated representations in
terms of GHG functions for many parameter combinations [9].

The contribution of the present article is twofold. In the first place, it extends the results
of the above authors [9] for the cases wherever a < 0 and b > 1 and also demonstrates how
the domain of the first parameter can be extended into the negative integers under certain
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conditions by explicitly constructing polynomial representations of the function. These
representations allow us to distinguish a Wright function of the third type (Section 4). Some
of the present results have been presented in a preliminary form at the 2023 International
Conference on Fractional Differentiation and Its Applications ICFDA, 2023 [10]. In the
second place, the article exhibits the link with the Mittag-Leffler function, which also has
wide applications in fractional calculus. It is demonstrated that the theory of the Wright
function is very rich and can produce many potentially useful integral identities. In a
similar way, the domain of the Mittag-Leffler function can be analytically continued into
negative integral values of its first parameter and integer values of its second parameter.

2. Some Applications of the Wright Function

Recent surveys about Wright function applications can be found in [7,11]. What
makes the function useful for applications in calculus is the fact that it is closed under
differentiation

d
dz

W( a, b|z) = W( a, a + b|z) (1)

which allows one to write the integrals

W( a, b|z) =
∫ z

0
W( a, a + b|z) + 1

Γ(b)
(2)

and ∫
W( a, b|z)dz = W( a, b − a|z) + C (3)

The Wright function arises in the theory of the space–time fractional diffusion equation
(FDE) with the temporal Caputo derivative [3]. We recall that the Caputo’s fractional
derivative of order β > 0 is defined for β /∈ N as the differintegral

Dβ
t f (t) :=

1
Γ(m − β)

∫ t

0

f (m)(u)du
(t − u)β+1−m (4)

where m = ⌊β⌋. The fractional differential equation in the Caputo sense with variable
coefficients

Db
t

[
tb f ′(t)

]
= atb−1 f (t) (5)

admits for a solution f (t) = W( a, b|ta) [12].

3. The Wright Function as a Simple Representative of the Fox–Wright Function Family

The generalized hypergeometric functions are defined by the infinite hypergeometric
(HG) series

pFq(a1, . . . , ap; b1, . . . , bq, x) :=

+∞

∑
m=0

xm

Γ(m + 1)

p

∏
k=1

Γ(ak + m)

Γ(ak)

q

∏
k=1

Γ(bk)

Γ(bk + m)
=

+∞

∑
r=0

xr

r!

∏
p−1
j=0 (aj)r

∏
q−1
j=0 (bj)r

(6)

where (a)r and (b)r will denote rising factorials and (a)0 = 1, which assumes the nor-

malization pFq

(
∼;∼

∣∣∣0) = 1. By convention, equal parameters in the numerator and
denominator cancel out. Unless stated otherwise, it will be always assumed that the infinite
series converge in some domain x ∈ R .
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The defining property for the HG series is that their coefficients are rational functions
of the index variable (i.e., k). In the present article, we will use parametric notation similar
to the one adopted by Oldham and Spanier [13].

pFq(a1, . . . , ap; b1, . . . , bq, x) ≡
[

a1, . . . , ap x
b1, . . . , bq

]
The FW functions are further generalizations of the GHG functions (in short hypergeometric
functions) that can be defined by the infinite series

pΨ̄q(x) ≡ Ψ̄
[

(A1, a1) . . . , (Ap, ap) x
(B1, b1) . . . , (Bq, bq)

]
:=

+∞

∑
m=0

xm

Γ(m + 1)

p

∏
k=1

Γ(akm + Ak)

Γ(Ak)

q

∏
k=1

Γ(Bk)

Γ(bkm + Bk)

whenever it converges.
At this point, the following extended tabular notation is introduced under the conven-

tion [14]

p+1Ψ̄q(z) ≡
[

a1, . . . , ap (A, a) z
b1, . . . , bq −

]
, p+1Ψ̄q(0) = 1,

where the dash indicates absensce of Gamma factors in the series in the denominators and
vice-versa. In this notation, the hypergeometric parameters of the function are written first
while the composite parameters are left second. The right parameters result in factors of
the form

Γ(ka + A)

Γ(A)

or their reciprocals, respectively, while the left parameters result in Pochhammer multipliers
(i.e., A ∈ N ). The non-simplified parameters follow the usual convention established in
the literature. The order in the parametric convention for the arguments of the Gamma
function follows the usual convention.

The following simplifying convention will be used further:[
a1, . . . − z
b1, . . . −

]
≡
[

a1, . . . z
b1, . . .

