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Abstract: This article aims to examine the nonlinear excitations in a coupled Hirota system described
by the fractal fractional order derivative. By using the Laplace transform with Adomian decom-
position (LADM), the numerical solution for the considered system is derived. It has been shown
that the suggested technique offers a systematic and effective method to solve complex nonlinear
systems. Employing the Banach contraction theorem, it is confirmed that the LADM leads to a con-
vergent solution. The numerical analysis of the solutions demonstrates the confinement of the carrier
wave and the presence of confined wave packets. The dispersion nonlinear parameter reduction
equally influences the wave amplitude and spatial width. The localized internal oscillations in the
solitary waves decreased the wave collapsing effect at comparatively small dispersion. Furthermore,
it is also shown that the amplitude of the solitary wave solution increases by reducing the fractal
derivative. It is evident that decreasing the order α modifies the nature of the solitary wave solutions
and marginally decreases the amplitude. The numerical and approximation solutions correspond
effectively for specific values of time (t). However, when the fractal or fractional derivative is set
to one by increasing time, the wave amplitude increases. The absolute error analysis between the
obtained series solutions and the accurate solutions are also presented.

Keywords: laplace transform; Adomian decomposition; Hirota equation; coupled Hirota system;
power law kernel; fractional fractal derivative

1. Introduction

In recent decades, due to the broad applications of soliton theory in physics, mathe-
matics, and other areas of engineering and applied sciences, the analysis of explicit accurate
solutions in the form of solitary wave solutions of evolution equations has played a signifi-
cant role [1–3]. In soliton theory, several analytical methods can be applied to calculate the
approximate solution to nonlinear partial differential equations [4–6]. To investigate fractal
fractional nonlinear coupled Hirota systems, we consider the Hirota equation [7]

∂ψ(x, t)
∂t

+ 3 δ|ψ(x, t)|2 ∂ψ(x, t)
∂x

+ γ
∂3ψ(x, t)

∂x3 = 0, t > 0, x ∈ [−∞, ∞], (1)

where the function ψ(x, t) is a complex-valued function, and δ, γ ∈ R+. The Hirota equa-
tion is a modified nonlinear Schrödinger equation (NLSE) that considers higher-order
dispersion and time-delay corrections to the cubic nonlinearity [8]. It can be observed as a
generalization for the NLS equation when the higher dispersion and time-delay changes are
considered, as well as complex generalization of the mKdV equation [9]. It is also known
as soliton equation because this usually has an exact solution where localized moving exci-
tations that preserve their shape in the evolution, similarly to the NLS soliton [10,11]. The
Hirota equation was initially studied to illustrate the ultra-short pulses experienced from
the self-steepening effect and high-order dispersion [8]. It has numerous applications, such
as localized wave structures, transmission of optical pulses in optical waveguide arrays,
rogue waves, solitary waves, and breathers [12,13]. It has also been widely studied for
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rational solitary and rogue wave solutions, interaction properties of complex modified
solitons, multi-solitons, dark-bright-rogue wave phenomena, and rogue wave pairs [14–17].
The Hirota equation has been analytically investigated using different methods containing
the Hamiltonian formalism, perturbation theory, Darboux transformation, sine–cosine,
and tangent methods [18–21]. The Hirota Equation (1) possess more than one parame-
ter solutions in the form solitons, analogous to NLS equation subjected to velocity and
amplitude as

ψ(x, t) = A sech[η(x − µt)]eik(x−ωt), (2)

where A = k
√

2γ/δ is the amplitude and µ = γ(η2 − 3k2) represents the wave speed.
The frequency of the phase is given by ω = γ(3η2 − k2), where γ represents nonlinearity
dispersion coefficients, η is the wave envelope’s width, and k is the propagation number.
By using assumption ψ = ϕ(x, t) + iφ(x, t), the Hirota equation can be transformed to
coupled Hirota system [22,23]

∂ϕ

∂t
+ 3δ

(
ϕ2 + φ2

)∂ϕ

∂x
+ γ

∂3ϕ

∂x3 = 0, (3)

