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Abstract: In this article, we construct an efficient family of simultaneous methods for finding all
the distinct as well as multiple roots of polynomial equations. Convergence analysis proves that the or-
der of convergence of newly constructed family of simultaneous methods is seventeen. Fractal-based
simultaneous iterative algorithms are thoroughly examined. Using self-similar features, fractal-based
simultaneous schemes can converge to solutions faster, saving computational time and resources
necessary for solving nonlinear equations. Fractals analysis illustrates the newly developed method’s
global convergence behavior when compared to single root-finding procedures for solving fractional
order polynomials that arise in complex engineering applications. Some real problems from various
branches of engineering along with some higher degree polynomials are considered as test examples
to show the global convergence property of simultaneous methods, performance and efficiency of
the proposed family of methods. Further computational efficiencies, CPU time and residual graphs
are also drawn to validate the efficiency, robustness of the newly introduced family of methods
as compared to the existing methods in the literature.

Keywords: parallel scheme; fractal analysis; local convergence; dynamical analysis; error graph

1. Introduction

Consider nonlinear polynomial equation of degree m

n

) =T1(c—z)"

i=1

)

with multiple real or complex exact roots {1, ...,{, of respective unknown multiplicities
o1,...,04 (09 + - - - + 0, = m). Generally, the multiplicity of roots is not given in advance.
However, researchers are working on numerical methods which approximate the unknown
multiplicity of roots; see, e.g., [1-7]. To solve (1), is one of the primal problems of sciences in
general and in applied and computational mathematics, in particular. Nonlinear equations
play a crucial role in providing more realistic and precise descriptions of phenomena, en-
abling scientists and engineers to understand, simulate, and predict the behavior of diverse
systems. From the microscopic world of quantum mechanics to the macroscopic scale
of climate modeling, nonlinear equations serve as the foundation for capturing the dynamic
and non-trivial relationships that characterize the behavior of materials, physical processes,
and complex systems. Their application extends to optimization problems [8], signal pro-
cessing [9], and the modeling of population dynamics [10], emphasizing their pervasive
role in advancing our understanding and facilitating the design and optimization of sys-
tems in science and engineering [11,12]. In essence, the importance of nonlinear equations
lies in their ability to bridge the gap between theoretical models and the intricate realities
of the natural and engineered world, providing a powerful tool for analysis, simulation,

Fractal Fract. 2024, 8, 162. https:/ /doi.org/10.3390/ fractalfract8030162

https:/ /www.mdpi.com/journal/fractalfract


https://doi.org/10.3390/fractalfract8030162
https://doi.org/10.3390/fractalfract8030162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-0516-0033
https://doi.org/10.3390/fractalfract8030162
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8030162?type=check_update&version=1

Fractal Fract. 2024, 8, 162

2 of 27

and innovation. The numerical iterative methods which approximate the roots of (1) may
be classified into two main groups: iterative methods which estimate one root at a time;
see, e.g., Chicharro et al. [13], Kung and Trub [14], King et al. [15], Cordero et al. [16],
Chun et al. [17], Behl [18], Kou et al. [19], Chun and Ham [20], Jarrat [21], Chicharro and
Cordero [22], Ostrowski [23], Cordero and Garcia-Maimo [24], and the iterative techniques
which find all roots of (1) simultaneously.

Simultaneous iterative methods are more precise, stable, and consistent than single
root finding methods, and they can also be used for parallel computation. Karl Weier-
strass developed a derivative-free simultaneous technique [25] known as the Weierstrass
method in the literature, which was rediscovered by Kerner [26], Durand [27], Dochev [28],
and Presic [29] to estimate all roots of nonlinear equations. In 1962, Dochev shows that
the Weierstrass iterative technique converged locally with convergence order two. Later,
Dochev and Byrnev [30] and Borsch-Supan [31] developed a derivative-free simultaneous
technique of convergence order three, whereas Ehrlich [32] developed a simultaneous
method with derivative. Based on Ehrlich and Bérsch-Supan’s approaches, Nourein [33,34]
developed two fourth-order simultaneous schemes in 1977. In the literature, Nourein
techniques are obtained by combining two approaches, namely Ehrlich methods with New-
ton’s corrections and Brouch-Supan methods with Weierstrass’ correction. Sakurai, Torii,
and Sugiura [35] developed and study a fifth-order simultaneous method with derivative
in 1991 using the Padé approximation. In 2019, Proinov et al. [36] presented the detailed
convergence of the Sakurai-Torii-Sugiura method, followed by local and semi local con-
vergence [37]. Petkovic et al [38] use Halley’s single root finding method as a correction to
accelerate the Sakurai-Torii-Sugiura method up to convergence order 6. There have been
numerous implementations of Nourein’s method to construct simultaneous methods with
accelerated convergence, including [39—44] and references therein.

Motivated by the aforementioned work, the primary goal of this study is to develop
a family of simultaneous methods that are both more efficient and have a higher conver-
gence order. Using appropriate corrections allows us to achieve seventeenth-order conver-
gence with the fewest functional evaluations required in each step, resulting in very high
computational efficiency for the newly constructed family of numerical schemes for finding
distinct as well as multiple roots. So far, only the Midrog Petkovic method [45] of order
10 and the Gargantini-Farmer-Loizou method of 2N + 1 convergence order (where N is a
positive integer) [46,47] exist in the literature, but their efficiency is low and abbreviated
as NN. The main contributions of this study are as follows.

¢  Three novel simultaneous methods are proposed to find all the distinct and multiple
roots of (1).

*  Alocal convergence analysis demonstrates that the newly developed methods rate
seventeenth in terms of convergence order.

*  We provide an in-depth complexity analysis to illustrate how effective the new ap-
proach is as compared to existing methods.

*  Using fractal behavior, the newly developed methods are numerically evaluated
for stability and efficiency.

e Utilizing a variety of stopping criteria, the method’s general applicability to a wide
range of nonlinear engineering problems is thoroughly investigated.

