
Citation: Bhukya, R.; Kasi, V.R.;

Bingi, K. Hybrid LSTM-Based

Fractional-Order Neural Network for

Jeju Island’s Wind Farm Power

Forecasting. Fractal Fract. 2024, 8, 149.

https://doi.org/10.3390/

fractalfract8030149

Academic Editor: Gani Stamov

Received: 1 February 2024

Revised: 17 February 2024

Accepted: 20 February 2024

Published: 5 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Hybrid LSTM-Based Fractional-Order Neural Network for Jeju
Island’s Wind Farm Power Forecasting
Bhukya Ramadevi 1, Venkata Ramana Kasi 1 and Kishore Bingi 2,*

1 School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India;
bhukya.ramadevi2020@vitstudent.ac.in (B.R.); venkataramana.kasi@vit.ac.in (V.R.K.)

2 Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS,
Seri Iskandar 32610, Malaysia

* Correspondence: bingi.kishore@utp.edu.my

Abstract: Efficient integration of wind energy requires accurate wind power forecasting. This pre-
diction is critical in optimising grid operation, energy trading, and effectively harnessing renewable
resources. However, the wind’s complex and variable nature poses considerable challenges to achiev-
ing accurate forecasts. In this context, the accuracy of wind parameter forecasts, including wind
speed and direction, is essential to enhancing the precision of wind power predictions. The presence
of missing data in these parameters further complicates the forecasting process. These missing values
could result from sensor malfunctions, communication issues, or other technical constraints. Ad-
dressing this issue is essential to ensuring the reliability of wind power predictions and the stability
of the power grid. This paper proposes a long short-term memory (LSTM) model to forecast missing
wind speed and direction data to tackle these issues. A fractional-order neural network (FONN) with
a fractional arctan activation function is also developed to enhance generated wind power prediction.
The predictive efficacy of the FONN model is demonstrated through two comprehensive case studies.
In the first case, wind direction and forecast wind speed data are used, while in the second case, wind
speed and forecast wind direction data are used for predicting power. The proposed hybrid neural
network model improves wind power forecasting accuracy and addresses data gaps. The model’s
performance is measured using mean errors and R2 values.

Keywords: wind power; speed; direction; fractional arctan function; LSTM; fractional-order neural
network

1. Introduction

Optimising the integration of wind energy into the power grid and ensuring grid
stability relies heavily on accurate wind power prediction. Over the years, researchers
have explored various techniques, including neural networks, machine learning, and deep
learning methods, to enhance the precision and reliability of wind power predictions.
Machine learning creates a generalised model from previous input data and output results,
then predicts outcomes in the future using multiple learning methods. In machine learning
approaches, artificial neural networks (ANNs) [1] and support vector machines (SVMs) [2]
are commonly used. ANNs can predict non-linear data and analyse the correlation between
impact data and wind power. Training ANNs requires a lot of data and time, while high-
dimensional data limits computational speed, leading to local optimum solutions. SVM
avoids these issues and generalises them effectively. In [3], the integration of least squares
and SVM (LS-SVM) was used to estimate the wind power load, enhancing computation
efficiency and predicting accuracy. Incorporating LS-SVM principles, Zhang et al. intro-
duced modifications to the model that effectively minimised prediction errors [4]. In [5],
the researchers developed a fuzzy neural network for wind power forecasting coupled
with online risk assessment and, in addition, investigated the effectiveness and potential
improvements in enhancing wind energy forecasting models. Jie Shi et al. combined
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the Hilbert–Huang transform with artificial intelligence (AI) for power forecasting and
further explored the effectiveness of this integrated model in improving prediction accu-
racy and enhancing renewable energy integration [6]. In [7], the authors developed the
application of radial basis function neural networks in wind power forecasting, incorpo-
rating probabilistic methods to enhance forecasting accuracy and uncertainty assessment.
The researchers employed the empirical mode decomposition (EMD) model with a neural
network to forecast wind power and speed [8]. Further, they investigated the effectiveness
of EMD-based models in improving short-term wind forecasting accuracy. The authors
in [9] created an emotional neural network technique for predicting weather patterns and
wind power generation. Additionally, they emphasised that this method can be applied to
real-world scenarios. The authors proposed Gaussian processes integrated with numerical
weather prediction (NWP) and complex-valued ANN for day-ahead wind power forecast-
ing and examined their effectiveness in optimising wind energy generation and improving
prediction accuracy [10,11].

Jyotirmayee et al. presented a variational mode decomposition technique in combina-
tion with a multi-kernel regularised pseudo-inverse ANN for wind power forecasting [12].
The authors developed 3D convolutional neural networks (CNNs) for extracting numerical
weather prediction data in wind power forecasting, investigated similar methods to en-
hance prediction accuracy, and considered the potential benefits of utilising 3D CNNs in this
context [13]. In [14], the structured neural network model for predicting short-term wind
power emphasises the developed model’s effectiveness and potential in achieving accurate
short-term predictions. The researchers in [15,16] implemented an ANN for predicting
wind power’s discrete wavelet-transform-based wind speed and highlighted the network’s
effectiveness and potential in improving renewable energy integration. Additionally, the
researchers emphasised the need for further investigation into model enhancements to
address uncertainties and improve forecasting precision. In addition, the authors of [17] ex-
plored the current machine learning techniques for power forecasting, identifying emerging
trends, and highlighted the key challenges faced in this domain. AI has shown promise in
enhancing wind power generation forecasting through hybrid approaches, but significant
challenges still need to be addressed for practical implementation and improved accu-
racy [18]. Despite these obstacles, the prospects for AI-based forecasting in the renewable
energy sector remain encouraging. The authors of [19] employed an ANN model to forecast
the wind power generation of the Pawan Danawi wind farm in Sri Lanka and highlighted
that the model could also be applied to the environmental and climatic conditions to iden-
tify the wind power potential of the area. Machine learning methods are more effective
than statistical approaches in predicting non-linear wind power data due to their adaptabil-
ity and self-learning capabilities. However, these models have limitations in expressing
complex data. This is because of the advancement of big data technology. Deep learning
algorithms can overcome these challenges by extracting higher-level abstract features from
the original samples. This enables the discovery of complex rules in high-dimensional data.