∂φ

∂t
+ 3δ

(
ϕ2 + φ2

)∂φ

∂x
+ γ

∂3 φ

∂x3 = 0. (4)

It should be noted that converting the Hirota equation to a coupled Hirota system
allows for the study of growth or decay in the system (the real and imaginary parts of
the function ψ(x, t)) separately, leading to deeper insights into the solitary wave solutions.
Similar to Equation (1), the coupled Hirota system has also been investigated to describe
propagation of electromagnetic pulses in optical fibres by employing the inverse scattering
transform [24]. Several other interesting results have been examined for coupled Hirota
system, such as relation amongst dark–bright solitons, Lax pair, Painlevé analyses and
rogue waves solutions [25–27]. Here, we use the concept of fractional fractal derivative of
order (α, β) to study the coupled Hirota system

FFPDα, β
t ϕ + 3δ

(
ϕ2 + φ2

)∂ϕ

∂x
+ γ

∂3ϕ

∂x3 = 0, (5)

FFPDα, β
t φ + 3δ

(
ϕ2 + φ2

)∂φ

∂x
+ γ

∂3 φ

∂x3 = 0, (6)

where the classical time partial derivatives are replaced with fractional derivatives of the
functions of order α (0 < α ≤ 1) in the Caputo sense with power law kernel and fractal
derivative β (0 < β ≤ 1). The initial conditions considered herein are

ϕ(x, 0) = f (x), φ(x, 0) = g(x). (7)

The concept of fractional calculus (FC) originated from the challenge that even the
concept of a derivative of a classical order could potentially be expanded to stay authentic
when the order was not an integer. Following this exceptional theory, the subject of FC
caught great attention in mathematics and other areas of scientific research. Since then,
FC has been extensively used to examine various physical facts, such as electromagnetic,
viscoelastic, and damping theories, artificial intelligence, fluid dynamics, wave propagation
theories, chaotic dynamics, heat transfer analysis, appliances, control systems, and various
inherent algorithms [28–34].

In FC, the classical integrals and derivatives are expanded to fractional order as the
standard operators are inadequate for understanding many complex systems, because frac-
tional operators produce more realistic and precise results. Numerous fractional derivatives
have been derived with distinct kinds of kernels, such as Hilfer, Riemann–Liouville (RL),
Caputo, Grünwald, Caputo–Fabrizio, and Atangana–Baleanu derivatives [35,36]. Similarly,
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several novel kinds of fractional operators have proposed to link the ideas of Caputo and
other fractional operators [37,38].

In addition to the fractional-order operators, another new theory of differentiation
has been suggested, where the derivative is represented as the fractional order with fractal
dimension [39]. The fundamental concept is called fractal fractional integrals and deriva-
tives [40]. If the system under investigation is derivable, the fractal derivative becomes
βtβ−1, and the classical operator is regained when the fractal order reaches one [41]. In a
fractal derivative, the variable is ascended, corresponding to tα. This modified derivative
was proposed to model certain real-world physical systems for which conventional phys-
ical phenomena are not appropriate and cannot be applied to the non-integral means of
fractal dimension [42,43]. The theory of fractal fractional integrals and derivatives has been
extensively used in engineering applications (fluid motion, aquifer, and crystallization),
chaotic processes, and electronic networks [44,45]. Here, we will investigate the localized
excitations in a coupled Hirota system with time fractional derive in Caputo’s sense with
fractal dimension. The Laplace transform with Adomian decomposition is a very effective
analytical technique, and has been successfully applied to investigate numerous mathemat-
ical problems in classical as well as in fractional calculus. We will derive the series solution
of the considered system in a systematic manner using LADM.

The article is organized as follows: In Section 2, various fundamental definitions of
fractional calculus are included. In Section 3, the general series solution of the coupled
Hirota system with order (α, β) is calculated using LADM. The convergence analysis of
LADM is examined in Section 4. For confirmation of the obtained findings, a particular
example is studied in Section 5 with absolute error analysis. The systematic approximate
solutions are compared with numerical results with comprehensive discussions in Section 6.

