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Abstract: In this paper, a family of fifth-order Chebyshev–Halley-type iterative methods with one
parameter is presented. The convergence order of the new iterative method is analyzed. By obtaining
rational operators associated with iterative methods, the stability of the iterative method is studied
by using fractal theory. In addition, some strange fixed points and critical points are obtained. By
using the parameter space related to the critical points, some parameters with good stability are
obtained. The dynamic plane corresponding to these parameters is plotted, visualizing the stability
characteristics. Finally, the fractal diagrams of several iterative methods on different polynomials are
compared. Both numerical results and fractal graphs show that the new iterative method has good
convergence and stability when α = 1

2 .

Keywords: nonlinear equation; iterative method; Chebyshev–Halley-type methods; stability; para-
metric space; dynamic plane; fractal diagram

1. Introduction

With the rapid development of science and technology, scientific calculation is becom-
ing more and more important. Scientific computing has been widely used in all walks of life,
such as the analysis of meteorological data images and the design of aircraft, automobiles
and ships, and high-tech research cannot be separated from scientific computing. Therefore,
it is often necessary to find the roots of the nonlinear equation f (x) = 0. For most nonlinear
equations, it is difficult for us to find the exact root, so it becomes particularly important to
find the approximate root of the equation. Among the methods for solving approximate
roots of nonlinear equations, Newton’s iterative method [1], proposed by Newton in the
17th century, is widely used. The iterative format is as follows:

xn+1 = xn −
f (xn)

f ′(xn)
. (1)

Based on Newton’s method, some iterative methods with high computational effi-
ciency and good stability are proposed, for example, the Steffensen iterative method [2],
Jarratt-type methods [3], the Ostrowski method [4] and the Chebyshev–Halley iteration
method [5]. The Chebyshev–Halley method’s iterative expression is as follows:

xn+1 = xn − (1 +
L f (xn)

2(1 − αL f (xn))
)

f (xn)

f ′(xn)
, (2)

where L f (x) = f (x) f ′′ (x)
f ′(x)2 .

Some interesting methods have been proposed in recent years in order to improve the
computational accuracy and reduce the computational cost of the iterative method. For
example, the Legendre spectral collocation method (LSCM) is applied for the solution of the
fractional Bratu equation [6], and Nachaoui’s iterative alternating method for solving the
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Cauchy problem [7]. The Hybrid Jarratt–Butterfly Optimization Algorithm [8] and Hybrid
Newton–Sperm Swarm Optimization Algorithm [9] are used to solve nonlinear equations.

Recently, on the basis of the Chebyshev–Halley method, Kou [10] obtained a fifth-
order Chebyshev–Halley-type iterative method by using the inverse function method. In
addition, Li [11], Chun [12], Kou [13] and Kim [14] proposed some high order Chebyshev–
Halley-type iterative methods. In this paper, we proposed a new fifth-order Chebyshev–
Halley-type iterative method and analyzed its stability.

In order to intuitively judge the stability of the iterative methods, some authors ob-
tained some preliminary results by using the fractal theory [15–23]. Cordero [15] analyzed
the stability of third-order Chebyshev–Halley method. In the drawing of the parameter
plane and the dynamic plane, Chicharro [16] gives a detailed explanation.

Next, we will present some concepts related to fractal theory [24,25].
Polynomial M(z) = a0 + a1z + a2z2 + . . . + anzn, where n ≥ 2, and M : C → C . Let

Mk be the k-repetition of the function M ◦ . . . ◦ M. Mk(w) is the kth iteration of w. If
M(w) = w, then w is said to be the fixed point of M; if there is an integer p greater than
or equal to 1 that makes Mp(w) = w, then w is said to be the periodic point of M; let us
call w, M(w), . . . , Mp(w) the orbital of period p. For M′(w) = β, if β = 0, then point w is
superattractive; if 0 < |β| < 1, then the point w is the attraction point; if |β| = 1, then w
is the saddle point; if |β| > 1, then point w is repulsive. The Julia set J(M) of M can be
defined as the closure of the set of repulsive periodic points of M, and the remainder of the
Julia set is called the Fatou set or the stable set is denoted F(M).

The purpose of this paper is to propose a new iterative method with one parameter
and analyze the stability of the strange fixed points associated with the method by using
fractal theory. Parameter planes and dynamic planes are used to select the appropriate
parameters. The stability and convergence of the iterative method will be analyzed by
drawing the fractal diagram of the iterative method.

The structure of this paper is as follows: In Section 2, the convergence order of the
Chebyshev–Halley-type iterative method is analyzed. In Section 3, we mapped the iterative
method to a rational operator via a Möbius conjugacy map and analyzed its fixed points
and critical points. Through the parameter planes related to the critical points, some special
parameters are selected and the relevant dynamic planes are drawn. In Section 4, the
numerical results of the new method and other methods are compared. In Section 5, fractal
diagrams of different iteration methods are drawn. It is proved that the new method has
the best stability and convergence when α = 1

2 .

2. Convergence of the New Family

In this section, we propose a two-step fifth-order iterative method based on the
Chebyshev–Halley method. The expression of the method is as follows





yn = zn − [1 + 1
2

L f (zn)

1−αL f (zn)
] f (zn)

f ′(zn)
,

zn+1 = yn − (H0 + H1L f (zn))
f (yn)
f ′(zn)

,

(3)

where

L f (z) =
f (z) f ′′ (z)

f ′(z)2 , (4)

parameter α is a complex paramater. Then, we further analyze the convergence order of
iterative method (3) and give a proof.

Theorem 1. Let ε ∈ I f ⊂ D be a simple zero of a real single-valued function f : D ⊂ R → R
possessing a certain number of continuous derivatives in the neighborhood of ε ∈ I f , where I f is an
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open interval. When iterative method (3) satisfies the condition H0 = H1 = 1, the iterative method
is convergent in the fifth order, and the error expression is as follows:

en+1 = (2(6 − 6α)c4
2 + (−12 + 6α)c2

2c3 + 3c2
3)e

5
n + O(e6

n), (5)

which holds.