]
(7)

and [
a1, . . . , ap (A, 1) z
b1, . . . , bq −

]
≡
[

a1, . . . , ap, A z
b1, . . . , bq

]
(8)

This example shows different ways to write a hypergeometric function. Under this notation

W( a, b|z) = 1
Γ(b)

[
− − z
− (b, a)

]
(9)

In this way, one could appreciate that the Wright function is the simplest member of the
class of the Fox–Wright functions. Other examples are the Bessel J function:

Jν(z) =
1

Γ(ν + 1)

( z
2

)ν
[

− − z2

4
ν + 1

]

The Struve H function:

Hν(z) =
1

Γ(ν + 3/2)Γ(3/2)

( z
2

)ν+1
[

1 − z2

4
3/2, ν + 3/2

]
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Furthermore, the following integral representation can be derived (see for exam-
ple [14]): [

a1, . . . , ap . . . z
b1, . . . , bq (B, b)

]
=

Γ(B)
2πi

∫
Ha−

eτ

τB

[
a1, . . . , ap . . . z

τb

b1, . . . , bq . . .

]
dτ (10)

where Ha− denotes the Hankel contour, which surrounds all poles of the GHG function
from the left. Applied to the Wright function, where B 7→ a; b 7→ a, this gives the integral

W( a, b|z) = 1
2πi

∫
Ha−

eξ+zξ−a

ξb dξ, z ∈ C (11)

along a Hankel contour, which surrounds the negative real semi-axis and the pole at the
origin. Said contour can be deformed in an extreme, as depicted in Figure 1. This contour
consists of the rays AB and DE as well as the arc BCD. For integral values of b and a, the
path of integration closes around the origin O so that the rays collapse and can be used to
extend the domain of the function into the negative integer parameters.

x

y

C

B

D

A

E

Figure 1. Partition of the Hankel contour.

4. Polynomial Reduction

In particular, let us consider the case when a is a negative integer and denote it by
−n. Trivially, if b is a negative integer, say b = −m, then the above integral vanishes and
W(−n,−m|z) = 0.

In contrast, if n = −a and b = m, m, such that n ∈ N , then

W(−n, m|z) = Res(ker(ξ), ξ = 0) =
1

Γ(m)

{(
d

dξ

)m−1
eξ+zξn

}∣∣∣∣∣
ξ=0

Therefore, we can conclude that W(−n, m|z) is a polynomial in z. This is a novel result,
which was not anticipated by Wright and allows for the extension of the domain of the
parameters of the function. This polynomial can be computed explicitly by application of
Faá di Bruno’s formula using the complete exponential Bell polynomials. For the natural
numbers n and m:

W(−n, m|z) = 1
Γ(m)

Bm−1

(
g′(0), . . . , g(m−1)(0)

)
(12)
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where g(ξ) = ξ + zξn is the exponent of the kernel and can be computed by the determinant

Bm

(
g′(0), . . . , g(m)(0)

)
=

∣∣∣∣∣∣∣∣∣∣∣

(m−1
0 )g′(0) (m−2

1 )g′′(0) . . . (m−1
m−1)g(m)(0)

−1 (m−2
0 )g′(0) . . . (m−2

m−2)g(m−1)(0)
0 −1 . . . (m−3

m−3)g(m−3)(0)
. . .

0 . . . −1 (0
0)g′(0)

∣∣∣∣∣∣∣∣∣∣∣
Remark 1. It should be noted that the resulting matrix is a band matrix since already g′′(0) = 0.
For example, for n = 3, m = 8, we have

B7(. . .) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 90z 0 0 0 0
−1 1 0 60z 0 0 0
0 −1 1 0 36z 0 0
0 0 −1 1 0 18z 0
0 0 0 −1 1 0 6 z
0 0 0 0 −1 1 0
0 0 0 0 0 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The polynomial reduction formulas allow us to claim that Mainardi’s classification

can be extended to add also Wright functions of the third type, that is whenever a, b ∈ Z−.

5. Finite Hypergeometric Representations

Wherever the a parameter is rational, the Wright function can be represented by a
finite sum of hypergeometric functions. For positive and rational a, one could obtain the
representation in terms of 0Fm+n−1 GHG functions [9]:

Theorem 1 (First HG Representation). Suppose that a = n/m > 0, where n and m are co-prime
and b ̸= 0. Then, W(n/m, b|z) admits the finite representation

W(n/m, b|z) =
m−1

∑
r=0

zr

r! Γ(b + ar)

[
1 zm

nnmm

b⃗, c⃗

]
, (13)

where b⃗ has n components and c⃗ has m components given by

bj = r/m + (b + j)/n, cj = (r + 1 + j)/m,

respectively.

The proof follows [8] and is given as a staring point for the proof of the Second
Representation Theorem.