2. Preliminaries

Here, we state fundamental definitions associated with fractal fractional calculus and
the Laplace and inverse Laplace transforms that will be applied in the next section.

Definition 1. Let ψ ∈ H1, and α ∈ (0, 1]; we define the Caputo’s derivative as

C
a Dα

t ψ(t) = a It
(n−α)

[
dn

dtn ψ(t)
]
=

1
Γ(p − α)

∫ t

a
(t − s)p−α−1ψ′(s) ds, p − 1 < α ≤ p.

Definition 2. Let ψ(t) be an open differentiable interval (a, b). If ψ(t) is fractal fractional
differentiable on (a, b), with fractal order β, then the fractal fractional derivative of order α in
Caputo sense with power law kernel is given by [40]

FFP
a Dα, β

t ψ(t) =
1

Γ(p − α)

∫ t

a
(t − s)p−α−1 d

dsβ
ψ(s)ds, < p − 1 < α ≤ p, < p − 1 < β ≤ p,

where dψ(s)
dsβ = limt→s

ψ(t)−ψ(s)
tβ−sβ . The above operator can also be represented as

FFP
a Dα, β

t ψ(t) =
1

Γ(p − α)

∫ t

a
(t − s)p−α−1 dγ

dsβ
ψ(s)ds, p − 1 < α, β,≤ p,

where dγψ(s)
dsβ = limt→s

ψγ(t)−ψγ(s)
tβ−sβ .

Definition 3. Let ψ(t) be a continuous function on the interval I, then the fractional integral of
ψ(t) with fractional order α can be described [40]

F
a Iα

t ψ(t) = α
∫ t

0
sα−1ψ(s)ds.
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From the above, the fractal fractional integral can be obtained as [40]

FFP
t Iα

t ψ(t) =
β

(α − 1)!

∫ t

0
sα−1(t − s)α−1ψ(s)ds.

Definition 4. For a function ψ(t), the Laplace transform is symbolized by L and is defined as [46]

L[ψ(t)] = F(s) =
∫ ∞

0
e−stψ(s)ds, t > 0.

Definition 5. If ψ(t) = L−1F(s), then the inverse Laplace transform L−1 is defined as [46]

L−1
(
F(s)

s

)
=
∫ t

0
ψ(t)dt.

Let ψ(t) be a continuous function; the fractal Laplace transform of order α can be written
as [40]

FLα
a ψ(t) =

∫ ∞

0
tα−1 e−atψ(t)dt.

Definition 6. For the function ψ(x, t), applying Laplace transform to Caputo fractional derivative,
we obtain

LC
a Dα

t ψ(x, t) = sαLψ(x, t)−
n−1

∑
k=0

sα−k−1ψkt(x, 0), n = [α] + 1.

3. General Solution of Fractal Fractional Coupled Hirota System

Here, we discuss properties of Laplace transform with order (α, β) and calculate
coupled the Hirota system with fractal fractional derivative of order α using the Laplace
Adomian decomposition method. In 1980, George Adomian established a novel approach
to solving nonlinear functional equations. Since then, this technique has been called
the Adomian decomposition method (ADM), and has been applied in numerous stud-
ies [47,48]. The ADM involves breaking down the equation under consideration into linear
and nonlinear parts and generates the series solution, whose terms are determined by a
recursive relation using the Adomian polynomials. Numerous fundamental studies on
various aspects of the extended version of Adomian’s decomposition method have been
performed [49–51]. Similarly, the extended version of the Laplace decomposition method
has been used for the solution of different PDEs [52].