Global convergence behavior of simultaneous iterative methods is characterized by an-
alyzing their basins of attractions and taking initial guesses away from the roots. The most
frequently used classical approach for finding single roots of (1) of the first category is
Newton’s method: ®

0+1) _ (o) _ f&) o
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Method (2) is of optimal convergence order 2 with efficiency index 1.41. If we use

Weierstrass” Correction [48-50]
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Method (4) has convergence order two. Later, in 1973 Ehrlich [51] and Alefeld and
Herzberger proposed the following third order convergent method [52] as below:
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Petkovic et al. [54] accelerated the convergence order of (5) from three to six:
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To our knowledge, this contribution is unique. A review of the literature reveals
that not much work has been done on higher-order, consistent, efficient, and reliable
simultaneous methods for finding all distinct and multiple roots of (1). The paper is orga-
nized in the following way: In Section 2, fractal behavior—a representation of the global
convergence behavior of the proposed methods—and the development and analysis of si-
multaneous methods are covered. A detailed discussion of the computational cost analysis
of the simultaneous methods are provided in Section 3. Section 4 deals with numerical test
problems and engineering applications. Section 5 concludes the study and discusses future
research directions.

2. Family of Simultaneous Methods, Its Construction and Convergence Framework

Using the technique of the weight function, Rafiq [55] proposed the following family
of fifteenth-order iterative methods for finding single root of (1):

(®)
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In (11), f[¢®),w®] and f[y(®), (), w(®)] are the divided difference and defined as:
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and

If G(v(?)) is real valued function defined on v(?) = ;EZEZ;; such that G(0) = G'(0) =1

and |G”(0)| < oo, then the family of methods (11) has convergence order fifteen, if { is
simple root of (1) and €= ¢ — ¢ and error equation is given by:

(0+1) _
M —  ~C3GC(GoCE + 26303 - G5CaCR); (12)
(k
Cilo) i!f/% k=23, (13)

or
¢ — g =0(eb). (14)
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We consider here, three concrete fifteenth order family of iterative methods as pre-
sented in [55]:
Method-1: (N1)

2
Selecting G(v(®) =1+ v 4« (v(ﬂ)) ,& € Rthe family of iterative schemes becomes:
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Method-2: (N2)
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Choosing G(v(®)) = (1 - zxv(ﬁ)> “,a # 0,a € R the family of iterative schemes is
given by:
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Method-3: (N3)
Considering G(v(®)) =1+ v +« (v(ﬂ)) ’ +v <v(19))3, a,y € R the family of iterative
schemes is given as follows:
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Suppose, (1) has m distinct roots. Then f(¢) and f’(g) can be approximated as:

flg) = ﬁ(g —¢j)and f'(¢) = i ﬁ(g —¢j)or fck) = i l—mI(gk —¢). (18
j=1 k=17 k=1 ]j;:é{c
This implies,
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This provides the Aberth Ehrlich method (5).
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Using (21) in (5), we have:
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In case of multiple roots:
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where (3, ...,{, are now multiple roots of respective unknown multiplicities o7, ..., 0,
(n+- 40y, =m)and
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Thus, we have constructed family of three simultaneous methods of seventeenth

order for finding all the distinct roots of nonlinear polynomial equations, abbreviated
as MN;-MN3.

Convergence Analysis

Here, we prove convergence order of simultaneous methods MN;-MNj3 using follow-
ing convergence theorem.
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Theorem 1. Let¢,,C,, . .., Cn be simple roots of (1) with multiplicity o, . . ., 0 (01 + - - - + 05 = m)
and if ggo), ey gslo) be sufficiently close initial guessed estimates of the roots, then MN1—MN3 has

seventeenth order convergence.

Proof. Lete; = g —&iand €/ = gz(&ﬂ) — i be the errors in gl( ) and g( 1) estimates
correspondingly. Con51der1ng MN 1—-MN3, we have:
1
o =l - ,(0=1,23). (24)
oy (1
Ny S\ =)
j#
@)
where N (gl(.ﬂ)) = ( j{ ((g"(ﬂ )) ) . Then, obviously for distinct roots:
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= = = +Y ] (2
9 4 Z 4 4 9
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Thus, for multiple roots we have from MN; to MN3:
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Assuming |e;| = |€j| = Ole|, from (31), we have:

e, = O(e). (32)
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hence the theorem. [

Fractal Analysis of Simultaneous Scheme: To provoke the fractal-basin of attractions
of iterative schemes N1-N3, MN1-MN3, and NN for the determining the roots of nonlinear
equation, we execute the real and imaginary parts of the starting approximations repre-
sented as two axes over a mesh of 250 x 250 in complex plane. Use [¢(?+1) — ¢(®)| < 103
as a stopping criteria and consider maximum 3 iterations. We allow different colors to mark
to which root the iterative scheme converges and black in other cases. Color brightness
in basins shows less number of iterations. Figures la—g and 2a-g illustrate the fractal
behavior of N1-N3, MN1-MNj3 and NN for fractional-order nonlinear polynomials.

~

&

-05 05 1 15 2 2 -15 - 05 05 1 15 2

0
Rriz]

0
Rriz]

(a) Fractal-basin of attractions of N1 (b) Fractal-basin of attractions of N2

Imiz]

[

&

2,
2 2 5 1 05 0 05 1 15 2
Rrlz] Rilz]

(€) Fractal-basin of attractions of N3  (d) Fractal-basin of attractions of MN1

Imiz]

18 Bl 08 0 05 1 15 2

Rrlz] ’ ’ Rifz]

(e) Fractal-basin of attractions of MN2  (f) Fractal-basin of attractions of MN3

Figure 1. Cont.



Fractal Fract. 2024, 8, 162 10 of 27

Imiz]

-05 05

0
Rrlz]

(g) Fractal-basin of attractions of NN

312/99 _

Figure 1. (a—g) shows basins of attraction for nonlinear function f(¢) = ¢ % of iterative

methods N1-N3, MN;-MNj3, and NN, respectively.

Figure la—g, shows basins of attraction for nonlinear function f(g) = ¢312/%° — %

of iterative methods N1-N3, MN;-MN3, and NN, respectively.
Figure 2a-g, shows basins of attraction for nonlinear function f(¢g) = ¢
of iterative methods N1-N3, MN; —MN3, and NN, respectively.