Deep learning models have advanced significantly in recent years, and deep neural
network (DNN) algorithms have been introduced [20–22]. Recurrent neural networks
(RNNs) and LSTM networks are robust architectures for sequence data, demonstrating ad-
vantages in non-linear feature learning [23]. Thus, RNN and LSTM are the most often used
deep learning models in wind power prediction research. The authors of [24] conducted
wind power generation prediction using multivariate LSTM time series. The researchers
of [21] implemented deep feature extraction and LSTM techniques for data-driven wind
speed forecasting and explored the effectiveness of these techniques in improving wind
speed predictions. In [25], the authors used data cleaning and feature extraction techniques
for power prediction. In [26], the authors used machine learning algorithms such as light
gradient boosting machines (GBMs) and LSTM networks for short-term wind forecasting
of weather stations in India and also aimed to enhance wind energy prediction accuracy,
contributing to efficient renewable energy integration and management. The authors of [27]
implemented an ensemble approach combining algorithms, namely, deep learning and
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gradient descent, for wind power forecasting and explored the model’s effectiveness in im-
proving forecasting accuracy and reliability. The deep-learning-based methods in [28] were
developed to generate accurate and reliable prediction intervals for wind power forecasting,
addressing the multi-objective nature of the problem. The researchers in [29] employed a
Seq2Seq wind power output prediction method developed using deep learning and a clus-
tering algorithm to forecast wind power with NWP data and real-time historical wind data.
Adam Kisvari et al. [30] applied a deep learning approach using a data-driven and a gated
recurrent unit (GRU) to forecast wind power. Further, the researchers in [31] implemented
a temporal convolution network (TCN)-based approach for day-ahead wind power fore-
casting and compared the implemented method with the LSTM and GRU models. In [32],
the authors developed LSTM-based RNNs for wind power forecasting, focusing on variable
selection techniques. The authors in [33] implemented the GRU neural network method for
wind power prediction, utilising evolutionary network architecture search for optimisation.
The researchers in [34,35] constructed multi-modal spatio-temporal neural networks and
optimised deep autoregressive RNNs for multi-horizontal wind power forecasting.

The use of attention-based models has become more popular for predicting long-term
series. In [36,37], the authors demonstrated self-attention’s effectiveness in capturing com-
plex patterns and dynamics, particularly in capturing long-distance dependencies within
time-series data. Juan Ren et al. [38] developed the CNN-LSTM-LightGBM framework with
an attention mechanism for short-term wind power forecasting, which aimed to enhance
forecasting accuracy by efficiently capturing temporal dependencies and extracting relevant
features from wind power data. In [39], the authors proposed wind power forecasting
methods using variational mode decomposition, and LSTM attention networks showed the
encoder–decoder structure’s superiority over a dual attention–LSTM neural network in
enhancing prediction performance. Lei Wang et al. constructed an advanced transformer
model for ultra-short-term wind power prediction [40]. Nevertheless, challenges such as
space–time complexity and input and output sequence limitations remain. Furthermore,
Ref. [41] developed a novel method for ultra-short-term wind power prediction, addressing
previous limitations through feature extractions. The approach shows promising results,
improving prediction accuracy and addressing space–time complexity issues.

A fractional-order activation function is a specific activation function used in artificial
neural networks. It allows the use of non-integer exponents to calculate the output of a
neuron, which can improve the performance of specific neural networks. These activation
functions possess unique properties that make them suitable for specific modelling tasks
and data. They are beneficial for capturing long-range dependencies and non-linear
relationships in data, which cannot be effectively handled by conventional activation
functions such as arctan. The fractal nature of these activation functions is attributed to
their self-similarity property, which enables them to capture complex patterns in data at
multiple scales. Hence, they benefit time-series forecasting applications where the data
may exhibit fractal-like behaviour [42]. Using fractional-order activation functions can
enhance the performance of FONN model-based forecasting by allowing for more accurate
and efficient modelling of complex non-linear relationships in the data. Additionally, these
functions can help to reduce overfitting, a common problem in traditional neural networks.
The use of fractional-order activation functions may increase the computational load during
training. However, this can be offset by the improved performance and accuracy of the
model, leading to faster and more efficient forecasting [43]. Therefore, it is justified to
use fractional-order activation functions because of their ability to capture complex non-
linear relationships in data, which can improve the efficiency and accuracy of FONN
model-based forecasting.

Motivated by the above literature, this paper presents a new hybrid model that
uses LSTM to forecast missing input data and FONN to predict generated wind power.
The performance of the proposed approach is evaluated based on the wind data collected
from Jeju Island’s wind farm in three different island sites. The key contributions of this
research are outlined below:
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• The LSTM model is designed to predict missing input parameters, including wind
speed and direction. Its performance is evaluated through root mean squared error
(RMSE) assessment.

• The FONN model predicts wind power using the LSTM’s forecast data and evaluates
performance with a coefficient of determination (R2) and mean squared error (MSE).

• The models developed were evaluated in two case studies involving missing data
scenarios for specific parameters.

The subsequent sections of the manuscript are organised to explore the research
comprehensively. Section 2 describes the dataset from Jeju Island in three different sites
and presents the data visualisation and correlation analysis in various scenarios. Section 3
describes the proposed hybrid LSTM-based fractional-order neural network model for
wind power forecasting. Section 4 shows the results and discussion of the proposed models’
performance evaluation to handle the missing parameter data. Section 5 concludes the
proposed work.

2. Dataset Description

In South Korea, Jeju Island has a prosperous wind energy landscape with advanced
wind farms strategically placed throughout scenic terrain. These wind farms take advantage
of the island’s plentiful wind resources, significantly contributing to its renewable energy
portfolio. Sites A, B, and C are among the top wind farms on Jeju Island, each with unique
specifications and characteristics. Table 1 provides an overview of the data collection
period, collection time interval, and detailed wind turbine specifications for Sites A, B,
and C [44].

Table 1. Jeju Island’s wind farm data and specifications.