Suppose ψ(t) ∈ H1 is a continuous function ∀ t ∈ [0, T], such that

FFPDα, β
t ψ(t) = F(x). (8)

Using the definition presented in [45], we can write

CDα
t ψ(t) = βtβ−1F(x). (9)

Implementing the Laplace transformation to Equation (9) yields

L[ψ(t)] =
ψ(0)

s
+

1
sα
L[βtβ−1F(x)],

ψ(t) = L−1
[

ψ(0)
s

+
1
sα
L(βtβ−1F(x))

]
, applying L−1 (10)

ψ(t) = ψ(0) +L−1
[

Γ(β + 1)
sα+β

]
F(x) = ψ(0) +

Γ(β + 1)tα+β−1

Γ(α + β)
F(x).

This is the Laplace transformation of fractal fractional derivative with power law
kernel.
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To obtain the general solution of system (5) and (6), one can apply definition of fractal
derivative, which gives

CDα
t ϕ = βtβ−1

[
− 3δϕ2ϕx − 3δφ2ϕx − γϕxxx

]
, (11)

CDα
t φ = βtβ−1

[
− 3δϕ2 φx − 3δφ2 φx − γφxxx

]
. (12)

Applying the Laplace transformation

L[CDα
t ϕ] = L

[
βtβ−1(−3δϕ2ϕx − 3δφ2ϕx − γϕxxx)

]
,

L[CDα
t φ] = L

[
βtβ−1(−3δϕ2 φx − 3δφ2 φx − γφxxx)

]
.

Using the definition above gives

L[ϕ] =
f (x)

s
+

1
sα
L
[

βtβ−1(−3δϕ2ϕx − 3δφ2ϕx − γϕxxx)
]
, (13)

L[φ] =
g(x)

s
+

1
sα
L
[

βtβ−1(−3δϕ2 φx − 3δφ2 φx − γφxxx)
]
. (14)

Now, consider ϕ and φ in the series form

ϕ =
∞

∑
n=0

ϕn, φ =
∞

∑
n=0

φn, (15)

the non-linear terms are decomposed as

ϕ2ϕx =
∞

∑
n=0

An, φ2ϕx =
∞

∑
n=0

Bn and ϕ2 φx =
∞

∑
n=0

Cn, φ2 φx =
∞

∑
n=0

Dn. (16)

The values of An, Bn Cn, and Dn are known as the Adomian polynomials [53], obtained
in the form

An =
1
n!

dn

dλn

[(
n

∑
k=0

λkϕ2
k

)(
n

∑
k=0

λkϕkx

)]
λ=0

, Bn =
1
n!

dn

dλn

[(
n

∑
k=0

λk φ2
k

)(
n

∑
k=0

λkϕkx

)]
λ=0

,

Cn =
1
n!

dn

dλn

[(
n

∑
k=0

λkϕ2
k

)(
n

∑
k=0

λk φkx

)]
λ=0

, Dn =
1
n!

dn

dλn

[(
n

∑
k=0

λk φ2
k

)(
n

∑
k=0

λk φkx

)]
λ=0

.

which gives

A0 = ϕ2
0 ϕ0x, A1 = ϕ2

0ϕ1x + 2ϕ0ϕ1ϕ0x, A2 = ϕ2
1ϕ0x + 2ϕ0ϕ2ϕ0x + 2ϕ0ϕ1ϕ1x + ϕ2

0ϕ2x, · · · An,

B0 = φ2
0 ϕ0x, B1 = φ2

0ϕ1x + 2φ0 φ1ϕ0x, B2 = φ2
1ϕ0x + 2φ0 φ2ϕ0x + 2φ0 φ1ϕ1x + φ2

0ϕ2x, · · · Bn,

C0 = ϕ2
0 φ0x, C1 = ϕ2

0 φ1x + 2ϕ0ϕ1 φ0x, C2 = ϕ2
1 φ0x + 2ϕ0ϕ2 φ0x + 2ϕ0ϕ1 φ1x + ϕ2

0 φ2x, · · ·Cn,

D0 = φ2
0 φ0x, D1 = φ2

0 φ1x + 2φ0 φ1 φ0x, D2 = φ2
1 φ0x + 2φ0 φ2 φ0x + 2φ0 φ1 φ1x + φ2

0 φ2x, · · · Dn.