Proof. Let cn = f (n)(ε)
n! f ′(ε) , en = zn − ε, ey = yn − ε, and en+1 = zn+1 − ε. Expanding f by

Taylor’s series about ε, we find

f (zn) = f ′(ε)(en + c2en
2 + c3en

3 + c4en
4 + c5en

5 + c6en
6 + O(e7

n)), (6)

f ′(zn) = f ′(ε)(1 + 2c2en + 3c3en
2 + 4c4en

3 + 5c5en
4 + 6c6en

5 + O(e6
n)), (7)

f ′′ (zn) = f ′(ε)(2c2 + 6c3en + 12c4en
2 + 20c5en

3 + 30c6en
4 + O(e5

n)), (8)

Putting (6)–(8) into (4), we obtain

L f (zn) =2c2en + (−6c2
2 + 6c3)e2

n + 4(4c3
2 − 7c2c3 + 3c4)e3

n−10(4c4
2 − 10c2

2c3 + 3c2
3

+5c2c4)e4
n + 6(16c5

2 − 52c3
2c3 + 33c2c2

3 + 28c2
2c4 − 17c3c4 − 13c2c5 + 5c6)e5

n

−14(16c6
2 − 64c4

2c3 − 9c3
3 + 36c3

2c4 + 6c2
4 + 9c2

2(7c2
3 − 2c5)

+11c3c5 + c2(−46c3c4 + 8c6))e6
n + O(en

7),

(9)

and then,

ey =(2c2
2 − 2αc2

2 − c3)en
3 + (−9c2

3 + 14αc2
3 − 4α2c2

3 + 12c2c3 − 12αc2c3 − 3c4)en
4

+((30 − 66α + 40α2 − 8α3)c4
2 − 9(7 − 12α + 4α2)c2

2c3 − 3(−5 + 6α)c2
3

−24(−1 + α)c2c4 − 6c5)e5
n + (− 2(44 − 129α + 124α2 − 52α3 + 8α4)c5

2

+(251 − 618α + 428α2 − 96α3)c3
2c3 − 2(56 − 101α + 36α2)c2

2c4

+(55 − 72α)c3c4 − 2c2((68 − 135α + 54α2)c2
3 + 20(−1 + α)c5)

−10c6)e6
n + O(en

7),

(10)

Hence, applying Taylor’s series again, we have

f (yn) = f ′(ε)(ey + c2ey
2 + c3ey

3 + c4ey
4 + c5ey

5 + c6ey
6 + O(ey

7)), (11)

Now, using (9)–(11) we obtain

en+1 =(2(−1 + α)c2
2 + c3)(−1 + H0)e3

n+(3c4(−1 + H0) + 2c2c3(6 + 6α(−1 + H0)− 7H0 + H1)

+c3
2(−9 + 4α2(−1 + H0) + 13H0 − 4H1 + α(14 − 18H0 + 4H1)))e4

n + (c5(−6 + 5H0)

+6c2c4(4 + 4a(−1 + H0)− 5H0 + H1) + 3c2
3(5 + 6a(−1 + H0)− 6H0 + 2H1)

+c2
2c3(−63 + 36α2(−1 + H0) + 97H0 − 138aH0 − 46H1 + 36α(3 + H1))

+2c4
2(15 + 4α3(−1 + H0)− 28H0 + 3α(−11 + 17H0 − 8H1) + 19H1

+4α2(5 − 6H0 + H1)))e5
n + O(en

6).

(12)

From the above expression, if the coefficients of e3
n and e4

n are zero, then the iterative
method is a fifth-order convergence; that is, when H0 = H1 = 1, the error expression
becomes

en+1 = (2(6 − 6α)c4
2 + (−12 + 6α)c2

2c3 + 3c2
3)e

5
n + O(e6

n), (13)

Then it is obvious that method (3) is a fifth-order convergence. □
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In this case, the format of the obtained fifth-order iterative method is




yn = zn − [1 + 1
2

L f (zn)

1−αL f (zn)
] f (zn)

f ′(zn)
,

zn+1 = yn − (1 + L f (zn))
f (yn)
f ′(zn)

,

(14)

where

L f (z) =
f (z) f ′′ (z)

f ′(z)2 . (15)

3. Complex Dynamics Behavior

Complex dynamics mainly studies the dynamic properties of the rational function
related to the iterative method. The stability and reliability of the dynamic characteristics
of rational operators can be analyzed by studying the dynamic behavior of fixed points.
The parameter space established from the critical point also allows us to understand the
stability of different elements of the method, so that we can choose more suitable and
reliable family members.

In this section, we study the complex dynamics of method (14). For this purpose, we
construct a family correlated rational operator on a general nonlinear polynomial of low
order, and analyze the stability of its fixed points and critical points. Then, we construct
some parameter planes based on the free critical points. Some iterative methods correspond-
ing to parameter values with good stability are selected to construct the corresponding
dynamic plane.

3.1. Rational Operator

We will now analyze the dynamics of this method applied to quadratic polynomials.
We know that the roots of polynomials can be transformed by affine mapping without any
qualitative change in the dynamics. Therefore, by bringing the quadratic polynomial p(z) =
(z − a)(z − b) into the new two-step Chebyshev–Halley-type method, the corresponding
rational function can be obtained:

Hp(z; α, a, b) =
κ(z)
ρ(z)

, (16)

where κ(z) = (a − z)3(−b + z)3(−b + 2a(−1 + a − z) + 3z)(a + 2b − 2ab − 3z + 2az)
(a2 + 4ab + b2 − 6(a + b)z + 6z2) + (a + b − 2z)5z((b − 2z)2 + 2ab(1 + z)− 2az(2 + z)+
a2(1 − 2b + 2z))2 + (a + b − 2z)4(−a + z)(−b + z)((b − 2z)2 + 2ab(1 + z)− 2az(2 + z)+
a2(1 − 2b + 2z))(b2 − 5bz + 5z2 + ab(3 + 2z)− az(5 + 2z) + a2(1 − 2b + 2z)) and ρ(z) =

((a + b − 2z)5((b − 2z)2 + 2ab(1 + z)− 2az(2 + z) + a2(1 − 2b + 2z))
2
), depending on the

parameters α, a and b. Next, we consider the conjugacy map

m(z) =
z − a
z − b

, (17)

with the following properties:

(i) m(∞) = 1, (ii) m(a) = 0, (iii) m(b) = ∞. (18)

It can be obtained that the fixed point operator

Op(z; α)= (m ◦ Hp ◦ m−1)(z)

= (z5(12 − 12α+(42 − 56α + 20α2)z + (48 − 56α + 16α2)z2 + (27 − 24α + 4α2)z3

+(8 − 4α)z4 + z5))/(1 − 4(−2 + α)z+(27 − 24α + 4α2)z2 + 8(6 − 7α + 2α2)z3

+(42 − 56α + 20α2)z4 − 12(−1 + α)z5)