Data Aspect Site A Site B Site C

Data Collection Period 11 January 2014–25 January
2014

11 January 2014–20 January
2014

11 January 2014–25 January
2014

Collection Time Interval 10 min 10 min 10 min

Wind Turbine Specifications

Model U88 U50 U50
Output 2000 kW 750 kW 750 kW

Wind Speed Up to 12 m/s Up to 12.5 m/s Up to 12.5 m/s
Rotor Speed Range 6–17.5 rpm 9–28 rpm 9–28 rpm

Voltage and Frequency 690 V/60 Hz 690 V/60 Hz 690 V/60 Hz
Rotor Diameter 88 m 50 m 50 m

Hub Height 80 m 50 m 50 m
Power Control Pitch Regulation Pitch Regulation Pitch Regulation

The wind turbine specifications presented in the table highlight each site’s customised
design and engineering considerations. These specifications, which include the model,
output, wind speed capacity, rotor dynamics, voltage, and power control, showcase Jeju
Island’s commitment to harnessing wind energy efficiently and sustainably. The island’s
wind farms are characterised by their meticulous data collection and cutting-edge turbine
specifications, which testify to their dedication to renewable energy and their aspiration to
create a cleaner and greener future.

As shown in Figure 1, the data from sites A, B, and C include wind power, direction,
and speed, indicating the chaotic behaviour. There were 1080, 432, and 720 samples from
sites A, B, and C, respectively. These samples’ pair plots are shown in Figures 2 and 3.
Figure 1 shows the pairwise relationships in a dataset, while Figure 3 shows correlation
coefficients between wind direction, speed, and power at the three sites. As shown in the
figure, the diagonal elements are one, indicating a perfect correlation with each variable.
The off-diagonal elements in the figure show the correlation between the two parameters.
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Figure 1. The data from three wind farm sites on Jeju Island.
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Figure 2. Pairwise relationships in the data from three wind farm sites on Jeju Island.
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Figure 3. Correlation analysis on the data from three wind farm sites on Jeju Island.

Utilising the Pearson correlation coefficient, a numerical measure ranging from −1 to 1,
the correlation analysis shown in Figure 3 can quantify the strength and direction of
relationships. This method is invaluable in providing essential insights into how changes
in one parameter might correspond to changes in another. Upon examination of the wind
farms at each site, it was discovered that a positive linear relationship exists between wind
direction, speed, and power. The correlation coefficient between wind direction and speed
at Site A is 0.25, at Site B it is 0.22, and at Site C it is 0.36, indicating a weak correlation.
Similarly, the correlation coefficient between wind direction and power at Site A is 0.34, at
Site B it is 0.17, and at Site C it is 0.38, indicating a weak correlation. Lastly, the correlation
coefficient between wind speed and wind power at Site A is 0.82, at Site B it is 0.95, and at
Site C it is 0.98, indicating a robust correlation. It is important to note that all correlation
coefficients fall within the range of −1 to 1, demonstrating that the relationships are positive
and linear. Additionally, it should be noted that the correlations observed at Site C are
stronger than those at Site A, and the correlations at Site A are the most robust of the
three sites.

2.1. Correlation Analysis of Wind Speed Parameter with Missing Data

The first case examines the correlation between wind direction, speed, and power
across Sites A, B, and C, where the wind speed parameter has missing data. The correlation
matrix for Site A, shown in Figure 4, presents a comprehensive view of these relationships.
Notable correlations emerge, with wind power and direction exhibiting a moderate positive
correlation of 0.31, indicating a tendency for increased wind direction to coincide with
heightened wind power. Additionally, wind power and speed show a stronger positive
correlation of 0.63, suggesting that higher wind power values correspond to elevated
wind speed values. Conversely, wind direction and speed demonstrate a more modest
positive correlation of 0.22. The correlation matrix for Site B mirrors these trends, showing
modest positive correlations of 0.13, 0.21, and 0.23 between wind power and direction,
wind power and speed, and wind direction and speed, respectively. At Site C, wind
power and wind direction exhibit a moderately positive correlation of 0.31. In contrast,
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the correlation between wind power and speed is characterised by a relatively moderate
positive correlation of 0.43. Similarly, wind direction and speed display a moderately
positive correlation of 0.34. Together, these correlation matrices provide a comprehensive
understanding of the relationships between wind power, direction, and speed, shedding
light on the nature and strength of these associations and emphasising the need for thorough
analysis, particularly in instances of missing data.
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Figure 4. Correlation analysis of wind speed parameter with missing data.

2.2. Correlation Analysis of Wind Direction Parameter With Missing Data

The second case examines the correlation between wind direction, speed, and power
across Sites A, B, and C, where the wind direction parameter has missing data. As shown
in Figure 5, the correlation matrices for these sites reveal insightful connections. At Site
A, wind power displays a moderate positive correlation with wind direction of 0.22 and a
strong positive correlation with wind speed of 0.82. Additionally, a moderately positive
correlation of 0.3 between wind direction and wind speed becomes evident. Site B’s matrix
unveils distinctive relationships. Wind power and wind direction exhibit a moderate
negative correlation of −1.19, while wind power and wind speed share a robust positive
correlation of 0.92. In contrast, wind direction and speed show a weak negative correlation
of −1.084. Similarly, Site C’s matrix reveals meaningful correlations. Wind power positively
correlates with wind direction, with a correlation value of 0.19, and strongly correlates with
wind speed, with a correlation value of 0.93. Further, wind direction and speed demonstrate
a weak positive correlation of 0.081. In both scenarios, the correlation coefficients provide
essential insights into the strength and nature of these relationships. Such understanding
holds substantial implications for informed decision making and predictive analyses,
particularly within renewable energy and meteorology.
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Figure 5. Correlation analysis of wind direction parameter with missing data.

3. Proposed Methodology

The proposed methodology outlines a step-by-step framework for predicting missing
wind parameters and power generation within the Jeju Island wind farm context across
different sites, as shown in Figure 6. This approach incorporates well-defined techniques to
offer unique insights into predictive modelling and performance assessment. The initial
step involves data collection and pre-processing. Specifically, the wind power, speed,
and direction datasets from the Jeju Island wind farm at Sites A, B, and C are collected. This
dataset provides the implementation for subsequent analysis and predictive modelling.
Next, the correlation analysis is conducted with missing input data. This step considers two
scenarios: missing wind speed data and missing wind direction data. The correlation anal-
ysis examines the complex relationships between wind speed, direction, and power under
both scenarios. This analysis provides insights into how these parameters influence wind
power generation. The detailed outcomes of this analysis are depicted in Figures 4 and 5.