Applying L−1 to Equations (13) and (14), we obtain

∞

∑
n=0

ϕn = f (x) +L−1

[
1
sα
L
{

βtβ−1

(
−3δ

∞

∑
n=0

An − 3δ
∞

∑
n=0

Bn − γ
∞

∑
n=0

ϕnxxx

)}]
, (17)

∞

∑
n=0

φn = g(x) +L−1

[
1
sα
L
{

βtβ−1

(
−3δ

∞

∑
n=0

Cn − 3δ
∞

∑
n=0

Dn − γ
∞

∑
n=0

φnxxx

)}]
. (18)

which give
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ϕ0 = f (x),

ϕ1 = L−1
[

1
sα
L
{

βtβ−1(−3δA0 − 3δB0 − γϕ0xxx)
}]

,

ϕ2 = L−1
[

1
sα
L
{

βtβ−1(−3δA1 − 3δB1 − γϕ1xxx)
}]

,

ϕ3 = L−1
[

1
sα
L
{

βtβ−1(−3δA2 − 3δB2 − γϕ2xxx)
}]

,

φ0 = g(x),

φ1 = L−1
[

1
sα
L
{

βtβ−1(−3δC0 − 3δD0 − γφ0xxx)
}]

,

φ2 = L−1
[

1
sα
L
{

βtβ−1(−3δC1 − 3δD1 − γφ1xxx)
}]

,

φ3 = L−1
[

1
sα
L
{

βtβ−1(−3δC2 − 3δD2 − γφ2xxx)
}]

,

The other terms can be calculated in the similar fashion.

4. Convergence Analysis

Here, the convergence of the approximate solution obtained through LADM is studied
employing the following theorem.

Theorem 1. Let X and Y be Banach spaces, and T : X → Y is a contraction. If ∃ c ∈ (0, 1] such
that ∀ x, y ∈ X,

||T(x)−T(y)|| ≤ c||x − y||, (19)

then by Banach contraction theorem, the approximate solutions (17) and (18) are convergent.

Proof. Let the series ϕ(x, t) = ∑∞
n=0 ϕn obtained by LADM in the form

ξ(n) = T(ξn−1), ξn−1 =
n−1

∑
i=1

xi, n ∈ N,

further, we consider that

T(κi) = xi ∈ Br(x) where Br(x) = {x0 : ||x − x0|| < r},

then we have

1. ξ(n) ∈ Br(x);
2. limn→∞ ξ(n) = x.

Proof. Mathematical induction can be applied to prove (1) and (2).
(1). for n = 1, we have

||T(κ1)−T(x)|| = ||κ1 − x|| ≤ c||x0 − x||.

Let the result be true for n − 1, then

||ξn−1 − x|| ≤ cn−1||x0 − x||,
||ξ(n)− x|| = ||T(ξn−1)−T(x)|| ≤ c||ξn−1 − x|| ≤ cn||x0 − x||,
||ξ(n)− x|| = ||T(ξn−1)−T(x)|| ≤ c||x0 − x|| ≤ cn||x0 − x||,
||ξ(n)− x|| ≤ cn||x0 − x|| ≤ cnr < r,
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which implies that ξ(n) ∈ Br(x).
(2). Since we have ||ξ(n)− x|| ≤ cn||x0 − x||, and

lim
n→∞

cn = 0, therefore lim
n→∞

||ξ(n)− x|| = 0, ⇒ lim
n→∞

ξ(n) = x. (20)

Similarly, the result can be proven for φ(x, t) = ∑∞
n=0 φn.

5. Applications

In this section, the numerical examples on the coupled Hirota system is studied with
detailed error analysis.

Example 1. Here, an example is provided that emphasizes the findings from the preceding section.
Consider Equations (5) and (6) with initial conditions

ϕ(x, 0) = Aη sech(ηx) cos(ωx), φ(x, 0) = Aη sech(ηx) sin(ωx). (21)

Plugging the estimation of the obtained Adomian polynomials and apply the proposed method
gives

ϕ0 = Aη sech(ηx) cos(ωx),

ϕ1 =
β!tα+β−1

(α + β − 1)!