Proof. Since the series is absolutely convergent we can arrange it in a finite number of
ways. Starting from a = n/m, rearrange the series as

W( a, b|z) =
+∞

∑
k=0

zk

k! Γ(ak + b)
=

m−1

∑
q=0

+∞

∑
p≥q/m

zmp−q

Γ(mp − q + 1) Γ(a(mp − q) + b)

since the integer k can be partitioned as k = mp − q, where q = 0, . . . m − 1. After some
algebra, we obtain

W(n/m, b|z) = 1
Γ(b)

+
m

∑
r=1

zr
+∞

∑
p=0

zmp

Γ(ap + ra + b)Γ(mp + r + 1)
.
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Observe that for p = 0, the inner series evaluates to

Cr = Γ(ra + b)Γ(r + 1),

which serves as its normalization factor. Therefore, the series transforms as

W(n/m, b|z) =
m

∑
r=0

zr

Cr

+∞

∑
p=0

Γ(ra + b)Γ(r + 1)
Γ(n(p + r/m + b/n))

· zmp

Γ(m(p + (r + 1)/m))
(14)

Further, use Proposition A1 in Appendix B to obtain

Γ(n(p + r/m) + b)
Γ(nr/m + b)

= nnp
n−1

∏
j=0

(
r
m

+
b
n
+

j
n

)
p︸ ︷︷ ︸

bj

(15)

From where we read off the base component

b0 =
r
m

+
b
n

with an increment 1/n. Furthermore,

Γ(mp + r + 1)
Γ(r + 1)

= mmp
m−1

∏
j=0

(
r + 1

m
+

j
m

)
p︸ ︷︷ ︸

cj

(16)

From where we read off the base component

c0 =
r + 1

m

with an increment 1/m.

Observe that r = m − 1 results in c1 = 1. Therefore, the GHG functions reduce to the
form 0Fm+n−1 . The formula for a negative rational a < 0 needs some more work. Suppose
first that b < 1. Let

W(−n/m, b|z) = 1
Γ(b)

+
m

∑
r=1

zr

Cr

+∞

∑
p=0

Cr

Γ(−np − rn/m + b)
zmp

Γ(mp + r + 1)

First, we use the Gamma reflection formula to obtain

1
Γ(−np − rn/m + b)

=
(−1)npΓ

( nr
m + np − b + 1

)
Γ
(
b − nr

m
)
Γ
( nr

m − b + 1
) (17)

Therefore,

W(−n/m, b|z) = 1
Γ(b)

+
m

∑
r=1

zr

Cr

+∞

∑
p=0

(−1)npCrΓ
( nr

m + np − b + 1
)
zmp

Γ
(
b − nr

m
)
Γ
( nr

m − b + 1
)
Γ(m(p + (r + 1)/m))

=

1
Γ(b)

+
m

∑
r=1

zr

Cr

+∞

∑
p=0

(−1)npΓ
( nr

m + np − b + 1
)
Γ(r + 1)zmp

Γ
( nr

m − b + 1
)
Γ(mp + r + 1))
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according to Equation (17). We use Proposition A1 to compute

Γ(n(r/m + p)− b + 1)
Γ
( nr

m − b + 1
) = nnp

n−1

∏
j=0

(
r
m

+
1 − b

n
+

j
n

)
p
= nnp

0

∏
j=n−1

(
1 +

r
m

− j + b
n

)
p︸ ︷︷ ︸

b′j

Finally, we read off the parameters b′j = 1 + r/m − (b + j)/n with an increment 1/n. Then,
we can formulate the following

Theorem 2 (Second HG Representation). For b ≤ 1 and n ≤ m, non-negative co-prime integers,
and a = −n/m,

W(−n/m, b|z) =
m−1

∑
r=0

zr

r! Γ(b + ar)

[
1, b⃗′ (−)nzm

nnmm

c⃗

]
(18)

where b⃗′ = {b′0 . . . b′n−1}, c⃗ = {c0 . . . cm−1} and

b′j = 1 + r/m − (b + j)/n, cj = (r + 1 + j)/m

Observe that for r = m − 1 c1 = 1; therefore, the GHG functions reduce to the form
nFm−1. For b ≥ 1, a polynomial part P must also be added to the representation as follows.

Theorem 3 (Third HG representation). Suppose that a and b are rational parameters, where
b ≥ 1 and |a| ≤ 1. Define the polynomial Pb(−a, z) by the integral recursion

Pb(−a, z) :=
∫ z

0
Pb−a(−a, x)dx + cb−1, (19)

where cb−1 = 1/(b − 1)! if b is an integer and 0 otherwise. Furthermore, define P0(z,−a) := 1
and for b < 0 assign Pb(z,−a) := 0 identically. Then, for a = −n/m and b ̸= 0

W(−n/m, b|z) =
m−1

∑
r=0

zr

r! Γ(b + ar)

[
1, b⃗′ (−)nzm

nnmm

c⃗

]
+ Pb(−a, z) (20)

where m and n are co-prime numbers.

Proof. First, we prove that the arc integral results in a polynomial in z. Suppose that b ≥ 1
is rational and −a = n/m as before. Consider the arc BCD (Figure 1). We change variables
as ξ = ϵηm, ϵ > 0. Then, the integral becomes

I = m
∮

BCD

dη ϵ1−b

η(b−1)m+1
eϵ

n
m ηnz+ϵηm

The development of the kernel in the infinite series results in

ker = m
dη ϵ1−b

η(b−1)m+1

+∞

∑
j=0

j

∑
i=0

ϵ
im+(j−i)n

m ηim+(j−i)nzj−i

i!(j − i)!