In the third step of the process, an LSTM model is used to forecast the missing
wind speed and direction data. The process begins with data normalisation within the
range of −1 to +1, followed by the compilation of time-series data. The dataset is then
partitioned into distinct subsets for training and testing. This step involves building and
training the LSTM model, progressively improving its predictive capabilities by learning
from the data. Continuous evaluation ensures that the model reaches the desired level of
accuracy within the allocated number of training iterations. If this level is not achieved,
adjustments are made through loss calculations and model updates. Once the desired level
of proficiency is attained, the model is used to forecast missing wind speed and direction
data. These predicted data are then compared against actual data for comprehensive
analysis. The model’s accuracy is evaluated through performance metrics such as the
RMSE and visualisation of original and forecast waveforms.
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Figure 6. Flowchart of the proposed methodology.

The final stages of the methodology focus on predicting wind power using the FONN
model. The process begins with developing a fractional-order arctan activation function
using fractional derivatives. This newly developed function enhances the predictive capa-
bilities of the FONN model. Subsequently, the FONN model is designed by integrating
the developed fractional-order arctan function, rendering it adept at accurate wind power
prediction. A precise parametrization of the model follows, encompassing the determi-
nation of the number of hidden layers and neurons. The FONN model is then iteratively
trained to enhance its predictive performance. If necessary, model parameters are adjusted
and retrained, ensuring continuous optimisation. A main evaluation criterion is whether
the model achieves improved accuracy. Finally, the trained model is tested using a test
dataset, and its performance is evaluated in terms of the coefficient of determination (R2)
and MSE, with comparisons made against a conventional neural network model. This
comprehensive methodology offers a structured approach to predicting wind power and
leveraging predictive modelling techniques for renewable energy applications. As shown
in Figure 6 and as explained earlier, the first part of the methodology is the LSTM model’s
development for forecasting missing input data of wind speed and direction. The next part
presents the FONN model that is used to make predictions of the generated wind power.

3.1. LSTM Model

The LSTM model’s architecture for forecasting 20% of missing input data of wind
speed and direction is demonstrated in Figure 7. The input to the LSTM consists of three
time-steps xt−1, xt, and xt+1. The architecture includes memory blocks comprising each
memory cell, input, forget, and output dates, which will be explained below.
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Figure 7. Architecture of LSTM model for forecasting missing input time-series data.

In the forget gate, ft is computed using the sigmoid function; σ(·) determines the past
information to forget:

ft = σ(w f · [ht−1, xt] + b f ), (1)

In the above equation, ht−1, w f , and b f represent the previous cell’s output, and the
gate’s weight and bias, respectively. The sigmoid function σ(·) output varies between 0
and 1, representing complete forgetting at 0 and full retention at 1.

As for the input gate it, it is also calculated based on the information to be stored in
the cell state:

it = σ(wi.[ht−1, xt] + bi). (2)

This gate’s “tanh” layer adds weight to the cell state. The update equation for the
memory cell, represented as C̃t, is

C̃t = tanh(wC.[ht−1, xt] + bC), (3)

Here , wC and bC denote the memory cell’s weight and bias.
Using the output gate Ot to determine the output information from the current cell, it

can be calculated as
Ot = σ(wO.[ht−1, xt] + bO). (4)

The current cell’s output (ht) will be calculated as

ht = Ot × tanh(Ct). (5)

where Ct is the cell state and Ot is the output gate.
Two critical factors that influence the performance of an LSTM model are input delays

and the number of hidden units. An LSTM network with 10 hidden units was trained
to achieve adequate performance using a trial-and-error approach. Incomplete learning,
limited generalisation, and underfitting can occur if the LSTM model is not sufficiently
trained. Incomplete learning can cause suboptimal performance because the model fails
to capture all underlying patterns. Limited generalisation means that the model needs to
extend its predictions beyond the training data, leading to poor performance on missing
data. On the other hand, underfitting causes poor performance on both training and test
datasets. However, overtraining is unlikely due to the need for more learning from the
data. Therefore, adequate training is crucial for accurate predictions. To achieve this,
the Adam solver was introduced with variable learning and dropout rates of 0.005 and 0.2,
respectively, over 1000 epochs.

3.2. FONN Model

The FONN model’s architecture, designed to predict generated wind power using
forecast missing wind direction and speed data with an LSTM model, is illustrated in
Figure 8 [42]. In this configuration, there are 2 input nodes, 30 hidden nodes, and 1 output
node, and their ratios are 2:30:1. The number of nodes in a hidden layer plays a significant
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role in determining the predictive capabilities of a neural network. Too few nodes may
result in underfitting, while too many can lead to overfitting. In this case, a trial-and-
error approach was used to determine that a hidden layer with 30 nodes would achieve
satisfactory results. Within the architecture, bias values at the hidden and output layers
were represented as “b”, with values [30, 1]. For the output layer, the activation function
selected was “Purelin”. In contrast, the hidden layers’ activation function “F” employed can
vary between developed and standard tangential functions. This variation was assessed to
determine the model’s performance. For the training algorithm, the Levenberg–Marquardt
algorithm was selected. This neural network training algorithm helps to fine-tune the
model’s parameters effectively. The model’s performance evaluation was conducted using
the performance measures outlined in the subsequent section, ensuring a comprehensive
assessment of its predictive capabilities.
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∑ F
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∑ F
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Figure 8. FONN model’s architecture for generated wind power prediction.

3.3. Fractional-Order Tangential Activation Functions

The tansig activation function, also known as the hyperbolic tangent sigmoid, is com-
monly used in hidden layers for classification tasks [45]. This function maps input values
from the range of (−∞,+∞) to (−1, 1). Its mathematical expression is given below [42]:

f (x) =
2

1 + e−2x − 1. (6)

The tansig function is known to have a higher derivative compared to the sigmoid
function. Additionally, its output mean is 0 when the average input values approach 0.
These properties make the tansig function a valuable tool for training neural networks, as it
can significantly improve convergence rates and expedite the training process. However,
similar to the sigmoid function, tansig is also prone to the vanishing gradient problem [46].
Incorporating fractional-order derivatives into the tansig function to introduce a non-linear
component can address the gradient problem. The fractional ordering of tansig can be
derived by expressing Equation (6) using the MacLaurin series expansion as follows:

f (x) =
∞

∑
n=0

4n(4n − 1)B2n

(2n)!
x2n−1. (7)
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The fractional ordering of the tansig activation function can be computed for an order
α ∈ (0, 0.9) as follows [42]:

Dα f (x) = g(x) = Dα
∞

∑
n=0

4n(4n − 1)B2n

(2n)!
x2n−1,

g(x) =
∞

∑
n=0

4n(4n − 1)B2n(2n − 1)!
(2n)!Γ(2n − α)

x2n−1−α.
(8)

Figure 9a shows the response of the fractional-order derivative of the tansig activation
function for various values of α, as compared to the behaviour of the regular tansig function.
The conventional tansig function has an S-shaped curve, similar to the sigmoid function and
its variations. On the other hand, the fractional-order derivative of tansig has an S-shaped
curve for lower values of α. However, for higher values of α, the function becomes non-
linear due to the fractional ordering, which can help solve the vanishing gradient problem.
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Figure 9. Response of FONN activation functions at hidden layer.