(19)
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where Op(z; α) is only related to α. In addition, we know that Hp(z) and Op(z) are conju-
gate, the obtained Op(z) contains only parameter α and the form of Op(z) depends on the
value of parameter α, so we only need to study one parameter, which greatly simplifies our
research below. Furthermore, by factorizing the numerator and denominator of Op(z; α),
we can observe that the expression for Op(z; α) is further simplified when α takes different
values, such as −1, 1

2 :

Op(z;−1) =
z5(24 + 22z + 8z2 + z3)

1 + 8z + 22z2 + 24z3 , (20)

and

Op(z;
1
2
) =

z5(6 + 7z + 4z2 + z3)

1 + 4z + 7z2 + 6z3 . (21)

3.2. Analysis and Stability of Fixed Points

We will calculate the fixed points of the operators Op(z; α) mentioned earlier and
analyze their stability. As we will see, the number of fixed points and their stability depend
on the value of the parameter α. According to the definition of fixed point Op(z) = z,
we obtain:

Op(z)− z =
z(z − 1)χ(z)

ψ(z)
, (22)

where

χ(z) =1 + (9 − 4α)z + (36 − 28α + 4α2)z2 + (84 − 84α + 20α2)z3 + (114 − 128α + 40α2)z4

+(84 − 84α + 20α2)z5 + (36 − 28α + 4α2)z6 + (9 − 4α)z7 + z8,
(23)

and

ψ(z) =1 − 4(−2 + α)z + (27 − 24α + 4α2)z2 + 8(6 − 7α + 2α2)z3 + (42 − 56α + 20α2)z4

−12(−1 + α)z5.
(24)

From Op(z) − z = 0, we can see that the fixed points are z = 0, z = ∞, z = 1 and the
root of the polynomial χ(z) = 1 + (9 − 4α)z + (36 − 28α + 4α2)z2 + (84 − 84α + 20α2)z3 +
(114 − 128α + 40α2)z4 + (84 − 84α + 20α2)z5 + (36 − 28α + 4α2)z6 + (9 − 4α)z7 + z8. It is
easy to see that z = 0, z = ∞ are free points of the parameter α. In addition, they are
super-attractive fixed points. Next, we will analyze the case of strange fixed points.

Since the form of the expression of Op(z) depends on the value of the parameter α,
the following theorem is given for the number of strange fixed points under different
parameter values.

Theorem 2.

• If α = 1
2 , the polynomials χ(z) and ψ(z) have common factors (z + 1)2, in which case

the operator Op(z) has seven strange fixed points z = 1, z = −2.39258, z = −0.41796,
z = −0.86623 ± 1.74372i, z = −0.228502 ± 0.459974i.

• If α = −1, the operator Op(z) has six strange fixed points z = 1, z = −4.51786,
z = −0.221344, z = −1.89002 ± 2.07137i, z = −0.240376 ± 0.263441i.

• If α satisfies (α − 1
2 )(α + 1) ̸= 0, the operator Op(z) has nine strange fixed points: z = 1

and eight roots of the polynomial χ(z) = 0.

Proof.

• Suppose that z ∈ C are some values of χ(z) = 0 and ψ(z) = 0; by concatenating
the two polynomial equations, we can eliminate the parameter α, at which time we
obtain (1 + z)5 = 0, from which we know that (1 + z) can be a common factor of χ(z)
and ψ(z). So, if we put z = −1 into χ(z;−1) and ψ(z;−1), we obtain α = 1

2 . Now
operator Op(z, 1

2 ) has seven strange fixed points.
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• The remaining cases are obviously as shown in the above theorem.

□

Next, we will analyze the stability of strange fixed points. To study that, first we need
to figure out the first derivative of the operator Op(z; α):

O′
p(z; α) = −−4(z4)(1 + z)4λ(z)ω(z)

µ(z)2 , (25)

where
λ(z) = 1 + 2z − 2αz + z2 (26)

ω(z) =−15 + 15α + (−69 + 108α − 48α2)z + (−108 + 196α − 136α2 + 40α3)z2

+(−69 + 108α − 48α2)z3 + (−15 + 15α)z4,
(27)

µ(z) =−1 + 4(−2 + α)z + (−27 + 24α − 4α2)z2 − 8(6 − 7α + 2α2)z3 + (−42 + 56α − 20α2)z4

+12(−1 + α)z5.
(28)

Obviously, the stability of the fixed point also depends on the value of the parameter
α. The following content will give the stability of the fixed point obtained above.

Proposition 1. The strange fixed points we know are z = 1 and the root of polynomial χ(z) = 1 +
(9 − 4α)z+(36 − 28α + 4α2)z2 +(84 − 84α + 20α2)z3 +(114 − 128α + 40α2)z4 +(84 − 84α
+20α2)z5 + (36 − 28α + 4α2)z6 + (9 − 4α)z7 + z8. We define the root of χ(z) as χi(z), i =
1, 2, . . . , 8 for α satisfying (z − 1

2 )(z + 1) ̸= 0,

• z = 1, taking parameter values in the region [1.7, 2.3]× [−0.3, 0.3] of the complex plane is
an attractor. And z = 1 is a superattractive fixed point for a = 2; z = 1 is a hyperbolic fixed
point for α = 2.04545 ± 0.25713i and α = 1.5, α = 2.3.

• χ1(z), χ3(z), χ4(z), χ5(z), χ8(z) are repulsive, with independence of the value of
parameter α.

• χ2(z) is an attractor for values of α in small regions of the complex plane, inside the complex
area [−0.58,−0.56]× [0.96, 0.98].

• χ6,7(z) is an attractor for values of α in small regions of the complex plane, inside the complex
area [1.5, 2.5]× [−0.5, 0.5].

Figures 1 and 2 show the stability of the strange fixed point of the operator Op(z; α).
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(a) χ2(z) (b) χ6,7(z)

Figure 2. Stability region of χi(z), i = 2, 6, 7.

3.3. Critical Points of Operator Op(z; α)

According to the definition of critical points, we can find the necessary critical points
by taking the root of O′

p(z; α) = 0. Thus, it is clear that 0, 1 are critical points of the operator
Op(z; α), and that they depend on the roots of the quadratic polynomial p(z) = (z − a)(z −
b). In addition, the remaining critical points are called free critical points. The following
theorem summarizes the number of free critical points when α takes different values.