The scale-invariant part of the series is given by the members k j for which

ϵ
im+(j−i)n

m −b+1 = 1

This is given by the constraint

i =
(b − 1)m − jn

m − n
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Therefore,

k j =
dη m z

(j−b+1)n
n−m

η
(
(b−1)n−jm

n−m

)
!
(
(j−b+1)n

n−m

)
!

Changing again the variables to η = eiφ/m results in the integral

cj =
1

2πi
iz

(j−b+1)m
m−n(

(b−1)m−jn
m−n

)
!
(
(j−b+1)m

m−n

)
!
·
∫ π

−π
e

i(bn−1)φ
n +

iφ
n −ibφdφ =

z
(j−b+1)m

m−n(
(b−1)m−jn

m−n

)
!
(
(j−b+1)m

m−n

)
!

Furthermore, the valid indices are given by the union set

j :
(
(j − b + 1)m

m − n
∈ N

)
∪
(
(b − 1)m − jn

m − n
∈ N

)
Equivalently, in the a-notation

cj =
z

j−b+1
1−a(

j−b+1
1−a

)
!
(
−aj+b−1

1−a

)
!

(21)

Therefore, a < 1 must hold for cj not to vanish.
On the other hand,

b − 1 ≤ j ≤ (b − 1)/a ∪ j ∈ N

which is a finite set. Therefore, for a rational b, the integral I is a polynomial in z.
To derive the polynomial recursion, we proceed from Equation (2)

W(−a, b|z) =
∫ z

0
W(−a, b − a|z) + 1

Γ(b)
(22)

so that the equation defines a recursion relationship.
Observe that for j = b − 1 ∈ N , the coefficient becomes

cb−1 =
1

(b − 1)!
=

1
Γ(b)

Therefore, for non-integer b, there are no constant monomials. Furthermore, consider the
monomial cj as a function of b. Differentiating Equation (21), one obtains the recursion

d
dz

cj(b) =
z

j−b+1
1−a −1(

j−b+1
1−a − 1

)
!
(
−aj+b−1

1−a

)
!
=

z
j−(b−a)

1−a(
j−(b−a)

1−a

)
!
(

aj−b+1
a−1

)
!
= cj−1(b − a),

which is also consistent with the integral Equation (22). Therefore, the polynomial Pb(−a, z)
should obey the above recursion. The second argument of the Wright function varies;
therefore, it is convenient that it indexes the polynomial in a slight notational change.

For integer values of a, that is, when m = 1, Theorem 3 corresponds with the polyno-
mial representation since the hypergeometric sum disappears.
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6. The Special Case b = 0

The case whenever b = 0 needs separate treatment. From the theory of the FW
functions, we can formulate the following proposition.

Proposition 1. Whenever b = 0, we have the special FW representation

W( a, 0|z) = z
Γ(a)

[
1 − z
2 (a, a)

]
(23)

Proof. The proof follows via direct computation:

W( a, 0|z) =
+∞

∑
k=1

zk

Γ(ak)Γ(k + 1)
=

+∞

∑
j=0

zj+1

Γ(aj + a)Γ(j + 2)
=

z
Γ(a)

[
1 − z
2 (a, a)

]

This result can be represented for rational a using the theory developed so-far as follows.

Proposition 2. Whenever a = m/n > 0 with n, m co-prime natural numbers

W( a, 0|z) =
m−1

∑
r=0

zr+1

(r + 1)! Γ(a + ar)

[
1 zm

nnmm

b⃗, c⃗

]
(24)

where b⃗ has n components and c⃗ has m components given by

bj = (r + 1)/m + j/n, cj = (r + 2 + j)/m,

respectively.

Proof. Starting from Equation (14), we observe that Cr = Γ(ar + a)Γ(r + 2). Furthermore,

Γ(mp + r + 2)
Γ(r + 2)

= mmp
m−1

∏
j=0

(
r + 2

m
+

j
m

)
p︸ ︷︷ ︸

cj

(25)

by Proposition A1. From where we read off the component

c0 =
r + 2

m

with an increment 1/m.

In a similar way, we can state

Proposition 3. Whenever −1 < a = n/m < 0 with n, m co-prime natural numbers

W(−n/m, 0|z) =
m−1

∑
r=0

zr+1

(r + 1)! Γ(a + ar)

[
1, b⃗′ (−)nzm

nnmm

c⃗

]
(26)

where b⃗′ = {b′0 . . . b′n−1}, c⃗ = {c0 . . . cm−1} and

b′j = 1 + (r + 1)/m − j/n, cj = (r + 2 + j)/m
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Proof. Use the Gamma reflection formula to obtain

b′j = 1 − (−r/m + (−n/m + j)/n) = 1 + r/m − (−n/m + j)/n =

1 + (r + 1)/m − j/n

7. Representations of the Wright Function of the First Type

The following representations can be computed using Theorem 2:

7.1. Representations for a = 1/2

The following representation holds.