The hard tansig function is a commonly used version of the tansig activation function
in deep learning applications. Unlike the tansig function, the hard tansig function is
more efficient and computationally cheaper. It has a range of [−1, 1] and is defined as
follows [45,47]:
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f (x) =


−1 if x < −1,
x if − 1 ≤ x ≤ 1,
1 if x > 1.

(9)

The fractional-order derivative of the hard tansig function can be computed for an
order α ∈ (0, 0.9) as follows [42]:

Dα f (x) = g(x) = Dα


−1 if x < −1
x if − 1 ≤ x ≤ 1
1 if x > 1

,

g(x) =


−1

Γ(1−α)
x−α if x < −1

1
Γ(2−α)

x1−α if − 1 ≤ x ≤ 1
1

Γ(1−α)
x−α if x > 1

.

(10)

The comparison shown in Figure 9b highlights the response of the fractional-order
derivative of the hard tansig activation function for different values of α orders compared to
the conventional derivative. The analysis reveals that the functions take the α value derivative
in specific intervals while exhibiting zero gradients in others. This aspect indicates that the
vanishing gradient problem is less likely to occur in the fractional-order derivative of the hard
tansig function as long as most of these units operate within the periods when the gradient is
1. Moreover, the analysis suggests that the fractional ordering has introduced non-linearity
into the function, which will help resolve the vanishing gradient problem.

The LiSHT (linearly scaled hyperbolic tangent) is a popular activation function used
in deep learning to address the “dead ReLU” issue. When the ReLU function is given
negative input, it can become inactive, resulting in a zero gradient that prevents weight
updates during backpropagation. As a result, to solve this problem, the LiSHT function
multiplies the input with the element-wise hyperbolic tangent output. Additionally, since
the hyperbolic tangent function has a range of [−1, 1], negative gradients are not eliminated
like with ReLU functions, which helps maintain the optimal learning for training deep
neural networks. The LiSHT function can be computed by multiplying the tansig function
with its input, as shown in [47].

f (x) = x · δ(x), (11)

The following expression defines the tansig function δ(x), which can be found in
Equation (6):

δ(x) =
2

1 + e−2x − 1. (12)

The LiSHT function in Equation (11) can be expressed using a MacLaurin series
expansion as follows:

f (x) =
∞

∑
n=0

4n(4n − 1)B2n

(2n)!
x2n. (13)

The equation above enables computation of the fractional ordering of the LiSHT activation
function for an order α ∈ (0, 0.9) as follows [42]:

Dα f (x) = g(x) = Dα
∞

∑
n=0

4n(4n − 1)B2n

(2n)!
x2n,

g(x) =
∞

∑
n=0

4n(4n − 1)B2nΓ(2n + 1)
(2n)!Γ(2n − α + 1)

x2n−α.
(14)

The response of the fractional-order derivative of the LiSHT activation function for
various α orders, compared with the conventional one, is shown in Figure 9c. The response
indicates that the conventional LiSHT produces a positive output response. For lower α
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values, the fractional ordering of LiSHT achieves similar behaviour. However, the response
shows fractional ordering introduces more significant non-linearity than other activation
functions for higher α values.

Additionally, the conventional arctan activation function is employed at the hidden
layer in neural networks. However, its non-monotonic nature can pose optimisation
challenges. Mathematically, the arctan function is expressed as [48]

f (x) = tan−1(x). (15)

This equation can be expanded using the MacLaurin series as follows:

f (x) =
∞

∑
n=0

(−1)n

2n + 1
x2n+1. (16)

The arctan function is enhanced by introducing fractional-order derivatives to tackle
these challenges, improving its smoothness and optimisation potential within the FONN
model. The fractional-order derivative of the arctan activation function for an order
α ∈ (0, 0.9) can be computed as [49]

Dα f (x) = g(x) = Dα
∞

∑
n=0

(−1)n

2n + 1
x2n+1,

g(x) =
∞

∑
n=0

(−1)nΓ(2n + 3)
(2n + 1)Γ(2n + 2 − α)

x2n+1−α.
(17)

This enhancement results in smoother derivatives for the fractional-order arctan function,
facilitating more effective gradient-based optimisation, which makes it better at capturing
complex dynamics and long-range dependencies in wind power data, and its response at
different α values is shown in Figure 9d. Compared to conventional functions, fractal activation
functions like fractional-order arctan provide more flexibility in modelling non-linear systems.
They are better at adapting to intricate patterns in renewable energy data.

Furthermore, the Purelin activation function is employed at the networks’ output
layer. It is a linear function that directly relates output to input, giving a response of kx for
an input of x. The response of Purelin is shown in Figure 10. For k = 1, it functions as an
identity. This function, with a hyperparameter k, is described as [50]

f (x) = kx. (18)
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f(
x
)

Conventional

Figure 10. Response of Purelin activation function at output layer.
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3.4. Performance Metrics

The MSE and RMSE are widely recognised performance metrics that assess the dif-
ference between predicted and actual values. Extensive studies have demonstrated their
effectiveness as error measures in numerical prediction tasks [51,52]. The MSE is computed
between actual (Yi) and predicted (Ŷi) as follows:

MSE =
1
N

N

∑
i=1

(Yi − Ŷi)
2. (19)

The RMSE provides an interpretable measure of the average forecasting error, which
is computed as follows:

RMSE =
√

MSE. (20)

Additionally, the coefficient of determination, denoted as R2, is frequently used to show
the predictive capability of forecasting methods in fitting actual data (Yi), calculated as [52]

R2 = 1 − ∑N
i=1(Yi − Ŷi)

2

∑N
i=1(Yi − Yi)2

. (21)

where Y signifies the average of the predicted values. R2 yields values ranging from 0
(indicating a poor match) to 1 (representing a perfect fit).