210/99

—log(¢)

Imiz]
Imiz]

-0.5

-05

05

0
Rrz]

(@) Fractal-basin of attractions of N1 (b) Fractal-basin of attractions of N2

Imlz]
Im(z]

-05 05 1

0
Rrz]

(c¢) Fractal-basin of attractions of N3 (d) Fractal-basin of attractions of MN1

Figure 2. Cont.
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2
1
£ g o
-1
-2
L]
1 15 2 *
Rr[z]
(e) Fractal-basin of attractions of MN2 (f) Fractal-basin of attractions of MN3
3
2
1
0
) 1
-2
H i
-2 -15 -1 -05 0 05 1 15 2
Rrlz]
(g) Fractal-basin of attractions of NN
Figure 2. (a—g) shows basins of attraction for nonlinear function =" 1o ¢) of iterative
g g S g

methods N1-N3, MN;-MN3, and NN, respectively.

From the elapsed time in Table 1 and brightness in color in Figures la—g and 2a-g,
shows the dominance behavior of MN1-MNj3 over N1-N3 and NN, respectively.

Table 1. Elasped time in seconds.

Method N1 N2 N3 MN; MN, MN; NN

flg) = ¢12/% — 51293  6.1422 43231 00714 00152 00142 0.1235
g(c) 41609 52382 34319 00124 00193 00147 02145

— Q=

The iterative schemes N1-N3, MN;-MN3, and NN for solving f(¢) = c312/99 _ %,

fg) = e log(c), exhibit fractal behavior, as seen in Figures la—g and 2a—g, respec-

tively. In comparison to solving fractional order nonlinear equations f(g) = ¢312/%° — %
with N1-N3, MN;-MN3, and NN converge to 510,003, 534,673, 507,432, 618,654, 638,765,
632,154, and 588,975 points out of a total of 640,000, respectively. While generating the frac-
tal of f(¢) = =" —log(c), with N1-N3, MN;-MN3, and NN converge to 543,254,
543,565, 546,754, 632,455, 63,765, 638,765, and 523,451 points out of a total of 640,000, respec-
tively. Furthermore, MN1-MNj3 has a far higher convergence rate than NN. In the complex
plane, MN;-MNj3 converges to more points than NN due to global convergence.
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3. Computational Aspect
We compare the percentage cost of computation of Midrog Petkovic method (NN-
method) [45] and the new family of methods MN;-MNj3, the computation efficiencies (CE)

are computed as: logu

D 7
where D and u are cost of computation order of convergence of MN;-MNj3,NN, respectively.
Applying (33) and data given in Table 2, we calculate the percentage computational cost
as p(MN;-MN;,, NN) [56] given by:

CE(m) =

(33)

CE(MN; — MN3)
CE(NN)

o(MN; — MN3,NN) :< - 1) % 100. (34)

Figure 3a—d graphically clarifies these percentage costs of computation. It is obvious from
Figure 3b—d, that MN;-MN3 are more efficient as compared to NN.

-33.0F - S
////' 96| _—
-335F ol
/ 2
3ol /
/ /
/ /
/9
/ [ »
/ /
| -345F ’ﬁ
/ —— EF(NN)/EF(MN3) [ 88} —— EF(MNI/EF(NN)
/ /
L L L L ! L
20 30 40 50 10 20 30 40 50
(a) (b)
- 72 R
160 - —
// //"/
70
155
/
/ 61
/ /
/ 150 - /
/ /
/ | 66
/ / o
/ —— EF(MN2)/EF(NN) / EF(MN3)/EF(NN)
[ asp /
| ‘ ‘ ‘ ‘ | s s ‘ ‘
20 30 40 50 20 30 40 50
(c) (d)

Figure 3. (a—d): Graphically clarifies these percentage costs of computation. It is obvious from (b-d),

that MN1-MNj3 are more efficient as compared to NN.

Table 2. Basic operations per iterations.

MN; MN> MN3 NN

Addition and subtraction 60 70 9% 80
Multiplications 10 10 10 60
Divisions 20 10 20 20

where O = D1 +0p;01= m%;0,=0(m).

4. Numerical Results

We use CAS Maple 18 with 64-Digits-Floating-Point arithmetic for all numerical

calculations with stopping criteria as follows:

where e

(9)

i

1

gi(19+l)

- piH2 <e=10"%,

represents the absolute error of norm-2. In all numerical calculations we take
« = 0.008, 8 = —0.001,v = 1.5.
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Numerical tests problems from [57-60] are provided in Tables 3-13 and Algorithm 1.

Algorithm 1: For simultaneous scheme MN] to approximate all distinct and
multiple root of (1).

For the preliminary computations ggo) (ii=1,.,N),
tolerance €> 0 and set jj = O for tt-iterations

® _ () _ f(g}ﬂ)) @ _ f")
Vi T e N T R i
FE)+BF W) FW) N
F6")+ > B-2f") (")
n =y -1 7)) :
CNPR
2{ e }ff’(g(”))
] ]
Fn”)
14—
Calculate " 7h<19)7 f(g/gw) f(h]gf?))
v SRR | IR
RN @ (o 0
! fle; oy ]+
( (®) 7h(.19))
]
(8) _ () fw)”)
1 — 71 ’
B RS
fie | fly” 6, w®)— | [6 =]
FIE, ¢l

ii=1,...,n).

1
if el@) = ‘ (gl(.ﬂ'ﬂ) - ggg)> ) <€=10"% or ¢ > tt, then break.

Set jj = jj + land go to 1 -iteration.
End do.

Table 3. Parallel numerical scheme residual error comparison NN, MN;-MN3.

Method ~CPU-Time  o? e e el? e el? e?) el ey?)
NN 0.406 0.0 0.0 0.0 57x107Y7 32x10721 0.0 0.0 0.0 0.0
MN; 0.016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MN, 0.156 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MN3 0.159 0.0 0.0 0.0 6.0x107%7 09 x107% 0.0 0.0 0.0 0.0

Table 4. Approximate roots of the f,(g) utilising MN1-MN3 up-to 25 decimal places.

Roots

Approximate Roots after Second Iteration Using Simultaneous Methods MN1-MN3

NT N

ia)
o~

BYEYETRTEIETEYETE

n)
OGP GN

el a ke
NN

LAl A
NN

Sal

— 59,696.70991140727878983742649 — 17,330.45629984850327806571946 X i
— 59,696.70991140727878983742649 + 17,330.45629984850327806571946 x i
— 35,422.49261941473703632706384 — 41,931.87069228758403349587288 X i
— 35,422.49261941473703632706384 + 41,931.87069228758403349587288 x i
— 1235.689293801075002171094064 — 42,268.27946411286842679890715 x i
— 1235.689293801075002171094064 + 42,268.27946411286842679890715 X i
10,470.78502392132516903681496 + 0 x i

22,153.98207243945655027389363 — 18,201.65072991473532250086939 x i
22,153.98207243945655027389363 + 18,201.65072991473532250086939 x i
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Table 5. Parallel numerical scheme residual error comparison NN, MN;-MN3.