[
− 3δ

{
ϕ2

0 + φ2
0

}∂ϕ0

∂x
− γ

{
∂3ϕ0

∂x3

}]
,

ϕ2 =
β!tα+β−1

(α + β − 1)!

[
− 3δ

{
ϕ2

0 + φ2
0

}∂ϕ1

∂x
− 3δ{2ϕ0ϕ1 + 2φ0 φ1}

∂ϕ0

∂x
− γ

∂3ϕ1

∂x3

]
,

φ0 = Aη sech(ηx) sin(ωx),

φ1 =
β!tα+β−1

(α + β − 1)!

[
− 3δ

{
ϕ2

0 + φ2
0

}∂φ0

∂x
− γt

{
∂3 φ0

∂x3

}]
,

φ2 =
β!tα+β−1

(α + β − 1)!

[
− 3δ

{
ϕ2

0 + φ2
0

}∂φ1

∂x
− 3δ{2ϕ0ϕ1 + 2φ0 φ1}

∂φ0

∂x
− γt2 ∂3 φ1

∂x3

]
,

... .

Further, inserting the values gives

ϕ1 =
β!tα+β−1 Aη

(α + β − 1)!

[
γω
(

3η2 − ω2
)

cosh3(ηx) sin(ωx)− γη
(

3ω2 − η2
)

sinh(ηx) cos(ωx) cosh2(ηx)

+3ω η2
(

A2δ − 2γ
)

sin(ωx) cosh(ηx) + 3η3
(

A2δ − 2γ
)

sinh(ηx) cos(ωx)
]
sech4(ηx),

φ1 =
β!tα+β−1 Aη

(α + β − 1)!

[
γω
(

w2 − 3η2
)

cos(ωx) cosh3(ηx)− ηγ
(

3w2 − η2
)

sin(ωx) sinh(ηx) cosh2(ηx)

−3ω η2
(

A2δ cos(ωx) sin2(ωx)− A2δ sin3(ωx)− 2γ cos(ωx)
)

cosh(ηx)

+3η3 sinh(ηx) sin(ωx)
(

A2δ cos(ωx) sin(ωx) + A2δ sin2(ωx)− 2γ
)]

sech4(ηx).

In a similar way, other values can be obtained. The complete result can be expressed as

ϕ(x, t) = ϕ0 + ϕ1 + ϕ2 + · · · , (22)

φ(x, t) = φ0 + φ1 + φ2 + · · · . (23)

Equations (22) and (23) combined gives the final solution

ψ(x, t) =
∞

∑
n=0

[
ϕn(x, t) + i φn(x, t)

]
= ϕ(x, t) + i φ(x, t). (24)
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Here, the coupled Hirota system with order (α, β) in the Caputo’s sense with power
law kernel is calculated via the combination of Adomian decomposition and Laplace
transform. To demonstrate the solutions, a specific illustration is considered and obtained
the solutions in the form of a series. The convergence of the suggested method also
is examined.

Absolute Error Analysis

The error analysis among the exact solutions (2) against solutions (22) and (23) is
provided in the table below.

From Table 1, it follows that the absolute error between accurate and approximately
obtained solutions of the Hirota equation reduces when spatial variable increases for partic-
ular value of time (t). It is observed that combining in iterations reduces the absolute error.