In all the above equations, ’N’ represents the sample size and Ŷi denotes predicted
values. These metrics provide valuable insights into numerical forecasting approaches’
accuracy and predictive performance.

4. Results and Discussion

This section evaluates the LSTM model’s accuracy in forecasting missing wind speed
and direction data and the FONN model’s performance in predicting wind power using
the forecast data of missing wind speed and direction data in the Jeju Island wind farm for
all sites under different cases.

4.1. Performance of LSTM Model

In Jeju Island’s wind farm, 20% of wind speed and direction data are missing at
three sites (A, B, and C). This missing data can negatively impact the accuracy of power
predictions, operational planning, efficiency, safety, and overall system reliability. An LSTM
model has been developed to forecast missing wind speed and direction data to address the
issue, as mentioned in Section 3 and compared with non-linear autoregressive (NAR) [53],
and autoregressive integrated moving average (ARIMA) [54] models. The LSTM model has
one input, 200 hidden units, and one output. The model uses learning and dropout rates of
0.005 and 0.2, respectively, for 1000 iterations. Table 2 displays RMSE values for various
models used in forecasting missing wind speed and direction data at three sites. The table
compares the performance of three different forecasting models: LSTM, NAR, and ARIMA.
Based on Table 2, the performance analysis of various forecasting models is as follows:

• The LSTM model exhibits the lowest RMSE values compared to the NAR and ARIMA
models for forecasting missing wind speed data across all sites.

• At Site A, the LSTM model achieved the lowest RMSE value of 0.16, followed by NAR
with an RMSE of 0.353 and ARIMA with an RMSE of 0.583.

• Similarly, the LSTM model at Site B outperformed the other models with an RMSE of
0.185, while the NAR and ARIMA models showed higher RMSE values of 0.297 and
0.458, respectively.

• Finally, at Site C, the LSTM model exhibited the lowest RMSE of 0.112, followed by
ARIMA with an RMSE of 0.387 and NAR with the highest RMSE of 0.457.

• The following analysis is related to missing wind direction data forecasting, where the
performance of the models varies across different sites.
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• At Site A, the LSTM model had the lowest RMSE of 0.18, followed by ARIMA with an
RMSE of 0.386 and NAR with the highest RMSE of 0.442.

• Similarly, at Site B, the LSTM model performed best with an RMSE of 0.425, followed
by NAR with an RMSE of 0.185, and ARIMA with the highest RMSE of 0.572.

• Finally, at Site C, the NAR model had the lowest RMSE of 0.395, followed by LSTM
with an RMSE of 0.126, and ARIMA with the highest RMSE of 0.454.

Table 2. Performance comparison of various forecasting models for missing data of wind speed and
direction at different sites.

Model Site
Wind Speed (m/s) Wind Direction (deg)

RMSE RMSE

LSTM

Site A 0.18 0.16

Site B 0.425 0.185

Site C 0.112 0.126

NAR

Site A 0.353 0.442

Site B 0.297 0.185

Site C 0.457 0.395

ARIMA

Site A 0.583 0.386

Site B 0.458 0.572

Site C 0.387 0.454

The results show that the LSTM model performs better than the NAR and ARIMA
models in forecasting wind speed and wind direction missing data across different sites.
However, the performance may vary depending on the specific site and the nature of the
wind data. Figures 11 and 12 depict the actual wind speed and direction and those forecast
by the LSTM model. Further, the numerical values in Table 2 indicate the model’s best
performance, with RMSEs of around 0.11 and 0.12, respectively.
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Figure 11. Actual and forecast wind speed data at different sites.



Fractal Fract. 2024, 8, 149 17 of 25

0 200 400 600 800 1000 1200

Samples

50

100

150

200

250

300

350

W
in

d
 D

ir
e
c
ti
o
n
 (

d
e
g
)

Actual

Forecasted

0 50 100 150 200 250 300 350 400 450 500

Samples

0

50

100

150

200

250

300

350

W
in

d
 D

ir
e
c
ti
o
n
 (

d
e
g
)

Actual

Forecasted

(a) Site A (b) Site B

0 100 200 300 400 500 600 700 800

Samples

0

50

100

150

200

250

300

350

W
in

d
 D

ir
e
c
ti
o
n
 (

d
e
g
)

Actual

Forecasted

(c) Site C

Figure 12. Actual and forecast wind direction data at different sites.

4.2. Performance of FONN Model

This section presents the FONN model’s performance in predicting wind power using
the forecast missing wind speed and direction data with the LSTM model at different sites.
As per the previous section, the LSTM model showed the best performance among the
forecasting models. There are two case studies considered for predicting wind power.
The first case study involves predicting generated wind power using wind direction data
and forecast missing wind speed data. The second case study presents generated wind
power using wind speed data and forecast missing wind direction data.

4.2.1. Case Study 1

As mentioned, a FONN model with a single hidden layer was used in the first case
study, as depicted in Figure 8. This neural network predicts wind power using wind
direction data and forecasts missing wind speed data. The architecture comprises 2 nodes
in the input layer, 30 in the hidden layer, and 1 in the output layer. The activation function
“Purelin” was chosen for the network’s output layer. In contrast, the hidden layer’s acti-
vation function “F” varied between conventional and developed tangential functions to
evaluate the performance of the FONN model in terms of R2 and MSE. The analysis of the
performance of the activation function is given in Table 3, based on the results obtained,
as follows.

The following analysis was conducted to determine the accuracy of different activation
functions on Site A during the training and testing phases. The results indicate that the
fractional arctan function had the highest accuracy, with R2 values of 0.9749 and 0.9831
during the training and testing phases, respectively, with MSE values of 0.0205 and 0.0142.
Similarly, the fractional hard tansig function performed the best, with R2 values of 0.9263
and 0.9369 and MSE values of 0.0424 and 0.0397 during the training and testing phases,
respectively. The hard tansig function also performed well, with R2 values of 0.8954 and
0.9075 in the training and testing phases, respectively, and an MSE value of 0.0521 in both
phases. On the other hand, the conventional tansig function had the lowest accuracy, with
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R2 values of 0.8578 and 0.8642 during the training and testing phases, respectively, and
MSE values of 0.0753 and 0.0764, respectively.