Method CPU-Time eiz) egz) egz) eiz) eéz) eéz) egz)
NN 4.547 0.1 x10°1 3.6 x 10712 3.9 x 10710 3.3 x 10712 1.0 x 10710 3.0x 1071 3.0x 1071
MN; 1.547 1.1 x 10~114 32 x10°% 33 x 107113 3.6 x 107114 3.0 x 107110 3.6 x 10798 0.0
MN, 1.320 1.3 x 1072 1.0 x 107115 3.0 x 10°14 1.6 x 10~118 0.1 x 10~17 6.9 x 10115 0.0
MNj 1.016 1.0 x 10214 3.0 x 107115 1.0 x 10712 3.5 x 107117 3.0 x 107114 2.0 x 107101 0.0
Residual errors for finding of all multiple roots of polynomial of degree 10200 with 21 multiple roots
NN 41.406 3.0x 1073 3.6 x 1073 1.0 x 10~° 3.0x 1073 31x 1072 2.0 x 1073 48 x 1077
MN; 12.510 5.5 x 1018511 3.7 x 103661 3.0 x 107324 3.0 x 1071192 2.0 x 107498 1.1 x 10-1518 2.5 x 103866
MN, 11.320 3.3 x 1017588 3.8 x 102061 3.6 x 1073224 0.9 x 101214 5.5 x 107385 1.0 x 1071517 5.0 x 1073513
MNj; 13.033 3.6 x 1014561 39 x 107412 3.6 x 1073112 0.8 x 102112 2.6 x 1073% 3.6 x 1071311 3.6 x 101501
) ) ) e e e e 2 ) )
2.0 x 10712 2.3 x 10712 1.3 x 107101 0.0 0.0 0.0 0.0 0.2 x 10102 9.3 x 10~ 8.9 x 107112
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 95 x 107201
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 x 10712
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 x 107131
using MN1-3, NN
1.0 x 1073 3.9 x 1072 9.3 x 101014 3.6 x 1073145 9.1 x 1071112 0.0 0.0 0.0 6.0 x 101103 7.8 x 107330
0.0 0.0 9.0 x 1073215 49 x 1074120 7.8 x 1071125 0.0 0.0 0.0 0.0 8.2 x 101205
0.0 0.0 5.6 x 1075125 0.5 x 10~4412 8.1 x 1071225 0.0 0.0 0.0 0.0 3.6 x 1071225
0.0 0.0 1.2 x 1076132 59 x 1074 45 x 1074255 0.0 0.0 0.0 0.0 4.6 x 1071135
ely ey el ey
7.8 x 10791 1.0 x 10~107 9.8 x 10712 9.2 x 10~ 111
8.7 x 107108 3.5 x 107158 9.6 x 107319 3.2 x 107113
1.2 x 107228 1.0 x 107118 3.2 x 107319 1.3 x 10103
1.0 x 10~128 9.0 x 107128 1.2 x 107219 1.1 x 10712
respectively.
6.3 x 10—2001 3.6 x 101152 6.3 x 1073011 3.6 x 1071222
0.0 9.8 x 1020122 7.2 x 10~413 4.5 x 1074135
0.0 8.0 x 10750145 3.3 x 104873 1.2 x 104014
0.0 9.8 x 10750143 0.3 x 1074713 3.2 x 10~4781
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Table 6. Approximate roots of the f3(¢) utilising MN1-MN3 up-to 25 decimal places.

Roots Approximate Roots after Second Iteration Using Simultaneous Methods MN{-MNj3;

ggz) 3.9999999999999999999999862205 — 2.534958216275585934291378436 x 10~ x i

g(zz) — 0.9999999999999999999999893629 — 5.690633353809298633369220348 x 10720 x i

g(32) 1.9999999999999999999989781561 + 2.614467550760436593548580136 x 1020 x i

g(2> — 1.999999999999999999999930336 + 3.160564818685589784758770362 x 10723 x i

ggz) — 2.323214931157996872628855725 x 1021 + 2.0000000000000000000342 x i

géz) — 2.529298089824518863489277124 x 1022 — 1.999999999999999999999938556 x i

g(72) 1.023976376364266788722524957 x 10~2! + 3.000000000000000000005376510 x i

g(z) — 2.840865161134075189641229891 x 1072* — 2.999999999999999999999993380 x i

g§2> — 1.0000000000000000000000000011529 + 2.00000000000000000000000000280 X i

9(1%)) — 0.99999999999999999999999997808790 — 2.00000000000000000000000105176 X i

g(lzl) — 1.0000000000000000000000000003310 + 0.999999999999999999999999960241 X i

ggzz) — 1.00000000000000000000000000005614 — 1.0000000000000000000000001786 x i

Qg? 0.9999999999999999999998888888966375 + 0.99999999999999999999997438242 X i

gﬁ) 1.00000000000000000000000000004082 — 0.9999999999999999999999999976687 X i

Q(l? 2.00000000000000000000000000304411 + 1.000000000000000000000001584937 x i

‘5(1? 2.00000000000000000000000000050095 — 0.9999999999999999999999999538760 X i

g(27> 1.00000000000000000000000007480959 + 3.000000000000000000000012531548 x i

gi? 0.999999999999999999999999676240 — 3.000000000000000000000000000014860 X i

9(1%)) 6.7038343474826752003668885234 x 10~2 + 4.00000000000000000000005924627 x i

Q(zf)) 10.593133679422746292651200009402 — 3.19174226899999915825206220041498 X i

‘5(221) 1.00000000000000000000000000032127 — 5.51392157952973235574917078 x 10~ x i

Table 7. Parallel numerical scheme residual error comparison NN, MN;-MN3.
Method CPU-Time eiz) el? egz) eiz)

NN 0.235 31x107% 0.0 21 x 1074 0.0
MN; 0.201 0.0 0.0 0.0 0.0
MN; 0.211 0.0 0.0 0.0 0.0
MN; 0.191 0.0 0.0 0.0 0.0

Simultaneous finding of all multiple roots
NN 0.335 1.2 x 1071195 0.0 1.2 x 1071613 0.0
MN; 0.101 72 x 107214 12 x 1073801 12 % 1073305 52 x 1076662
MN, 0.121 52 x 1072100 42 x 1073710 32 x 1075211 6.2 x 1076653
MN; 0.311 9.2 x 1072100 72 % 1073601 1.9 x 107539 82 x 1076714

Table 8. Approximate roots of the f4(¢) utilising MN;-MN3 up-to 25 decimal places.