W(1/2, b|z) = 1
Γ(b)

[
− z2

4
b, 1/2

]
+

z
Γ(b + 1/2)

[
− z2

4
b + 1/2, 3/2

]
(27)

7.2. Representations for a = 1/3 and a = 2/3

Using the conventional notation we have

W(1/3, b|z) =
0F3

(
−; b + 2

3 , 4
3 , 5

3 ; z3

27

)
z2

2Γ
(
b + 2

3
) +

0F3

(
−, b + 1

3 , 2
3 , 4

3 ; z3

27

)
z

Γ
(

b + 1
3

) +
0F3

(
−; b, 1

3 , 2
3 ; z3

27

)
Γ(b)

(28)

While in the tabular notation:

W(2/3, b|z) = 1
Γ(b)

[
− z3

108
b
2 , b

2 + 1
2 , 1

3 , 2
3

]
+

z
Γ
(
b + 2

3
)[ − z3

108
b
2 + 1

3 , b
2 + 5

6 , 2
3 , 4

3

]
+

z2

2Γ
(

b + 4
3

)[ − z3

108
b
2 + 2

3 , b
2 + 7

6 , 4
3 , 5

3

]
(29)

7.3. Relationship to Trigonometric and Bessel Functions

In a similar way as for the Bessel functions, for half-integer values of the second
parameter, the Wright function can be represented by trigonometric functions as follows:

W
(

1, 1/2| x2

4

)
=

cosh(x)√
π

, W
(

1, 1/2| − x2

4

)
=

cos(x)√
π

and

W
(

1, 3/2| x2

4

)
= 2

sinh(x)√
πx

, W
(

1, 3/2| − x2

4

)
= 2

sin(x)√
πx

For b = 0, according to Equation (23), we have the special cases

W(1, 0|x) = I1(2
√

x)
√

x

and
W(1, 0| − x) = J1(2

√
x)
√

x

8. Representations of the Wright Function of the Second Type

The main application of Theorem 3 is the representation of Mainardi’s function [15]

Ma(z) = W(−a, 1 − a| − z)
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The integral of the function is

IMa(z) = −W(−a, 1| − z)

and its nth derivative is

M(n)
a (z) = (−)nW(−a, 1 − (n + 1)a| − z)

8.1. Representations for a = −1/4

M1/4(z) = W(−1/4, 3/4| − z) =

0F2

(
−; 5

4 , 3
2 ;− z4

256

)
z2

2Γ
(

1
4

) −
0F2

(
−; 3

4 , 5
4 ;− z4

256

)
z

√
π

+
0F2

(
−; 1

2 , 3
4 ;− z4

256

)
Γ
( 3

4
) (30)

8.2. Representations for a = −1/3

The general formula for b ≤ 1 reads

W(−1/3, b|z) =

1F2

(
5
3 − b; 4

3 , 5
3 ;− z3

27

)
z2

2Γ
(
b − 2

3
) +

1F2

(
4
3 − b; 2

3 , 4
3 ;− z3

27

)
z

Γ
(

b − 1
3

) +
1F2

(
1 − b; 1

3 , 2
3 ,− z3

27

)
Γ(b)

(31)

For b = 1/3 and z > 0, the equation reduces to

W(−1/3, 1/3| − z) = − z
3

(
I2/3

(
2z

3
2

3
3
2

)
− I−2/3

(
2z

3
2

3
3
2

))
=

z√
3π

K2/3

(
2z

3
2

3
3
2

)
= − 3

√
3 Ai′

(
z

3
√

3

)
(32)

while

W(−1/3, 1/3|z) = − z
3

(
J2/3

(
2z3/2

33/2

)
− J−2/3

(
2z3/2

33/2

))
= − 3

√
3 Ai′

(
− z

3
√

3

)
A plot is presented in Figure 2A. Regarding the Mainardi function M1/3 = W(−1/3, 2/3| − z),
Equation (31) simplifies as expected for b = 2/3 to the Airy Ai function, which can be
represented as a weighted sum of Bessel J or I functions, respectively. That is, for z > 0

W(−1/3, 2/3| − z) =

I−1/3

(
2z

3
2

3
3
2

)√
z

√
3

−
I1/3

(
2z

3
2

3
3
2

)√
z

√
3

=

K1/3

(
2z

3
2

3
3
2

)√
z

π
=

3√32 Ai
(
−z/ 3

√
3
)

(33)

while for z < 0

W(−1/3, 2/3|z) =
J−1/3

(
2z

3
2

3
3
2

)√
z

√
3

+

J1/3

(
2z

3
2

3
3
2

)√
z

√
3

=
3√32 Ai

(
−z/ 3

√
3
)

(34)

A plot is presented in Figure 2A together with its antiderivatives—Figure 2B.
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A

B

Figure 2. Plots of W( a, b|x) for a = −1/3.
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8.3. Representations for a = −1/2

For b ≤ 1, we have the general representation in terms of Kummer M functions

W(−1/2, b|z) =
1F1

(
3
2 − b; 3

2 ;− z2

4

)
z

Γ
(

b − 1
2

) +
1F1

(
1 − b; 1

2 ;− z2

4

)
Γ(b)

(35)

For b = 3/4, z > 0, this relates to the Bessel K function:

W(−1/2, 3/4| − z) =
√

z√
2π

K1/4

(
z2

8

)
e−

z2
8 (36)

In particular, for b = 1, the above Equation (35) reduces to the complementary error integral

W(−1/2, 1|z) = 1 + erf
( z

2

)
= erfc

(
− z

2

)
in accordance with the polynomial reduction. A plot is presented in Figure 3A together
with its derivative-the Gaussian kernel.