At Site B, the fractional tansig function performed the best, with R2 values of 0.9428
and 0.9497 during training and testing phases, respectively, and MSE values of 0.0534
and 0.0529. The hard tansig function also performed well, with R2 values of 0.9489 and
0.9517 during the training and testing phases, respectively, and MSE values of 0.0583 and
0.0578, respectively. On the other hand, the worst-performing function for Site B was
the conventional tansig function, with R2 values of 0.9328 and 0.9436 in the training and
testing phases, respectively, and MSE values of 0.0662 and 0.0652, respectively. Moreover,
the fractional hard tansig function performed better during the training and testing phases,
with R2 values of 0.9543 and 0.9609 and MSE values of 0.0464 and 0.0432, respectively.
The conventional LiSHT function had R2 values of 0.9532 and 0.9584 and MSE values
of 0.0428 and 0.0414 during the training and testing phases, respectively. The fractional
LiSHT function performed better, with R2 values of 0.9572 and 0.9621 and MSE values
of 0.0399 and 0.0386 during the training and testing phases, respectively. For the highest
accuracy, the fractional arctan function proved to be the best option, with R2 values of
0.9929 and 0.9952 in the training and testing phases, respectively, and MSE values of 0.0046
and 0.0032, respectively. Similarly, the conventional arctan function also performed well,
with R2 values of 0.9901 and 0.9948 during the training and testing phases, respectively,
and MSE values of 0.0063 and 0.0035, respectively.

For Site C, the fractional tansig function performed better than the conventional
tansig function, with R2 values of 0.8931 and 0.9026 and MSE values of 0.0742 and 0.0629
during the training and testing phases, respectively. Similarly, the fractional hard tansig
function performed better than the conventional hard tansig function, with R2 values of
0.9035 and 0.9163 and MSE values of 0.0598 and 0.0586 during the training and testing
phases, respectively. For the LiSHT function, the fractional LiSHT function performed
slightly better than the conventional LiSHT function, with R2 values of 0.8864 and 0.8973,
and MSE values of 0.0752 and 0.0745 during the training and testing phases, respectively.
The highest accuracy was achieved using the fractional arctan function, with R2 values
of 0.9573 and 0.9635 and MSE values of 0.0123 and 0.0115 during the training and testing
phases, respectively. The conventional arctan function also performed well, with R2 values
of 0.9469 and 0.9529 and MSE values of 0.0158 and 0.0134 during the training and testing
phases, respectively.

Therefore, from the results across all the sites shown in Table 3, the FONN model’s
best performance with the conventional arctan function is depicted in Figure 13 and the
fractional arctan function is shown in Figure 14 at the hidden layer. The neural network’s
performance varied across sites and activation functions. The developed arctan arctan
function provided improved results compared to other functions, reflected in higher R2

values and lower MSE values for training and testing across different sites.

4.2.2. Case Study 2

The following analysis presents the second case study, which uses the same network
as the previous case, with an identical node count and activation functions. However, this
network uses wind speed data and forecast wind direction data as inputs to predict the
generated wind power. The obtained results are shown in Table 4, and the analysis of the
performance of the activation functions at the three sites is as follows.

Table 4 shows that conventional and fractional functions performed well across all the
sites during the training and testing phases. Among the conventional functions, hard tansig
and arctan outperformed the others in terms of R2 and MSE values during both training and
testing phases. On the other hand, the fractional function performed better overall, with higher
R2 values and lower MSE values than the corresponding conventional functions. For instance,
for Site A, arctan had the highest R2 value of 0.9898 and the lowest MSE value of 0.0081 for
training, while for testing, it had the highest R2 value of 0.9931 and the lowest MSE value
of 0.0059. Similarly, the fractional arctan function had the highest R2 value of 0.9899 and the
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lowest MSE value of 0.0081 for training, while for testing, it had the highest R2 value of 0.9946
and the lowest MSE value of 0.0048. These values indicate that arctan and its corresponding
fractional function were the best-performing functions for Site A. The second-best performing
function for Site A was hard tansig and its corresponding fractional function. For training,
hard tansig had the highest R2 value of 0.9264 and the lowest MSE value of 0.0372, while for
testing, it had the highest R2 value of 0.9378 and the lowest MSE value of 0.0346. Similarly,
the fractional hard tansig function had the highest R2 value of 0.9726 and the lowest MSE
value of 0.0218 for training, while for testing, it had the highest R2 value of 0.9832 and the
lowest MSE value of 0.0169. On the other hand, the tansig function had the lowest R2 value of
0.8973 and the highest MSE value of 0.0621 during training. Similarly, during testing, it had
the lowest R2 value of 0.9043 and the highest MSE value of 0.0594. Similarly, the fractional
tansig function had the lowest R2 value of 0.9264 and the highest MSE value of 0.0519 during
training, while it had the lowest R2 value of 0.9329 and the highest MSE value of 0.0497 when
tested. These values indicate that tansig and its corresponding fractional function were the
worst-performing functions at Site A.
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Figure 13. Performance of conventional neural network model during training and testing with
forecast missing wind speed.

At Site B, the activation function arctan performed the best in both training and testing
phases, with R² values of 0.9826 and 0.9875, respectively, and MSE values of 0.0129 and
0.0094, respectively. The arctan arctan function also performed well, with R² values of
0.9835 and 0.9867 and MSE values of 0.0124 and 0.0094, respectively. The best-performing
activation function was arctan hard tansig, with R² values of 0.8864 and 0.8949 in the
training and testing phases, respectively, and MSE values of 0.0682 and 0.0617, respectively.
The tansig and LiSHT activation functions performed well but not as well as the arctan and
arctan hard tansig functions. In conclusion, the arctan and arctan hard tansig activation
functions performed the best for Site B, with arctan being slightly better regarding the
R² value. Similarly, for Site C, the activation function arctan performed the best in both
training and testing phases, with R² values of 0.9793 and 0.9866, respectively, and MSE
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values of 0.0085 and 0.0054, respectively. The arctan arctan function also performed well,
with R² values of 0.9816 and 0.9865 and MSE values of 0.0076 and 0.0052, respectively.
The second-best-performing activation function was arctan hard tansig, with R² values of
0.9273 and 0.9526 in the training and testing phases, respectively, and MSE values of 0.0341
and 0.0252, respectively. The tansig and LiSHT activation functions also performed well
but not as well as the arctan and arctan hard tansig functions. Thus, the arctan and arctan
hard tansig activation functions performed the best for Site C, with arctan being slightly
better regarding the R² value. The worst-performing activation function was tansig for both
conventional and fractional functions.
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Figure 14. Performance of FONN model with forecast missing wind speed.