Approximate Roots after Second Iteration Using Simultaneous Methods MN1-MN3;

0.3000000000000000000000000000 + 0.6000000000000000000000000000 x i
0.1000000000000000000000000000 + 0.7000000000000000000000000000 x i
0.7000000000000000000000000000 + 0.5000000000000000000000000000 x i
0.3000000000000000000000000000 + 0.4000000000000000000000000000 x i
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Table 9. Parallel numerical scheme residual error comparison NN, MN;-MN3.

Method CPU-Time egz) egz) e?(’z) eiz) egz) eéz) e;Z)
NN 0.235 0.3 x 1078 3.0 x 10791 1.0x107%° 43 %107 50x1078 21 x 10712 2.1 x 10772
MN; 0.201 73x107101 32 x 107101 20x10710 13 %1071 34 x107%  6.0x10712 0.3 x 10710
MN, 0.211 1.7 x 107111 01 x 107100 12x 107101 55x107%25 76x10713 80x107112 93 x 107104
MN3 0.191 83 x107M  90x 107 21x107101  43x10715  3.0x1071%2 28x10712 83 x 107"

(2) (2) () () () (2) (2) ()
2.1 i810*82 2.5 §3<910*73 9.3 iuio—“ 3.0 i1110*77 2.1 ?210*73 1.3 :1130—112 3.0 ilﬁO*% 2.0 i1510*85
6.1x10714  70x10718 83 x1071  35x1071  22x107™ 93 x10°17  90x 1071 29 x10°1%
33x10718  58x10710  15x107M0 33 x1078 06 x107"° 63 x107° 09 x10712 50 x 10713
9.0x107120  76x10710 73 x1071™  6.0x107120 1.7 x1071° 73 x107121 44 x 10715 25 x 10717
e el eff
1.3 x 107 3.0 x 10°% 5.0 x 10~
2.3 x 10711 9.0 x 107102 0.1 x 1071
1.3 x 107115 5.8 x 107113 2.9 x 107208
5.3 x 10101 3.9 x 107114 8.0 x 10117
Table 10. Approximate roots of the f5(¢) utilising MN1-MNj3 up-to 25 decimal places.
Roots Approximate Roots after Second Iteration Using Simultaneous Methods MN1-MN3
g<12> 0.8603435385822107751310968108 + 1.854362078138018927197345307 x i
g<22> 0.8603435385824826826164634926 — 1.854362078137389759121145467 x i
gg” — 0.8603435385824826826191976484 + 1.854362078137389759116467203 X i
gff> — 0.8603435385824826826250491509 — 1.854362078137389758498169291 x i
g<52> 2.099515617155402337664929826 + 2.0018942089444809594275 x 10~2° x i
@ — 2.099515617155402337664930488 + 8.500261481816581859095 x 10~ x i
g§2> — 0.1153355754810685747732055498 — 0.9452308584818627592298044050 x i
gg) 5.735924944438839111033359624 + 9.9691958921656837672916427681 x i
gg2> 2.780333195217222311406266628 + 1.5314159752240276458048625411 x i
g%) 10.38458363502628061602412598 — 2.2689074595992585372659252860 X i
g§21> — 2.889237782026642801550622077 + 1.387876808887673226733098622 X i
gﬁ) — 2.889237274653490024449890492 — 1.387876796309858631439562289 X i
g@ 2.378876612988062257880708956 + 3.4667457639218525242487229114 x i
ggfg 2.378876612988074253739225478 — 3.4667457639218476882627822682 i
g@ — 2.378876612988074361358332472 + 3.466745763921847828159258028 X i
gizg — 2.378876615468194672405838207 — 3.466745742882904234182513076 X i
gg"y — 1.705508831120901418129885320 x 10750 + 3.1838193018332206021608 x i
g@ 2.684827765525257608577503573 x 1034 — 3.18381930183322060216087 x i
Table 11. Parallel numerical scheme residual error comparison NN, MN;-MN3.

Method CPU-Time egz) egz) gz) eiz) eéz) eéz) egz) eéz)
NN 3.547 1.0x10757 31x10% 84x10°5 66x10°2 11x10% 01x10° 31x10% 01x105
MN; 1.201 0.0 84x107% 84x107% 9.6x107%2 16x107% 01x107%2 31x107% 6.1x107¢
MN, 2.201 1.5x107%1  52x107% 55x107% 09x107% 01x10792 9.1x107% 6.1 x107% 7.1 x 10792
MN3 2.101 0.0 71x107%0 54 x107%* 0.6x107% 71x107%2 91x107% 3.8x10%2 81 x 1092

o o o =
35x 1074 4.1 x 10752 3.4 x107% 3.7 x 107%
9.5 x 1079 9.1 x 107 7.7 x 10790 0.7 x 10793
3.5 x 107% 8.1 x 1072 3.4 x 107% 9.1 x 107¢
1.0 x 107 4.8 x 1079 6.4 x 107%7 6.7 x 107¢7
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Table 12. Approximate roots of the f¢(¢) utilising MN1-MNj3 up-to 25 decimal places.
Roots Approximate Roots after Second Iteration Using Simultaneous Methods MN1-MN3.
g(12> 0.9999999999999625082889225593 + 5.230898364697391997065172835 x 1013 x i
g(22> — 1.000000000000000000437788933 — 6.025279497445305009774428506 x 1071 x i
9(32> 4.646633054497955014523803834 x 1023 — 1.000000000000000000000104279 x i
df) 7.070081680587045867351347555452430 + 1.896634372172127350402444677884 X i
g(52> 0.707106781188722682564395565555579 + 0.70710678111831121600988084789 X i
9(62) 0.707106781186547524204653788888888 — 0.707106708811865475234335246205 X i
g(72> — 0.707106781186225449342615220000005 + 0.70710678118305664052862413909 x i
géz) — 0.707106781186547522667534642222232 — 0.707106781122865475118767454190 X i
g(gz) 0.3078726620356213541889978222222356 + 2.57715246122258727612850281995 X i
5(1%)) 0.272083407184584274611022222616488 x 10~ — 1 + 3.017417711237066199457739396 x i
g(21> 0.999998299931370519781229455555571 + 1.999995421705299555855269774625 X i
9122) 0.9999999999999999966472269015554873 — 1.999999999999999999407695317157 x i

Table 13. Parallel numerical scheme residual error comparison NN, MN;-MN3.