The Gaussian derivatives can be represented as(
d
dz

)n e−z2/4
√

π
= W

(
−1

2
,

1 − n
2

∣∣∣∣z) (37)

Their plots are presented in Figure 3B togeter with the Gaussian kernel (Figure 3A). The
anti-derivatives of the Gaussian kernel can be computed in a similar way using Theorem 3.
For example, for b = 7/2

W(−1/2, 7/2|z) = 1√
π

(
z4

60
+

3z2

10
+

8
15

)
e−

z2
4 +

(
1 + erf

( z
2

))( z5

120
+

z3

6
+

z
2

)
(38)

A

BFigure 3. Cont.
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A

B

Figure 3. Plots of W( a, b|x) for a = −1/2.

8.4. Representations for a = −2/3

The Mainardi function for a = 2/3 can be represented as the difference of two expo-
nentially weighted Bessel K functions on the entire real line as follows

W(−2/3, 1/3| − z) =
K2/3

(
− 2z3

27

)
z2e−

2z3
27

3
3
2 π

−
K1/3

(
− 2z3

27

)
z2e−

2z3
27

3
3
2 π

(39)

On the other hand,

W(−2/3, 1/3|z) = −
e

2z3
27

(
3 Ai′

(
z2

3
4
3

)
+ 3

√
3z Ai

(
z2

3
4
3

))
3

2
3

in terms of the Airy Ai function and its derivative.
For b = 2/3

W(−2/3, 2/3|z) =
K1/3

(
2z3

27

)
ze

2z3
27

√
3π

=
3
√

9 e
2z3
27 Ai

(
z2

3
4
3

)
(40)

Plots are presented in Figure 4A toghter with their antiderivatives—Figure 4B.
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A

B

Figure 4. Plots of W( a, b|x) for a = −2/3.

For b = 4/3

W(−2/3, 4/3|z) = −

(
I2/3

(
2z3

27

)
+ I1/3

(
2z3

27

)
− I−1/3

(
2z3

27

)
− I−2/3

(
2z3

27

))
z2e

2z3
27

3
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This can be further represented as

W(−2/3, 4/3|z) = 9
1
3 ze

2z3
27 Ai

(
z2

3
4
3

)
− 9

2
3 e

2z3
27 Ai′

(
z2

3
4
3

)
(41)

9. Representations of the Wright Function of the Third Type
9.1. Representations for a = −1

This formula was recently derived in [9] and is not anticipated in the previous literature
since the parameter domain is customarily restricted to a > −1.

W(−1, b|z) = 1F0(1 − b;−; z)
Γ(b)

=
(z + 1)b−1

Γ(b)
(42)

9.2. Representations for a ∈ Z−

For negative integers, representations can be tabulated for some cases as follows. For
n = 1:

1, z + 1

n = 2:
1
2

,
2z + 1

2
,
(z + 1)2

2
n = 3:

1
6

,
6z + 1

6
,

6z + 1
6

,
(z + 1)3

6
n = 4

1
24

,
24z + 1

24
,

24z + 1
24

,
12z2 + 12z + 1

24
,
(z + 1)4

24
n = 5:

1
120

,
120z + 1

120
,

120z + 1
120

,
60z + 1

120
,

60z2 + 20z + 1
120

,
(z + 1)5

120
n = 6:

1
720

,
720z + 1

720
,

720z + 1
720

,
360z + 1

720
,

360z2 + 120z + 1
720

,
120z3 + 180z2 + 30z + 1

720
,
(z + 1)6

720

10. The Mittag-Leffler Function as a Laplace Transform of the Wright Function

The main application of the presented results so far is related to the Mittag-Leffler
function Ea,b(z). The two-parameter Mittag-Leffler function [16,17] under the present
convention will be denoted as

Ea,b(z) :=
+∞

∑
k=0

zk

Γ(ak + b)
=

1
Γ(b)

[
1 − z
− (b, a)

]
, a > 0, b ̸= 0

This immediately gives the complex integral representation according to Equation (10)

Ea,b(z) =
1

2πi

∫
Ha−

eτ

τb

[
1 z

τa

−

]
dτ =

1
2πi

∫
Ha−

eτ

τb
dτ

1 − z
τa

=
1

2πi

∫
Ha−

τa−beτ

τa − z
dτ (43)

For real indices ai and bi, A > 0 and a > 0, it was proven that [14][
a1, . . . , ap (A, a) z
b1, . . . , bq . . .

]
=

1
Γ(A)

∫ +∞

0
e−ττA−1

[
a1, . . . , ap . . . z τa

b1, . . . , bq . . .