Table 3. Performance comparison of different functions in training and testing phases for various sites
under case study 1.

Site Conventional
Function

Training Testing Fractional
Function

Training Testing

R2 MSE R2 MSE R2 MSE R2 MSE

Site A

Tansig 0.8578 0.0753 0.8642 0.0764 Tansig 0.8739 0.0628 0.8864 0.0612

Hard tansig 0.8954 0.0521 0.9075 0.0516 Hard tansig 0.9263 0.0424 0.9369 0.0397

LiSHT 0.8749 0.0683 0.8873 0.0621 LiSHT 0.9025 0.0612 0.9173 0.0598

Arctan 0.9727 0.0227 0.9733 0.0207 Arctan 0.9749 0.0205 0.9831 0.0142

Site B

Tansig 0.9328 0.0662 0.9436 0.0652 Tansig 0.9428 0.0534 0.9497 0.0529

Hard tansig 0.9489 0.0583 0.9517 0.0578 Hard tansig 0.9543 0.0464 0.9609 0.0432

LiSHT 0.9532 0.0428 0.9584 0.0414 LiSHT 0.9572 0.0399 0.9621 0.0386

Arctan 0.9901 0.0063 0.9948 0.0035 Arctan 0.9929 0.0046 0.9952 0.0032

Site C

Tansig 0.8216 0.0853 0.8362 0.0817 Tansig 0.8931 0.0742 0.9026 0.0629

Hard tansig 0.8453 0.0732 0.8564 0.0695 Hard tansig 0.9035 0.0598 0.9163 0.0586

LiSHT 0.8762 0.0789 0.8758 0.0778 LiSHT 0.8864 0.0752 0.8973 0.0745

Arctan 0.9469 0.0158 0.9529 0.0134 Arctan 0.9573 0.0123 0.9635 0.0115



Fractal Fract. 2024, 8, 149 21 of 25

Table 4. Performance comparison of different functions in training and testing phases for various sites
under case study 2.

Site Conventional
Function

Training Testing Fractional
Function

Training Testing

R2 MSE R2 MSE R2 MSE R2 MSE

Site A

Tansig 0.8973 0.0621 0.9043 0.0594 Tansig 0.9264 0.0519 0.9329 0.0497

Hard tansig 0.9264 0.0372 0.9378 0.0346 Hard tansig 0.9726 0.0218 0.9832 0.0169

LiSHT 0.9163 0.0583 0.9289 0.0542 LiSHT 0.9517 0.0487 0.9619 0.0453

Arctan 0.9898 0.0081 0.9931 0.0059 Arctan 0.9899 0.0081 0.9946 0.0048

Site B

Tansig 0.8245 0.0982 0.8463 0.0968 Tansig 0.8562 0.0841 0.8678 0.0832

Hard tansig 0.8674 0.0721 0.8689 0.0708 Hard tansig 0.8864 0.0682 0.8949 0.0617

LiSHT 0.8462 0.0819 0.8573 0.0798 LiSHT 0.8693 0.0739 0.8715 0.0716

Arctan 0.9826 0.0129 0.9875 0.0094 Arctan 0.9835 0.0124 0.9867 0.0094

Site C

Tansig 0.9041 0.0528 0.9146 0.0512 Tansig 0.9317 0.0425 0.9462 0.0419

Hard tansig 0.9089 0.0481 0.9163 0.0479 Hard tansig 0.9273 0.0341 0.9526 0.0252

LiSHT 0.8932 0.0514 0.9023 0.0506 LiSHT 0.9172 0.0459 0.9251 0.0445

Arctan 0.9793 0.0085 0.9866 0.0054 Arctan 0.9816 0.0076 0.9865 0.0052

Therefore, the results presented in Table 4, the best performance of the FONN model
with the conventional arctan function, is shown in Figure 15, and the developed arctan arctan
activation function is depicted in Figure 16 at the hidden layer during training and testing
at all three sites. The conventional arctan and the developed arctan arctan functions exhibit
strong predictive abilities compared to other functions at all three sites. Minor variations
in the R2 and MSE values demonstrate the consistent and dependable performance of both
functions for predicting generated wind power using the provided input data.
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Figure 15. Performance of conventional neural network model during training and testing with
forecast missing wind direction.
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Figure 16. Performance of FONN model with forecast missing wind direction.

The results in both case studies compared the performance of the arctan tangential
functions and the conventional tangential functions in predicting wind power across
various sites. The arctan arctan function consistently achieved higher R2 values and
lower MSE values than the other functions, indicating better predictive capabilities of the
FONN model. These findings have important implications for fields that rely on predictive
modelling, such as finance, economics, and engineering.

5. Conclusions

A hybrid approach combining LSTMs and FONNs has been presented in this paper to
forecast data missing from wind parameters and predict generated wind power across all
the sites in the Jeju Island wind farm. An LSTM model was employed to forecast missing
wind speed and direction data, obtaining RMSE values of approximately 0.11 and 0.12,
respectively. In addition, the FONN model was used to predict wind power with forecast
missing wind parameters data through two case studies. In the first case, using wind
direction and forecast wind speed data, the developed arctan arctan activation function
outperformed the conventional arctan function in the neural network, with high R2 and
low MSE values, around 0.97 and 0.003, respectively, during training and testing. Similarly,
both activation functions exhibited strong predictive capabilities in predicting wind power
using wind speed. During training and testing, the forecast wind direction in the second
case achieved high R2 and low MSE values, around 0.98 and 0.004, respectively. The results
highlight the potential of the developed arctan arctan function, which consistently proved
its effectiveness in enhancing predictive capabilities compared to the conventional arctan
function and among all the tangential functions in both case studies. The study provides
valuable insights into predicting generated wind power and fills gaps in missing data,
demonstrating the potential of advanced neural networks in renewable energy applications.
The developed arctan tangential activation functions have improved predictive capabilities
compared to the conventional tangential functions, but their increased complexity may
limit their practical implementation. In future work, there is a possibility of expanding the
analysis carried out on fractional activation functions at α = 0.1 to determine the optimal α
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value. This extension of α could potentially increase the predictive accuracy of power in
wind farms.
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