Table 1. The analyses are performed for α = β = η = γ = 1, δ = 0.25, a = 1.3 for Example 1.

x Time (t) Exact (Re(ψ)) ϕ (Equation (22)) | Exact−ϕ | Exact (Im(ψ)) φ (Equation (23)) | Exact−φ |
−4 0.01 0.0522 0.0558 0.0037 0.0944 0.0923 0.0021
−3 −0.2089 −0.2029 0.0060 0.2048 0.2108 0.0060
−2 −0.6767 −0.6842 0.0075 −0.3916 −0.3786 0.0130
−1 −0.2089 −0.2029 0.0060 0.2048 0.2108 0.0060
0 −0.6767 −0.6842 0.0075 −0.3916 −0.3786 0.0130
1 0.4745 0.4578 0.0167 −1.8295 −1.8349 0.0054
2′ 2.8257 2.8284 0.0028 −0.0481 −0.0476 0.0006
3 0.5043 0.4875 0.0168 1.7033 1.7071 0.0037
4 −0.6130 −0.6195 0.0065 0.3831 0.3706 0.0125
−4 0.05 0.0688 0.0705 0.0017 0.1067 0.1037 0.0030
−3 −0.2286 −0.2222 0.0065 0.2569 0.2570 0.0001
−2 −0.8197 −0.8137 0.0061 −0.4025 −0.3947 0.0078
−1 0.3913 0.3984 0.0071 −2.0833 −2.0905 0.0072
0 2.7608 2.8284 0.0676 −0.2357 −0.2379 0.0022
1 0.5428 0.5469 0.0041 1.4599 1.4515 0.0084
2 −0.4998 −0.4900 0.0098 0.3619 0.3545 0.0074
3 −0.1793 −0.1739 0.0054 −0.1430 −0.1415 0.0016
4 0.0331 0.0338 0.0007 −0.0778 −0.0753 0.0024
−4 0.1 0.0951 0.0888 0.0063 0.1231 0.1178 0.0053
−3 −0.2520 −0.2463 0.0057 0.3370 0.3148 0.0221
−2 −1.0292 −0.9755 0.0537 −0.4007 −0.4148 0.0140
−1 0.2403 0.3241 0.0838 −2.3828 −2.4100 0.0272
0 2.5716 2.8284 0.2569 −0.4422 −0.4757 0.0335
1 0.5579 0.6212 0.0632 1.1818 1.1320 0.0498
2 −0.3827 −0.3282 0.0546 0.3302 0.3344 0.0042
3 −0.1558 −0.1498 0.0060 −0.1039 −0.0837 0.0202
4 0.0215 0.0155 0.0060 −0.0655 −0.0612 0.0044

6. Results and Discussion

For numerical demonstration of the consistent nonlinear configurations connected
by Equations (2) and (24), the nondimensional variables are considered as: γ = 1, δ = 1,
η = 0.2 and ω = 0.5. It is worth mentioning that the dispersion (nonlinearity) effect γ(δ)
originates from the oscillation steepening (spreading); η represents the wavenumber and
the frequency; and ω illustrates the nonlinear variations (oscillations) of the wave packets,
specified by Equations (5) and (6).

The numerical solution (24), together with the absolute value of the exact solution (2),
are displayed versus the spatial variable x by the dashed and solid curves, as shown in
Figure 1a. A pulse-shaped wave profile results from the wave packet’s internal oscillations
dispersing. The comparison of both curves shows the confirmation of numerical solution.
The three-dimensional description to numerical solution (24) is illustrated in Figure 1b
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against the temporal and spatial variables at δ = 0.25, γ = 1, and η = 1. It reveals that
solitary potentials are spatially localized, keeping a stable amplitude for a short time.

The solid curve in left panel of Figure 2 illustrates the real part of Equation (2) versus
10 ≤ x ≤ −10 at time (t) = 0.1. The dashed curved line signifies the real function of the
solution (22) for Equation (24) attained by the proposed method (LADM). One can see that
the numerical solution accurately meets the obtained systematic approximation. In the right
panel of Figure 2, the imaginary value of Equation (2) is compared with the numerical result
obtained in Equation (23) versus 10 ≤ x ≤ −10. It shows the excitations of perturbations,
keeping the carrier wave, and as a result establishes a wave packet. The surface plots of
analytical solutions (22) and (23) are depicted in Figure 3. One can see that the internal
fluctuations of the waves become constant and sequentially localize the solitary wave. It is
important to note that the soliton excitations effect caused by a stability of steepening and
the spreading impacts of the nonlinear terms. The nonlinear wave steepening influences
the wave breaking for relatively insignificant wave dispersion.
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Figure 1. (a) Comparison between exact versus approximate solutions (2)/(24) for −6 ≤ x ≤ 6.
(b) The surface plot of approximate solution (24).
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Figure 2. (a) The real value representing accurate solution Re(ψ) versus numerical solution ϕ from
Equations (2)/(22), are depicted versus x (b) The imaginary value representing accurate solution
Im(ψ)/numerical solution φ from Equations (2)/(23) are depicted versus x.