Theorem 3. With O′
p(z; α) = 0, we obtain z = −1 and the roots of λ(z) = 0, ω(z) = 0 are the

free critical points. So

• If α = 0, ω(z) = 3(1 + z)2(5 + 13z + 5z2), then Op(z; α) has three different free critical
points z = −1 (with multiplicity 8), z = −2.13066, z = −0.469338. If α = 2, ω(z) =
15(−1 + z)2(1 − z + z2), then Op(z; α) has four different free critical points z = −1 (with
multiplicity 4), z = 1 (with multiplicity 4), z = 0.5 ± 0.866025i.

• If α = −1, ω(z) = 15(2 + 7z + 2z2), then Op(z; α) has three different free critical points
z = −1 (with multiplicity 4), z = −3.18614, z = −0.313859.

• If α = 1
2 ,ω(z) = 3(5 + 8z + 5z2), Op(z; α) has five different free critical points z = −1

(with multiplicity 2), z = 0.5± 0.866025i, z = −0.8± 0.6i. If α = − 1
2 , there are six different

free critical points z = −1, z = −3, z = −2.61803, z = −0.381966, z = −2.21525, z =
−0.451416.

• If α = 3
2 , there are three different free critical points z = −1 (with multiplicity 4), z = ±i, z =

0.5 ± 0.866025i; and with α = 23
10 , there are five different free critical points z = −1 (with

multiplicity 4), z = 0.469338, z = 2.13066, z = 0.910769 ± 0.412916i.
• For α(α − 2)(α ± 1

2 )(α − 3
2 )(α − 23

10 )(α + 1) ̸= 0, there are seven different free critical points
cr1 = −1;
cr2 = −1 + α −

√
−2α + α2;

cr3 = −1 + α +
√
−2α + α2;
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.
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Proof. For 1, 2, we already know λ(z) = 1 + (2 − 2α)z + z2; then let λ(z) = 0; we can
obtain the expression of the critical points cri = −1+ a±

√
−2α + α2, i = 1, 2, and cr1 = 1

cr2
.

So we can start with a special case, which is cr1 = cr2. At this time, cr1 = cr2 = ±1; that is
α2 − 2α = 0; solving the equation, we obtain α = 0, α = 2. Therefore, when cr1 = cr2 = −1,
Op(z; α) has three different free critical points. When cr1 = cr2 = 1, Op(z; α) has four
different free critical points.

And for 3, 4, suppose that z ∈ C are some values of ω(z) = 0 and µ(z) = 0; by concate-
nating the two polynomial equations, we can eliminate the parameter α, at which time we
obtain ((1 + z)(1 + 3z))4(1 + 11z + 45z2 + 71z3 − 23z4 − 189z5 − 153z6 + 69z7 + 138z8+

30z9)
2
= 0, from which we know that z + 1 and 1 + 3z can be the common factor of

ω(z) and µ(z). Therefore, we put z = −1 into ω(z) and µ(z); we obtain α = 1
2 ; this

time, ω(z)
µ(z) = − 3(5+8z+5z2)

2(1+z)2(1+4z+7z2+6z3)
2 ; there are five different critical points. Therefore, we

also obtain α = 3
2 and α = 23

10 ; this time, O′p(z) = − 30z4(1+z)4(1+z2)(1−z+z2)

(1+3z+3z2+3z3+6z4)
2 and O′p(z) =

− 30z4(1+z)4(5−13z+5z2)(325−592z+325z2)

(−25+5z+181z2+85z3−390z4)
2 ; there are five different critical points. Then, we put

z = 1
3 into ω(z) and µ(z); we obtain α = − 1

2 ; this time, O′p(z) = (10z4(1 + z)4(1 + 3z + z2)

(9 + 27z + 17z2 + 3z3))/((1 + 3z)3(1 + 4z + 7z2 + 2z3)
2
); there are six different

critical points. □

3.4. Parameter Spaces and Dynamical Planes

In the above analysis, we can clearly understand that the dynamic behavior of the
corresponding rational operators will also be different in the case of different parameters. In
the following, we will plot the dynamic plane D and the parameter plane P to understand
the dynamic behavior of the iterative method in this paper at a glance. On the basis of
drawing the parameter plane, every value of α belonging to the same connected component
of the parameter space gives rise to subsets of schemes of method (14) with similar dynami-
cal behavior. In this way, we can find some regions with good stability in the parameter
plane, so we can obtain the stable members of the family of iterative method (14).

P = α ∈ C: an orbit of a free critical point cr tends to a number δp ∈ C̃ under the
action of Op(z; α).

D = z ∈ C: an orbit of z(α) for a given α ∈ P tends to a number δd ∈ C̃ under the
action of Op(z; α).

3.4.1. Parameter Spaces

From Theorem 3, we know that in general, we have at most four independent free
critical points. Moreover, we know that z = −1 is the preimage of the fixed point z = 1,
and the parameter plane corresponding to this critical point is not significant. Thus, we can
obtain three different parameter planes with complementary information.

When we consider the free critical point cr2 (or cr3) as the initial point of the iterative
method for the family associated with each complex value, if the method converges to zero,
we color this point in the complex plane red, if the method converges to zero, we color
this point in the complex plane blue, in other cases they are green. Figure 3 shows the
parameter plane when the initial point is cr2. This figure has been generated for values
of α in [−500, 500]× [−500, 500], with a mesh of 1000 × 1000 points and 50 iterations per
point. Figure 3b shows the situation in greater detail in Figure 3a. If the parameter plane
is drawn with cr4,5 and cr6,7 as the initial points, P2 and P3 can be obtained, as shown in
Figures 4 and 5, respectively. In Figures 3 and 4, we can see red areas that converge to 0,
blue areas that converge to infinity and green areas that converge to nothing. In Figure 5,
only red and blue appear. Therefore, the iterative method with cr6,7 as the initial points has
better stability. In addition, all the iterative methods corresponding to the green parameter
values are unstable, so we should avoid the green parameter values as much as possible in
the final parameter selection, and choose the red or blue parameter values.



Fractal Fract. 2024, 8, 150 9 of 18
Fractal Fract. 2024, 1, 0 9 of 18

-500 -400 -300 -200 -100 0 100 200 300 400 500

Re{z}

-500

-400

-300

-200

-100

0

100

200

300

400

500

Im
{z

}

1 1.5 2 2.5 3 3.5 4

Re{z}

-1.5

-1

-0.5

0

0.5

1

1.5

Im
{z

}

(a) P1 (b) Details of Figure (a)

Figure 3. Parameter plan P1 for cr2,3.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Re{z}

-5

-4

-3

-2

-1

0

1

2

3

4

5

Im
{z

}

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

Re{z}

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Im
{z

}

(a) P2 (b) Details of Figure (a)

Figure 4. Parameter plan P2 for cr4,5.