]
dτ (44)
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whenever the GHG function in the integral kernel converges. Then, by Equation (44) for
A = 1, a = 1, it follows immediately that

Ea,b(z) =
∫ +∞

0
e−tW( a, b|zt)dt (45)

This representation can be used to also derive a Laplace transform pair:

1
s

Ea,b

(
1
s

)
=

1
s

∫ +∞

0
e−τW

(
a, b|τ

s

)
dτ =

1
s

∫ +∞

0
e−stW

(
a, b| st

s

)
d(st) =

∫ +∞

0
e−stW( a, b|t)dt

for s > 0, since the integration variable τ = st is positive. Therefore,

W( a, b|t)÷ 1
s

Ea,b

(
1
s

)
, a > 0 (46)

On the other hand, for the Wright function of the second type, we have

∫ +∞

0
e−stW(−a, b|t)dt =

1
2πi

∫ +∞

0
e−stdt

∫
Ha−

eξ+tξa

ξb dξ =

1
2πi

∫
Ha−

eξ

ξb dξ
∫ +∞

0
et(ξa−s)dt =

1
2πi

∫
Ha−

eξ

ξb(ξa − s)
dξ =

1
2πi

∫
Ha−

eξξa−(a+b)

ξa − s
dξ = Ea,a+b(s)

under the condition Re(ξa − s) < 0. Therefore, the corresponding Laplace transform pair is

W(−a, b|t)÷ Ea,a+b(s), 0 ≤ a ≤ 1 (47)

This gives the relationship between the Wright and Mittag-Leffler functions.
For every rational parameter pair, the ML function is reducible to a finite sum of HG

functions as the following theorem [9]:

Theorem 4 (Mittag-Leffler HG Representation). Suppose that a = n/m > 0, where n and m
are co-prime, and b ̸= 0. Then

Ea,b(z) =
m−1

∑
r=0

zr

Γ(b + ar)

[
1 zm

nn

b⃗

]
, (48)

where b⃗ has n components
bj = r/m + (b + j)/n

Proof. Starting from

En/m,b(z) =
+∞

∑
k=0

zk

Γ(ak + b)
=

m−1

∑
q=0

+∞

∑
p≥q/m

zmp−q

Γ(a(mp − q) + b)

since the integer n can be partitioned as k = mp − q, where q = 0, . . . m − 1. After some
algebra, we obtain

En/m,b(z) =
1

Γ(b)
+

m

∑
r=1

zr
+∞

∑
p=0

zmp

Γ(ap + ra + b)
.
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Observe that for p = 0, the inner series coefficient is Cr = Γ(ra + b) = Γ(nr/m + b), which
serves as a normalization factor. Therefore, the series transforms as

En/m,b(z) =
m

∑
r=0

zr

Cr

+∞

∑
p=0

Cr

Γ(n(p + r/m) + b)
zmp (49)

Further, use Proposition A1 to obtain

Γ(n(p + r/m) + b)
Γ(nr/m + b)

= nnp
n−1

∏
j=0

(r/m + b/n + j/n)p︸ ︷︷ ︸
bj

(50)

Therefore,

En/m,b(z) =
m

∑
r=0

zr

Γ(ra + b)

+∞

∑
p=0

zmp

nnp
n−1
∏
j=0

bj

From where we read off
b0 =

r
m

+
b
n

with an increment 1/n; so that

En/m,b(z) =
m−1

∑
r=0

zr

Γ(b + ar)

[
1 zm

nn

b⃗

]

Observe that for r = m − 1 c1 = 1; therefore, the GHG functions reduce to the form
0Fm−1. Unlike for the Wright function, whenever b = 0

Ea,0(z) =
+∞

∑
k=0

zk+1

Γ(ak + a)
=

z
Γ(a)

[
1 − z
− (a, a)

]
= zEa,a(z)

which is another Mittag-Leffler function. Therefore, the previous case directly applies.

En/m,0(z) = z
m−1

∑
r=0

zr

Γ(a + ar)

[
1 zm

nn

b⃗

]
, a = n/m (51)

where b⃗ has n components bj = (r + 1)/m + j/n.

10.1. Some Integral Identities Interlinking the ML and Wright Functions

This allows one to write the following sets of integrals via the application of Equation (45):
For m, n > 0, according to the First Representation Theorem

En/m,b(z) =
m−1

∑
r=0

zr

Γ(b + ar)

[
1 zm

nn

b⃗

]
=
∫ +∞

0
e−t

m−1

∑
r=0

zrtr

r! Γ(b + ar)

[
1 zmtm

nnmm

b⃗, c⃗

]
dt =

m−1

∑
r=0

zr

r! Γ(b + ar)

∫ +∞

0
tre−t

[
1 zmtm

nnmm

b⃗, c⃗

]
dt

for b ̸= 0. Therefore, after the substitution y = zm/nn, we have[
1 y
b⃗

]
=

1
Γ(r + 1)

∫ +∞

0
tre−t

[
1 y tm

mm

b⃗, c⃗

]
dt, (52)
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where b⃗ = {r/m + (b + j)/n}, c⃗ = {(r + 1 + j)/m} as discussed above. The last formula
can be used to produce many integral identities between GHG functions.