Method ~CPU-Time e e el el e el el? ef”
NN 0.506 73x107%2 81x107% 40x107%* 11x10%® 3.0x10% 41x10% 10x103 50x1038
MN; 0.216 6.0x107° 99x1077 30x10%2 61x10% 20x10% 50x1038 12x10% 50x104
MN, 0.266 50x107% 98x10772 60x10% 81x107% 41x103¥ 41x10% 50x10% 3.0x10*
MNj; 0.259 35x1078 50x1077 44x10* 19x107% 00x1030 50x107%¥ 70x10% 40x10¥

Here, we solve some standard nonlinear polynomials arising in biomedical engineer-
ing application.

Application in Bio-engineering

Example 1: Large molecules known as ligands bind to cell surface receptors. Similar to
digestive enzymes, sensors are specialized proteins with unique binding attributes that often
perform a job when specific ligands are bound, such as transferring a ligand across a cell
membrane or activating a signal to turn on specific genes. The process where a ligand can
attach to many receptors at once because it has multiple binding sites is referred to as “cross-
linking” or “aggregating” numerous receptors. Hormones, antibody—antigen complexes, and
other extracellular signaling molecules act as ligands, causing receptors on the cell surface
to congregate. For the equilibrium binding of multivalent ligands to cell surface receptors,
Perelson [57] presented a model. In this concept, the multivalent ligand is presumed to be
available at v active sites for binding to receptors on the surfaces of suspended cells. By
coupling one of its v binding sites to a receptor on the cell surface, a ligand molecule can
bind to the surface of a cell in solution (see Figure 4). The orientation of the ligand, however,
may be able to restrict the variety of binding sites that can interact with a cell once a single
link has been created between the ligand and the cell receptor. A ligand may provide f total
binding locations for adhering to a cell surface. a ligand’s potential to attach to receptors on
the cell surface that have multiple identical binding regions.

The concentration of unbound receptors on the cell surface at equilibrium can be
calculated using the following equation:

LLg f-1
RR7 = RR¢y {1 + V(KKO) (14 KK;RReq) |,

where

v is the sum of all the binding sites on the component’s surface.

The entire number of binding locations that are accustomed to affixing to an individual
cell is f,

KK, Equilibrium constant for multifaceted linking (1/(# ligands/cell)),

LLy, Amount of agonist in fluid (M),
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KKp, The ligand-molecule binding in solution to cells dissociation constant in all three
directions (M),

RR,y, the balance quantity of liberated receptors that are on the outside of the cell (#
receptors/cell),

RR7, the whole amount of receptors on the surface of platelets.

Binding of a multivalent ligand in solution to monovalent receptors on a cell surface.

v legend blinding cite:

Multivalent Legend

\
d

Only fout of ¥ binding
sites are presented by a
ligand

Cell surface receptor

/

Cel

E xtraceliular space ) Intracellular spacs
Figure 4. Building of multi-valent legend in solution to univalent receptors on a cell surface.

In order to bind blood platelets cells, a plasma protein known as von Willebrand fac-
tor [57] engages in multiple receptor-ligand interactions. The following elements for the von
Willebrand factor platelet system are projected:

(i) v=18.00

(i) £=9.00

(i) KKy ="7.73x107°M,

(iv) KK =5.80 x 10~° cell per number of ligands
(v) LLyp =20x107°M

(vi) RRT = 10,688.00 number of receptor per cell

By replacing R.; with ¢ in a platelet, we want to find the equilibrium concentration
RR¢; of unbound or free receptors as:

A0 = |1+ v ) 0+ kRO - RRr =0,

Substituting values of v, f, KKp, KK, LLy , RR7 in f1(¢) and by simplifying we obtain
a nonlinear polynomial of degree 9.0 as:

2x107° 9-1
=¢[1+18( o—~= | (1+58x%x107° — 10688 =
f2(6) g{ + 8(7.73“0_5)( +5.8x107%) } 0688 = 0,
or
fo(g) = 5964127997 x 10 38¢” + 8.226383444 x 10~3¢® + 4.964196905 x 10~ 2¢” +

1.711792037 x 10~2¢® + 3.689206976 x 10~ '9¢> + 5.088561346 x 10~ "°¢* +
4.386690815 x 10~ 11¢3 4 2.160931436 x 10~ ¢c? + 1.000465718x — 10688.

we take the following initial Gaussed values:
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0 0 0
O~ 69696 — 173301, &) — —69696 + 17330, (g)3 = —45422 — 41931i, ¢4 = —45422 + 419311,

(0) . (0) . (0) (0) ,
¢s = —2235—42268i,c6 = —2235 1 422681, ¢ ; = 10470, gg = 22153 — 18201,

(0)
G9

(0)

22153 + 18201:.

For the nonlinear nonlinear problem f;(g), the numerical results of the iterative
schemes MN;-MN3 and NN are shown in Tables 3 and 4, respectively.

The simultaneous NN and MN; for solving f,(¢) exhibit fractal behavior, as seen
in Figure 5a,b. In comparison to solving fractional order polynomial equations, solving f»(¢)
with NN and MN; takes 0.016774 s and 0.0145 s, respectively. Furthermore, MN has a far
higher convergence rate than NN. In the complex plane, NN converges to 512,412 points
while MN; converges to 631,243 points out of a total of 640,000. Due to global convergence,
MN), and MNj3 exhibit the same fractal behavior as MN]j.

Rifz] Rrlz]

(@) Fractal-basin of attractions of NN (b) Fractal-basin of attractions of MN;
Figure 5. (a,b) shows fractal behavior of NN and MN for solving f»(g).