-10 -8 -6 -4 -2 0 2 4 6 8 10

Re{z}

-10

-8

-6

-4

-2

0

2

4

6

8

10

Im
{z

}

Figure 5. Parameter plan P3 for cr6,7.

3.4.2. Dynamical Planes

The dynamic planes of the new iterative method (14) are also dependent on the
parameter α, where each region is drawn in a different color. If initial points converge to 0
and infinity, they are orange and blue, respectively. If initial points converge to the fixed
point z = 1, they are green; if initial points converge to black, they do not converge to any
roots. Other than that, we set the track to red. These dynamic planes were generated with a
mesh of 400 × 400 points and up to 20 iterations per point.
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3.4.2. Dynamical Planes

The dynamic planes of the new iterative method (14) are also dependent on the
parameter α, where each region is drawn in a different color. If initial points converge to 0
and infinity, they are orange and blue, respectively. If initial points converge to the fixed
point z = 1, they are green; if initial points converge to black, they do not converge to any
roots. Other than that, we set the track to red. These dynamic planes were generated with a
mesh of 400 × 400 points and up to 20 iterations per point.
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In Figure 6, the parameter planes corresponding to some special parameter values are
plotted. When α = 1

2 , there are only blue and orange regions in Figure 6d, this means that
the initial points only converge to 0 and infinity; this parameter value is ideal. When α = 2,
z = 1 is a superattractive fixed point, and the green area appears in Figure 6f, this means
that this additional fixed point is convergent. When α = −1, α = − 1

2 , α = 0, α = 3
2 , α = 23

10 ,
some black areas appear in Figure 6; the initial values in the black area do not converge to
any root, which means that these parameter values are not ideal.
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When α = 45
22 + 4

√
2

22 i and α = 25
14 , α = 13

6 , z = 1 is a hyperbolic point, and the
corresponding dynamic planes are shown in Figure 7. In Figure 7, we can observe that
black regions appear in each graph, indicating that they all have regions that do not
converge to any root at this time. So the value of this parameter is not what we want it to
be. A similar situation appears in Figure 8.
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Based on the above, we can find that when α = −1, α = − 1
2 , α = 1

2 , the dynamic
planes are relatively simple; when the iterative method takes these parameter values, the
iterative methods are relatively stable.

4. Numerical Experiments

Here, we perform several numerical tests in order to check the theoretical convergence
and stability results of the CHM(α) (14) family obtained in previous sections. Our method
CHM(alpha = 1

2 ) (14) was compared with Kou’s method (KM) and Li’s method (LIM) [11]
to solve some nonlinear equations.

Kou’s method [10]





yn = zn − [1 + 1
2

L f (zn)

1−β1L f (zn)
] f (zn)

f ′(zn)
,

zn+1 = yn − (1 +
M f (zn ,yn)

(1−γM f (zn ,yn))
) f (yn)

f ′(zn)
,

(29)

where L f =
f (z) f ′′ (z)

f ′(z)2 , M f (zn, yn) =
f ′′ (zn)( f (zn)− f (yn))

f ′(zn)
2 , β1 = −1 and γ = 0.

Li’s method [11] 



yn = xn − f (xn)
f ′(xn)

,

zn = xn − f (yn)
f (xn)−2β2 f (yn)

f (xn)
f ′(xn)

,

xn+1 = zn − f (zn)
f ′(xn)+ f ′′ (xn)(zn−xn)

,

(30)

where β2 = 3.
In Tables 1–3, Time is the computing time of the machine, z0 is the initial value and

ACOC [26] is the approximated order of convergence.

Table 1. Numerical results of different iterative methods.

fi(z) Method z0 |z1−z0| |z2−z1| |z3−z2| |z4−z3| ACOC Time

f1(z) CHM 0.2 0.05753 2.8768 ×10−9 1.1312 ×10−45 1.0635 ×10−227 5.0 0.368283
KM 0.2 0.05753 4.9599 ×10−9 2.6574 ×10−44 1.1731 ×10−220 5.0 0.504487
LIM 0.2 0.05753 4.2069 ×10−9 7.8807 ×10−45 1.8179 ×10−223 5.0 0.685724

CHM 0.3 0.04247 9.2906 ×10−10 3.9736 ×10−48 5.687 ×10−240 5.0 0.465012
KM 0.3 0.04247 1.3287 ×10−9 3.6658 ×10−47 5.8604 ×10−235 5.0 0.700821
LIM 0.3 0.04247 7.5548 ×10−10 1.4718 ×10−48 4.1309 ×10−242 5.0 0.617231

f2(z) CHM 1.3 0.06523 3.2362 ×10−7 8.0437 ×10−34 7.6303 ×10−167 5.0 0.495794
KM 1.3 0.065231 9.2698 ×10−7 4.6694 ×10−31 1.5142 ×10−152 5.0 0.553354
LIM 1.3 0.06523 1.6599 ×10−7 2.2011 ×10−35 9.0229 ×10−175 5.0 0.550163

CHM 1.4 0.03477 1.0435 ×10−8 2.8031 ×10−41 3.9216 ×10−204 5.0 0.360747
KM 1.4 0.03477 3.2389 ×10−8 2.4315 ×10−38 5.7982 ×10−189 5.0 0.417446
LIM 1.4 0.03477 1.0054 ×10−8 1.7939 ×10−41 3.245 ×10−205 5.0 0.498558

f3(z) CHM 1.5 0.025994 4.5845 ×10−8 6.9123 ×10−37 5.3858 ×10−181 5.0 0.480012
KM 1.5 0.025994 1.7726 ×10−7 2.4137 ×10−33 1.13 ×10−162 5.0 0.481797
LIM 1.5 0.025994 5.9101 ×10−8 4.1989 ×10−36 7.6005 ×10−177 5.0 0.796286