10.2. Analytical Continuation of the ML Function for Negative Parameters

The integral representation allows one to analytically continue the ML for negative
first parameters. Then, one has formally

E−a,b(z) :=
1

2πi

∫
Ha−

eτ

τb
dτ

1 − zτa , a > 0

Therefore, for rational parameters, we can apply the Second and Third Representation
theorems to obtain for |a| < 1

E−n/m,b(z) =
m−1

∑
r=0

zr

r! Γ(b + ar)

∫ +∞

0
e−ttr

[
1, b⃗ (−)nzmtm

nnmm

c⃗

]
dt (53)

for |b| < 1 and

E−n/m,b(z) =
m−1

∑
r=0

zr

r! Γ(b + ar)

+∞∫
0

e−ttr

[
1, b⃗ (−)nzmtm

nnmm

c⃗

]
dt+

+∞∫
0

e−tPb(n/m, zt)dt (54)

otherwise. From there, it is apparent that the integrals for non-positive integral parameters
do not converge as they would involve kernels of the form n+1F0 according to Equation (52).
Therefore, the analytical continuation is defined only for negative integers a, b like in the
case for the Wright function. In such case, (i.e., whenever b = m ∈ N )

E−n,m(z) =
∫ +∞

0
e−tPm(n, zt)dt = 1 +

m

∑
k=1

ckzk

which is a polynomial in z. The coefficients of this polynomial can be evaluated from
the formula

ck = ak

∫ +∞

0
e−ttkdt = k! ak

Some examples can be presented as follows: For n = 2

1, z + 1

For n = 3
1
2

,
2z + 1

2
,

2z2 + 2z + 1
2

For n = 4
1
6

,
6z + 1

6
,

6z + 1
6

,
6z3 + 6z2 + 3z + 1

6
For n = 5

1
24

,
24z + 1

24
,

24z + 1
24

,
24z2 + 12z + 1

24
,

24z4 + 24z3 + 12z2 + 4z + 1
24

,

etc. These polynomials can be rightfully called Mittag-Leffler polynomials.

11. Discussion

The original goal of the present work was to provide the ground truth for purely
numerical algorithms for the evaluation of the Wright function. Such algorithms are a
subject of continuous development [5,18,19].
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The contributions of the present work can be discussed in several directions. In the first
place, from a fundamental perspective, the existence of the Wright function of the third type
has been overlooked in the literature. This can be probably attributed to the extant focus on
Mainardi’s function, which is not defined for a = 1. Moreover, the Mittag-Leffler function
can be extended in a similar way. In the second place, the present work completes all cases
of finite representations of the Wright function. It should be noted that the Second and
Third Representation theorems could not be traced to the literature prior to the preliminary
presentation in [10]. Finally, one can also envision an application in definite integration
to be incorporated into different CAS integration—i.e., using Equation (52)—and Inverse
Laplace transform routines—i.e., using Equations (46) and (47).
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grant agreement VIBraTE 101086815.
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//zenodo.org/doi/10.5281/zenodo.7871651.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. Euler Integrals

The Gamma integral i.e., the Euler integral of the second kind is

Γ(z) =
∫ +∞

0
e−ττz−1 dτ, Re z > 0 (A1)

The complex representation for the reciprocal Gamma function is given by Heine’s contour
integral as

1
Γ(z)

=
1

2πi

∫
Ha−

eτ

τz dτ (A2)

Employing the last two formulas and the reflection formula of the Gamma function

Γ(z)Γ(1 − z) =
π

sin πz
, z /∈ Z (A3)

one could obtain the analytical continuation of the Gamma function as valid on the entire
complex plane for all z /∈ Z

Γ(z) =
1

2i sin πz

∫
Ha−

eττz−1 dτ, τ ∈ C (A4)

The Hankel contour is depicted in Figure 1. For non-integral arguments, the branch cut is
selected as the negative real axis.

Appendix B. Ratios of Gamma Factors

Proposition A1. For non-negative integers n, m

Γ(mn + mb) = Γ(mb) mmn
m−1

∏
j=0

(
j

m
+ b
)

n
(A5)

Proof. Using the Gauss–Legendre multiplication formula for the Gamma function

Γ(mx) =
mmx−1/2

(2π)(m−1)/2

m−1

∏
k=0

Γ
(

x +
k
m

)

https://zenodo.org/doi/10.5281/zenodo.7871651
https://zenodo.org/doi/10.5281/zenodo.7871651
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we first substitute x = b then x = n + b/m and divide the two identities. Thus, for a non-
negative integer n, the formula can be expressed by a product of increasing factorials as

Γ(mn + mb)
Γ(mb)

= mmn
m−1

∏
j=0

Γ
(

n + j
m + b

)
Γ
(

j
m + b

) = mmn
m−1

∏
j=0

(
j

m
+ b
)

n
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