Example 2: [58] Standard polynomial of degree 10,000 with 21 multiple roots of multi-
plicities 600, 100, 100, 200, 200, 200, 200, 300, 300, 400, 400, 500, 500, 600, 600, 700, 700, 800,
800, 900, and 900, respectively.

Consider

f(0) = (6—4)% 0 —1)1P(c* —16)*(c? +9)*(¢? +16)*P (¢ + 26 +5)™(¢? + 26 +2)°
(gz _ zg + 2)700(€2 _ 4€ +5)800(g2 _ zg + 10)900,

with exact real and complex roots:

6 = 405 =F1 8,56, = £2,859 = 31,8y = T4,
Gz = —1£24,G,,,=-1%1¢,,, =10%1i—C,y =20+11G,, =1.0£3.00

The initial guessed values below were randomly selected for global convergence:
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(0) . (0) . (0 . (0 . (0 )

¢1 = 42+01i ¢op =—-12+01i, ¢3=22+4+01i, ¢4=-22-01; ¢5=02+21
(0) . (0) . (0) . (0 . (0 )
¢6 = 02431 g7 =02-31;, ¢g=-12+21, ¢9g=-12-21i, ¢ 1g=—-12-211.
(0) . (0 . (0) . (0) . (0) .
¢n = 12411, ¢p=-12-11i, ¢13=12+11i, ¢4 =12-11i, ¢15=22+1.1i
(0) . (0 . (0) . (0 () )

¢16 = 22-11i, 617 =12+31i, ¢13=12-31i, ¢ 19=02+41i, ¢y =12—-4.1:.

(0) )

¢o1 = 11+02

For distinct roots:

fS*(Q) — (Q _ 4)600((;2 _ 1)100((;4 _ 16)200((;2 + 9)300((;2 + 16)400((;2 + 2g + 5)500((;2 4 2(; + 2)600
(6 =26 +2)™(c? — 4¢ + 5)*°(¢? — 26 +10)™™.

Tables 5 and 6, shows numerical results of iterative schemes MN{-MN3 and NN
for nonlinear equation f3(g), f3«(¢), respectively.

The simultaneous NN and MN; for solving f3(¢) exhibit fractal behavior, as seen
in Figure 6a,b. In comparison to solving fractional order polynomial equations, solving f3(¢)
with NN and MN; takes 0.008774 s and 0.00135 s, respectively. Furthermore, MN; has a far
higher convergence rate than NN. In the complex plane, NN converges to 212,413 points
while MN; converges to 621,345 points out of a total of 640,000. Due to global convergence,
MN), and MNj3 exhibit the same fractal behavior as MN]j.

2
g 3
2
1
0
-1
-2
% ﬂ

05 1 15 2 45 4 05 0 05 1 15 2

0
Rifz] Rrlz]

2 45 4 05

(@) Fractal-basin of attractions of NN (b) Fractal-basin of attractions of MN;
Figure 6. (a,b) shows fractal behavior of NN and MN for solving f3(g).

Example 3: [58] Standard polynomial of degree 1000 with four multiple roots with
multiplicities 100, 200, 300, and 400, respectively.

Consider a problem of beam positioning, resulting a nonlinear polynomial equation
given as:

falg) = (¢ — (0.340.60))' (¢ — (0.1+0.71))*®(c — (0.7 4 0.51))*® (¢ — (0.3 + 0.41))*®. (35)

The exact roots of (35) are {, = 0.3+ 0.6,¢, = 0.1+0.7i, ¢, = 0.7 +0.5,¢, = 0.3 + 0.4i.
The initial estimates for f4(¢) are:

(0) . (0) () . (0 )
¢1 = 0.301+0.6017, ¢o = 0.100+0.7027, ¢ 3 = 0.702 + 0.498i, ¢ 4, = 0.289 + 0.400:

Fael€) = (¢ — (0.3 +0.61)) (c — (0.1 4+ 0.70)) (¢ — (0.7 + 050)) (¢ — (0.3 + 0.41)).

Tables 7 and 8, presents the computational outcomes of MN;—-MN3; and NN for
nonlinear equation f4(¢), f1.(g), respectively.
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(0)
1 =
(0)
G =
(0)
611 =
(0)
Gle =

. (0) (Y
1.14+21i, ¢p =11-21i, ¢

0
—32+1.9i, glz) =-32-19i, ¢

The simultaneous NN and MN]; for solving f4(g) exhibit fractal behavior, as seen
in Figure 7a,b. In comparison to solving fractional order polynomial equations, solving fi(g)
with NN and MN; takes 0.036774 s and 0.0245 s, respectively. Furthermore, MN has a far
higher convergence rate than NN. In the complex plane, NN converges to 610,115 points
while MN; converges to 637,017 points out of a total of 640,000. Due to global convergence,
MN; and MNj exhibit the same fractal behavior as MNj.

Example 4: [58] Standard polynomial of degree 18 with four multiple roots.

A nonlinear polynomial equation for a beam alignment problem is as follows:

f5(c) = ¢ 4126 4 268c' 4 278¢'% 4 347110 4 3246968 + 6209726 —
2270592¢* — 28303951¢? — 25704900. (36)

The exact roots of (36) are {1, = —3.06 +£1.2i, {34 = —2.4+£3.4i, (5= — 17,067 =
—0.6 2.7,
Ggo = £1.8i, 81011 = £0.91, G113 = —0.6 =271, §14 = 1.7, 81516 =24 £3.4, C1718 =

3.0+ 1.2i
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(@) Fractal-basin of attractions of NN (b) Fractal-basin of attractions of MN;
Figure 7. (a,b) shows fractal behavior of NN and MN] for solving f4(g).

The initial estimates for f5(¢) are:

(0) (0)

0
5= —11421i, ¢
(0) (0)

0
s=—11-21i, {5 =22+0.1i

0 0
214000, & = 02409, =02+ 110, o =31+19 & =32 19

(0 (0) (0)

0 0

(0)

0 0
—2.1-29i, g17 = 0.1 +3.1i, (g)lg = —0.1—29i.

Tables 9 and 10, shows numerical results of iterative schemes MN;-MN3 and NN
for nonlinear equation f5(g), respectively.