CHM 1.6 0.074001 5.3941 ×10−6 1.5586 ×10−26 3.139 ×10−129 4.9999995 0.524147
KM 1.6 0.074032 0.000025903 1.6086 ×10−22 1.4855 ×10−108 5.0000019 0.484185
LIM 1.6 0.073982 0.000023806 4.4536 ×10−23 1.0203 ×10−111 5.0000038 1.117498

f4(z) CHM 1.4 0.0044916 3.356 ×10−12 7.6642 ×10−58 4.761 ×10−286 5.0 0.384553
KM 1.4 0.0044916 8.3785 ×10−12 1.8583 ×10−55 9.9733 ×10−274 5.0 0.363025
LIM 1.4 0.0044916 1.1576 ×10−12 1.3428 ×10−60 2.8203 ×10−300 5.0 0.514793

CHM 1.5 0.095499 9.5656 ×10−6 1.4419 ×10−25 1.1219 ×10−124 4.9999991 0.676156
KM 1.5 0.095533 0.000024869 4.2817 ×10−23 6.4769 ×10−112 5.0000024 0.744585
LIM 1.5 0.0955 8.5631 ×10−6 2.9745 ×10−26 1.5044 ×10−128 5.0000008 1.075170
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Table 1. Cont.

fi(z) Method z0 |z1−z0| |z2−z1| |z3−z2| |z4−z3| ACOC Time

f5(z) CHM −0.4 0.042854 5.0183 ×10−8 1.1955 ×10−37 9.174 ×10−186 5.0 0.544822
KM −0.4 0.042855 3.6043 ×10−7 1.5472 ×10−32 2.2556 ×10−159 5.0 0.572932
LIM −0.4 0.042854 3.1056 ×10−7 4.9815 ×10−33 5.2894 ×10−162 5.0 0.730796

CHM −0.5 0.057145 2.5432 ×10−7 3.9964 ×10−34 3.8292 ×10−168 5.0 0.763921
KM −0.5 0.057147 1.6222 ×10−6 2.8576 ×10−29 4.847 ×10−143 5.0 0.585273
LIM −0.5 0.057145 8.2965 ×10−7 6.7774 ×10−31 2.4655 ×10−151 4.9999999 0.753026

f6(z) CHM 0.1 0.055438 0.011285 2.2307 ×10−7 4.8967 ×10−31 5.0293972 0.793084
KM 0.1 0.091476 0.024762 0.000010038 1.8075 ×10−22 4.9362619 0.837225
LIM 0.1 0.067567 0.00084373 3.1209 ×10−15 9.2141 ×10−74 5.1198554 0.933355

CHM 0.2 0.033261 0.000015741 8.5645 ×10−22 4.0847 ×10−103 4.9999885 0.861654
KM 0.2 0.033315 0.000038138 1.4321 ×10−19 1.0684 ×10−91 5.000026 1.014709
LIM 0.2 0.03326 0.000016127 4.8457 ×10−25 8.3149 ×10−123 5.007914 1.187511

Table 2. Numerical results for stable parameter values.

fi(z) α z0 |z1−z0| |z2−z1| |z3−z2| |z4−z3| ACOC Time

f1(z) −1 0.3 0.04247 5.1534 ×10−10 9.5535 ×10−50 2.0917 ×10−248 5.0 0.533905
− 1

2 0.3 0.04247 6.542 ×10−10 4.3928 ×10−49 5.9965 ×10−245 5.0 0.353646
1
2 0.3 0.04247 9.2906 ×10−10 3.9736 ×10−48 5.687 ×10−240 5.0 0.457915
−1 1 0.73694 0.0055298 1.4278 ×10−14 1.5599 ×10−72 5.0018483 1.203424
− 1

2 1 0.73644 0.00603 3.0361 ×10−14 9.4566 ×10−71 5.0014638 0.654055
1
2 1 0.7352 0.0072671 1.1962 ×10−13 1.4062 ×10−67 5.0011154 0.574249

f2(z) -1 1.4 0.03477 4.8832 ×10−8 3.1527 ×10−37 3.5361 ×10−183 5.0 0.455763
− 1

2 1.4 0.03477 3.6526 ×10−8 5.4119 ×10−38 3.8648 ×10−187 5.0 0.420997
1
2 1.4 0.03477 1.0435 ×10−8 2.8031 ×10−41 3.9216 ×10−204 5.0 0.736641
−1 2 0.62288 0.011886 2.5419 ×10−10 1.2049 ×10−48 4.9967226 0.476672
− 1

2 2 0.62437 0.010403 9.7005 ×10−11 7.1504 ×10−51 4.9975948 0.429954
1
2 2 0.62983 0.0049369 6.5529 ×10−13 2.738 ×10−62 4.9993795 0.482312

f3(z) −1 1.5 0.025994 3.1251 ×10−7 6.1457 ×10−32 1.8076 ×10−155 5.0000001 0.505113
− 1

2 1.5 0.025994 2.1731 ×10−7 7.2122 ×10−33 2.9043 ×10−160 5.0 0.600533
1
2 1.5 0.025994 4.5845 ×10−8 6.9123 ×10−37 5.3858 ×10−181 5.0 0.412318
−1 2 0.44736 0.026644 2.1889 ×10−7 1.036 ×10−32 4.9799307 0.540150
− 1

2 2 0.44988 0.024127 1.0121 ×10−7 1.5806 ×10−34 4.9851187 0.472520
1
2 2 0.46174 0.01227 8.9598 ×10−10 1.9708 ×10−45 4.9964929 0.584135

f4(z) −1 1.4 0.0044916 1.5364 ×10−11 6.9365 ×10−54 1.301 ×10−265 5.0 0.763457
− 1

2 1.4 0.0044916 1.1328 ×10−11 1.1194 ×10−54 1.0548 ×10−269 5.0 0.778445
1
2 1.4 0.0044916 3.356 ×10−12 7.6642 ×10−58 4.761 ×10−286 5.0 0.457384
−1 1 nc nc nc nc nc nc
− 1

2 1 nc nc nc nc nc nc
1
2 1 0.27406 0.13031 0.00012133 4.7358 ×10−20 5.083647 0.822961

f5(z) −1 -0.4 0.042854 3.8978 ×10−7 2.9643 ×10−32 7.541 ×10−158 5.0 0.550584
− 1

2 -0.4 0.042854 2.8444 ×10−7 4.3227 ×10−33 3.5043 ×10−162 5.0 0.573988
1
2 -0.4 0.042854 5.0183 ×10−8 1.1955 ×10−37 9.174 ×10−186 5.0 0.352655
−1 0 0.43258 0.010278 3.5974 ×10−10 1.9851 ×10−47 4.9971435 0.502055
− 1