Figure 4 illustrates the influence of the fractal variable β by fixing fractional variable α
for time (t = 0.1) for obtained solutions ϕ and φ. Similarly, the influence of the variable α
with fixed value of β for obtained solutions ϕ and φ is shown in Figure 5. In conclusion, it
is found that decreasing the fractal derivative β causes the amplitude to increase. Similarly,
reducing the fractional order α modifies the shape of the solitonic solution and reduces
its amplitude.
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Figure 3. The wave profiles of analytical solutions (22) and (23) versus spatial and temporal variables.
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Figure 4. The influence of stable fractional order α with variation in fractal variable β with time
(t = 0.1) for obtained solutions ϕ and φ.
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Figure 5. The influence of stable fractal order β with variation in fractional order α for the obtained
solutions ϕ and φ at time (t).

Figures 6 and 7 show the behaviour of the solutions (22) and (23) with various values
of α and β for particular value of the spatial variables (x = 1) versus time (t). It is noted
that the solitary waves are in quite good agreement for comparatively particular rate of
time (t). It is also found that, for α = β = 1, increasing time (t) rapidly increases the wave
propagation. Figure 8 constitutes the surface plots of the absolute error of the solutions
obtained by LADM and accurate solutions for ϕ and φ for α = β = 1, respectively.
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Figure 6. The conduct of the functions ϕ(x, t) and φ(x, t) for distinct estimates of β keeping α stable
versus time (t).

0 2 4 6 8 10

Time(t)

0

10

20

30

40

50

60

70

(x
,t
)

=1
=1

=0.9

=0.8

0 2 4 6 8 10

Time(t)

0

5

10

15

20

25

30

35

40

45

50

=1=1

=0.9

=0.8

Figure 7. The behaviour of ϕ(x, t) (Equation (22)) and φ(x, t) (Equation (23)) for uneven values of α

by keeping β stable versus time (t).
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Figure 8. Plot for error analysis reported in Table 1.

7. Conclusions

The coupled nonlinear system was investigated analytically and numerically with
fractal fractional derivative with power law kernel. The suggested method (LADM) is ap-
plied and calculated the general series solution. The convergence analysis is also examined.
For validation, a particular example is considered, and the obtained results are competed
with the numerical simulation with physical interpretations. The confinement of the carrier
wave and the presence of confined wave packets are observed from the numerical analysis.
It is observed that the dispersion nonlinear parameter reduction equivalently influenced
the wave amplitude and spatial width. It is revealed that the amplitude of the solitary
wave solution increases by decreasing the fractal dimension. It is also observed that de-
creasing the fractional order α reduces the nature of the solitary wave solutions and slightly
decreases the amplitude. The numerical and approximation solutions resemble effectively
for specific values of time (t). However, when the fractal or fractional derivative reaches
its maximum value by increasing time, the wave amplitude increases. An error analysis is
performed between the obtained series solutions versus the accurate solution. It is found
that the error between the exact and approximation solutions is minimized for a sufficiently
small value of time (t).
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As a future work, it will be interesting to study the fractal fractional Hirota equation
and coupled Hirota equations with variable coefficients for high-order solitary wave solu-
tion, rogue wave solution and dark–bright solutions using the Mellin transform, Chebyshev
collocation scheme and Finite difference method reported in [54,55].
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