The simultaneous NN and MNj for solving f5(g) exhibit fractal behavior, as seen
in Figure 8a,b. In comparison to solving fractional order polynomial equations, solving f5(c)
with NN and MN; takes 0.041294 s and 0.0215445 s, respectively. Furthermore, MN; has a far
higher convergence rate than NN. In the complex plane, NN converges to 217,615 points
while MN; converges to 621,971 points out of a total of 640,000. Due to global convergence,
MN), and MNj exhibit the same fractal behavior as MNj.
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Figure 8. (a,b) shows fractal behavior of NN and MN; for solving f5(g).

Example 5: [58] Standard polynomial of degree 12 with two multiple roots with
multiplicity 2 and 8 distinct roots.
Consider the nonlinear polynomial equation:

folc) = ¢2—(245i)¢" — (1 —10i)¢!® + (12 — 25i)¢° — 30x® — ¢* + (2 4+ 5i)¢° +
(1 —10i)¢% — (12 — 25i)¢ + 30. (37)
The exact roots of (37) are 1, = @ + 41’, €34 = —72 + %i, Cs6=1%2i,
G78 = £i, 89 = 21,8,y = 3i,811,12 = £1.
The initial estimates for f4(¢) are:
(0) . (0) . (0 . (0 . (0 .
¢1 = 130+02i, ¢y =—-134+02i, ¢ 3=-030-1.20i, ¢ 4=—-030+1.20i{, ¢ 5=0.5+0.5],
(0) . (0) . () . () . (0) .
¢6 = 050-0.5i ¢7 =—-05+05i, ¢'g=-05-050{ ¢ g=02+22i, ¢ 19=0.20+2.30;,
(0) . (0) .
¢in = 1.3042.20i,¢1p = 1.3 —2.20i,

Tables 11 and 12, shows numerical results of iterative schemes MN;-MN3; and NN
for nonlinear equation fg(g), respectively.

The simultaneous NN and MN]; for solving f4(g) exhibit fractal behavior, as seen
in Figure 9a,b. In comparison to solving fractional order polynomial equations, solving fs(g)
with NN and MN; takes 0.0745321 s and 0.0349 s, respectively. Furthermore, MN; has a far
higher convergence rate than NN. In the complex plane, NN converges to 572,416 points
while MN; converges to 635,097 points out of a total of 640,000. Due to global convergence,
MN; and MNj3 exhibit the same fractal behavior as MNj .

Example 6. Model of Blood Rheology [59,60] Blood, a non-Newtonian fluid, is mod-
eled using the Casson Fluid. Based to the Casson fluid model, an elementary fluid, like
bloodstream, is going to move through a tube so that the gradient in velocity happens near
the wall and the center portion of the fluid goes as a lump with little deformation.

We developed the plug flow of Casson fluids [60] using the following nonlinear
polynomial equation, where flow rate reduction is measured by

B 16 4 14
G—1*7\/§+§Q*ﬁ€r (38)
or where reduction in flow rate is measured by G. Using G = 0.40 in (38), we have:

1

8 16
f7(c) = mgS — @(f — 0.05714285714¢* + ?gz — 3.624489796¢ + 0.36. (39)
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(@) Fractal-basin of attractions of of NN (b) Fractal-basin of attractions of of MN;
Figure 9. (a,b) shows fractal behavior of NN and MNj for solving fe(¢).

The simultaneous NN and MN; for solving f7(g) exhibit fractal behavior, as seen
in Figure 10a,b. In comparison to solving fractional order polynomial equations, solv-
ing f7(¢) with NN and MN;j takes 0.016774 s and 0.0145 s, respectively. Furthermore,
MN]j has a far higher convergence rate than NN. In the complex plane, NN converges
to 630,819 points while MN; converges to 639,514 points out of a total of 640,000. Due
to global convergence, MN, and MNj3 exhibit the same fractal behavior as MNj.

2

3
2
1
£ o
1
-2
45

) -3

2 45 - 05 o 05 1 15 2

Riz]

(@) Fractal-basin of attractions of NN  (b) Fractal-basin of attractions of MN;

3

2
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Figure 10. (a,b) shows fractal behavior of NN and MNj for solving f7(¢).

The exact roots of (38) are:

1 = 0.1046986515, {, = 3.822389235, (3 = 1.553919850 + 0.94041498991,
(4 = —1.238769105 + 3.408523568i, {5 = —2.278694688 + 1.987476450i
ls = —2.278694688 — 1.987476450i, (7 = —1.238769105 — 3.408523568,
s = 1.553919850 — 0.9404149899.

we take the following initial guesses:

0 0 0 0
&= 01, & =38 Cy=15+09i O =12+ 34

(0) () . (0) . (0 )
¢s = —22+419i, ¢ =—-22-19 g7 =—-12-34i, ¢ g=15+0.9i.

Table 13, shows numerical results of iterative schemes MN;-MN3 and NN for nonlin-
ear equation f7(g), respectively.

Figure 11a—f, shows the residual error graph of the simultaneous method MN; —MN3
and NN for polynomial equations used in examples 1-6, respectively.
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Figure 11. (a—f) shows the residual error graph of the simultaneous method MN;-MNj3 and NN

for polynomial equations used in examples 1-6, respectively.

5. Conclusions

Here, we have developed three families of simultaneous methods of convergence
order seventeenth for finding all the real, complex, distinct, and multiple roots of (1).
Fractal behavior from Figures 1-10 of simultaneous schemes is explored in detail, and it is
discovered that in terms of convergence divergence region, our newly created methods MN;—
MN3 converge to more points than NN methods while using less elapsed time. The fractal
behavior of simultaneous techniques clearly indicated that the newly developed methods
are more stable, consistent, and reliable than existing methods N1-N3 and NN for solving
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nonlinear complex engineering problems. The numerical results from Tables 1-13, and
Figure 11a—f, show that the newly developed technique MN;-MNj3 outperforms existing
method NN in terms of computational cost, efficiency, CPU-time, and residual errors.
In the future, we construct higher order efficient, optimal, and stable iterative methods
for finding simple as well as all distinct and multiple roots of (1).

In the future, we will develop and generalize higher-order simultaneous methods
for solving linear and nonlinear systems of equations. We may also explore the applications
of these results in other areas. For example, the dynamics nonlinear inventory management
system, numerical solution of fractional SIR epidemiological model, stability and optimal
control strategies for a novel epidemic model [61,62] of COVID-19.
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