2 0 0.43396 0.0088947 1.2485 ×10−10 7.0433 ×10−50 4.9980779 0.498097
1
2 0 0.43998 0.0028767 7.3611 ×10−14 8.1186 ×10−67 4.9997831 0.479472
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Table 2. Cont.

fi(z) α z0 |z1−z0| |z2−z1| |z3−z2| |z4−z3| ACOC Time

f6(z) −1 0.1 nc nc nc nc nc nc
− 1

2 0.1 nc nc nc nc nc nc
1
2 0.1 0.055438 0.011285 2.2307 ×10−7 4.8967 ×10−31 5.0293972 0.793084
−1 0.2 0.033233 0.000043824 5.7218 ×10−19 2.1749 ×10−88 4.9999423 0.974917
− 1

2 0.2 0.03324 0.000036187 1.6483 ×10−19 3.2357 ×10−91 4.9999586 1.016791
1
2 0.2 0.033261 0.000015741 8.5645 ×10−22 4.0847 ×10−103 4.9999885 0.861654

Table 3. Numerical results for unstable parameter values.

fi(z) α z0 |z1−z0| |z2−z1| |z3−z2| |z4−z3| ACOC Time

f1(z) 1.5 0.3 0.04247 1.2001 ×10−9 1.9459 ×10−47 2.1807 ×10−236 5.0 0.636435
2 0.3 0.04247 1.3343 ×10−9 3.7441 ×10−47 6.5139 ×10−235 5.0 0.622020

2.17 0.3 0.04247 1.3797 ×10−9 4.6023 ×10−47 1.9009 ×10−234 5.0 0.516650
1.5 1 0.7335 0.0089677 4.6371 ×10−13 1.6756 ×10−64 5.0009595 0.632580
2 1 0.73239 0.010082 9.4161 ×10−13 6.5534 ×10−63 5.0009115 0.541331

2.17 1 0.73196 0.010515 1.2077 ×10−12 2.3649 ×10−62 5.0008979 0.526807

f2(z) 1.5 1.4 0.03477 1.7826 ×10−8 6.8271 ×10−40 5.6248 ×10−197 5.0 0.383288
2 1.4 0.03477 3.2854 ×10−8 2.6113 ×10−38 8.2829 ×10−189 5.0 0.387603

2.17 1.4 0.03477 3.8109 ×10−8 6.3115 ×10−38 7.8636 ×10−187 5.0 0.388549
1.5 2 0.64754 0.012775 1.3287 ×10−10 1.5705 ×10−50 5.0015962 0.371706
2 2 0.68237 0.047599 1.8055 ×10−7 1.3087 ×10−34 5.0064011 0.401961

2.17 2 0.71315 0.078385 2.6199 ×10−6 9.6917 ×10−29 5.0116522 0.390029

f3(z) 1.5 1.5 0.025994 1.0419 ×10−7 9.8946 ×10−35 7.6415 ×10−170 5.0 0.509447
2 1.5 0.025994 1.7237 ×10−7 2.0986 ×10−33 5.6139 ×10−163 5.0 0.545617

2.17 1.5 0.025994 1.9461 ×10−7 4.3943 ×10−33 2.5795 ×10−161 5.0 0.473363
1.5 2 0.56001 0.086052 0.000051492 2.9164 ×10−21 5.0408977 0.488337
2 2 nc nc nc nc nc nc

2.17 2 nc nc nc nc nc nc

f4(z) 1.5 1.4 0.0044916 4.4841 ×10−12 4.3515 ×10−57 3.7449 ×10−282 5.0 0.709110
2 1.4 0.0044916 8.3557 ×10−12 1.8331 ×10−55 9.3145 ×10−274 5.0 0.705258

2.17 1.4 0.0044916 9.6647 ×10−12 4.3973 ×10−55 8.5733 ×10−272 5.0 0.699666
1.5 1 0.64393 0.23998 0.00054848 1.1945 ×10−16 4.7943402 0.688360
2 1 0.72825 0.32888 0.0051229 1.6162 ×10−11 4.7031415 0.879573

2.17 1 0.75033 0.35501 0.0091719 3.4807 ×10−10 4.6736711 0.745030

f5(z) 1.5 -0.4 0.042855 2.2154 ×10−7 8.3805 ×10−34 6.4923 ×10−166 5.0 0.490509
2 -0.4 0.042855 3.7423 ×10−7 1.867 ×10−32 5.7706 ×10−159 5.0 0.499436

2.17 -0.4 0.042855 4.2904 ×10−7 4.179 ×10−32 3.6639 ×10−157 5.0 0.737970
1.5 0 0.4731 0.03025 4.0617 ×10−8 1.7361 ×10−37 5.0015384 0.459926
2 0 0.69565 0.25573 0.0029359 5.553 ×10−13 5.0118838 0.470911

2.17 0 nc nc nc nc nc nc

f6(z) 1.5 0.1 0.042855 0.012147 1.727 ×10−7 1.3621 ×10−31 4.9725788 1.238945
2 0.1 0.084431 0.01771 2.215 ×10−6 9.4549 ×10−26 4.9629725 1.001502

2.17 0.1 0.085903 0.019183 3.8987 ×10−6 1.869 ×10−24 4.9618955 1.055451
1.5 0.2 0.033293 0.000016401 1.0528 ×10−21 1.1468 ×10−102 5.0000115 1.223707
2 0.2 0.033317 0.000040334 1.8947 ×10−19 4.3301 ×10−91 5.0000249 1.158187

2.17 0.2 0.033327 0.000050322 6.7019 ×10−19 2.8053 ×10−88 5.0000295 1.150161

• In the numerical experiment, we will use the following five nonlinear equations,
which appear in [13,14], respectively. Their expressions and approximate roots are
given below.
f1(z) = z2 − ez − 3z + 2, ε ≈ 0.25753028543986076
f2(z) = z3 + 4z2 − 10, ε ≈ 1.3652300134140968
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f3(z) = z4 − lg(z)− 5, ε ≈ 1.5259939537536892
f4(z) = sin2z − z2 + 1, ε ≈ 1.4044916482153412
f5(z) = (z + 2)ez − 1, ε ≈ −0.44285440100238858

• In addition, let us consider a physical problem. An object of mass m is dropped from
a height h onto a real spring whose elastic force is Fe = −(k1x + k2x1.5), where z is
the compression of the spring; calculate the maximum compression of the spring:

mgh + mgz − 1
2

k1z2 − 2
5

k2z2.5 = 0, ε ≈ 0.16672356243778485

Let the gravity be g = 9.81 m/s2, the proportionality constant k1 = 40,000 g/s2,
k2 = 40 g/(s2m0.5), mass of the object m = 95 g and height h = 0.43 m. Thus, we obtain
the test function
f6(z) = 801,477

2000 + 18,639
20 z − 20, 000z2 − 16z2.5, ε ≈ 0.16672356243778485.

Table 1 shows that our method has high computational accuracy. In Table 2, we
obtained some numerical results for nonlinear equations by taking some stable parameter
values α = −1, α = − 1

2 , α = 1
2 . Table 3 shows the numerical results for some of the unstable

parameters α = 1.5, α = 2, α = 2.17. From Tables 2 and 3, we can find that the iterative
method corresponding to these stable values obtains better results, which is exactly in line
with the results analyzed in the third part. In Tables 1–3, compared with other methods,
our method has a much shorter computation time.

5. Comparison of Fractal Diagram for Different Methods

In this section, the fractal diagram of different methods for different polynomials
F1(z) = z2 − 1 and F2(z) = z3 − 1 are compared. The iterative methods being compared
are CHM(α = 1

2 ), CHM(α = 2), KM and KM2.
The KM2 [27] method





yn = zn − θ
f (zn)
f ′(zn)

,

zn+1 = zn − f (yn)+(θ2+θ−1) f (zn)
θ2 f ′(zn)

,
(31)

where θ = 1
2 .

Figures 9 and 10, respectively, show the attractive basin of the above three methods on
the polynomial F1(z) = z2 − 1 and F2(x) = z3 − 1. We set up a grid of 500 × 500 points to
draw the image in area D = [−5, 5]× [−5, 5], and we set the maximum number of iterations
to 25. The red, yellow and blue areas in these figures represent convergence to the roots of
these polynomials, while non-convergence to the highest number of iterations is plotted as
black areas. In addition, the number of iterations is shown as a lighter or darker color (the
fewer iterations, the brighter the color).

From Figure 9, we can see that the divergence points of CHM(α = 1
2 ) and KM2 are

less than KM and CHM(α = 2). In Figure 10, for solving z3 − 1, the convergence effect of
CHM(α = 1

2 ) is better than the other methods. Therefore, when α = 1
2 , the convergence and

stability of iterative method CHM are superior to other methods, this result is in agreement
with the numerical results above.
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Table 3. Cont.

fi(z) α z0 |z1 − z0| |z2 − z1| |z3 − z2| |z4 − z3| ACOC Time

f5(z) 1.5 -0.4 0.042855 2.2154 × 10−7 8.3805 × 10−34 6.4923 × 10−166 5.0 0.490509
2 -0.4 0.042855 3.7423 × 10−7 1.867 × 10−32 5.7706 × 10−159 5.0 0.499436

2.17 -0.4 0.042855 4.2904 × 10−7 4.179 × 10−32 3.6639 × 10−157 5.0 0.737970
1.5 0 0.4731 0.03025 4.0617 × 10−8 1.7361 × 10−37 5.0015384 0.459926
2 0 0.69565 0.25573 0.0029359 5.553 × 10−13 5.0118838 0.470911

2.17 0 nc nc nc nc nc nc

f6(z) 1.5 0.1 0.042855 0.012147 1.727 × 10−7 1.3621 × 10−31 4.9725788 1.238945
2 0.1 0.084431 0.01771 2.215 × 10−6 9.4549 × 10−26 4.9629725 1.001502

2.17 0.1 0.085903 0.019183 3.8987 × 10−6 1.869 × 10−24 4.9618955 1.055451
1.5 0.2 0.033293 0.000016401 1.0528 × 10−21 1.1468 × 10−102 5.0000115 1.223707
2 0.2 0.033317 0.000040334 1.8947 × 10−19 4.3301 × 10−91 5.0000249 1.158187

2.17 0.2 0.033327 0.000050322 6.7019 × 10−19 2.8053 × 10−88 5.0000295 1.150161

5. Comparison Of Fractal Diagram For Different Methods

In this section, the fractal diagram of different methods for different polynomials
F1(z) = z2 − 1 and F2(z) = z3 − 1 are compared. The iterative methods being compared
are CHM(α = 1

2 ), CHM(α = 2), KM and KM2.
The KM2 [27] method





yn = zn − θ
f (zn)
f ′(zn)

,

zn+1 = zn − f (yn)+(θ2+θ−1) f (zn)
θ2 f ′(zn)

,
(31)

where θ = 1
2 .

Figures 9 and 10, respectively, show the attractive basin of the above three methods on
the polynomial F1(z) = z2 − 1 and F2(x) = z3 − 1. We set up a grid of 500 × 500 points to
draw the image in area D = [−5, 5]× [−5, 5], and we set the maximum number of iterations
to 25. The red, yellow and blue areas in these figures represent convergence to the roots of
these polynomials, while non-convergence to the highest number of iterations is plotted as
black areas. In addition, the number of iterations is shown as a lighter or darker color (the
fewer iterations, the brighter the color).
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Figure 10. Fractal diagram of z3 − 1 with different iteration methods.

From Figure 9, we can see that the divergence points of CHM(α = 1
2 ) and KM2 are

less than KM and CHM(α = 2). In Figure 10, for solving z3 − 1, the convergence effect of
CHM(α = 1
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From Figure 9, we can see that the divergence points of CHM(α = 1
2 ) and KM2 are

less than KM and CHM(α = 2). In Figure 10, for solving z3 − 1, the convergence effect of
CHM(α = 1

2 ) is better than the other methods. Therefore, when α = 1
2 , the convergence and
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CHM(α = 1
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6. Conclusions

In this paper, a family of two-step Chebyshev–Halley-type iterative methods for
solving nonlinear equations is presented. Its convergence order is the fifth order to be
analyzed. And it increases the order of convergence of the Chebyshev–Halley method. By
analyzing the dynamic behavior, the relevant strange fixed points and free critical points
are discovered. Then, the stability of strange fixed points is studied and some results are
obtained. In addition, by observing the parameter plane associated with the free critical
point, some special parameter values are selected. It is ideal to select parameter values
in the blue and red regions of the parameter plane. The dynamic planes corresponding
to these special parameters are plotted. Based on the above research, a parameter α = 1

2
with good stability is selected. The numerical experiment results are consistent with the
results obtained from the dynamic analysis. The study show that it is effective to research
the stability of the iterative method by using fractal theory.
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