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Abstract: This study delves into the convergence of operators and the viscoelastic properties of fractal
ladder and tree structures. It proves the convergence of fractal stiffness operators through operator
algebra, revealing a fundamental connection between operator sequence limits and fractal operator
algebraic equations. Our findings demonstrate that, as the hierarchical levels of these structures
increase, their viscoelastic responses increasingly align with the fractional viscoelastic behavior
observed in infinite-level fractal structures. We explore the similarity in creep and relaxation behaviors
between fractal ladders and trees, emphasizing the emergence of ultra-long characteristic times in
steady-state creep and pronounced tailing effects in relaxation curves. This research provides novel
insights into the design of fractional-order viscoelastic structures, presenting significant implications
for materials science and mechanical engineering.
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1. Introduction

This paper delves into the viscoelastic mechanics of fractal structures, prompted
by the growing use of polymers [1–3], rubber [4], hydrogels [5], biological tissues [6],
and composite materials [7]. These advancements have spurred deeper analysis of these
materials’ mechanical properties and the evolution of viscoelastic mechanical theories.

Kelvin’s mid-19th-century discovery of zinc’s viscoelastic properties marked the be-
ginning of viscoelastic theory [8]. Maxwell’s subsequent introduction of viscosity for all
bodies [9], along with the efforts of Meyer [10] and Boltzmann [11], laid the foundations of
linear viscoelasticity. The early 20th century saw further advancements by Volterra [12],
who developed a mathematical theory for anisotropic solids, propelling viscoelastic me-
chanics forward.

Viscoelastic materials are commonly divided into two broad categories: linear and
nonlinear. Linear viscoelastic materials exhibit a combination of elastic and ideal viscous
behaviors, acting as an intermediate state between the elastic Hookean solid and the ideal
viscous Newtonian fluid [13]. In these materials, the relationship between stress and
strain changes over time, yet the stress–strain relationship remains linear at any given
moment. In contrast, the mechanical behavior of nonlinear viscoelastic materials is much
more complex, encompassing nonlinear elasticity, non-Newtonian fluid behavior, or a
combination of both. Since the mid-20th century, there has been rapid progress in the
development of constitutive theories and rheology for nonlinear viscoelastic materials [14].

The complexity of nonlinear viscoelastic behavior led researchers to propose self-similar
viscoelastic models, comprising infinite elements [15], such as Schiessel et al. [16,17] and
Heymans et al. [18,19]. In analyzing these models, two main approaches are predominantly
used: one involves studying the complex modulus of the model within the complex do-
main [18,19], and the other establishes stress–strain relationships at each node, solving them
with the help of matrix operations [20]. Both methods, while computationally intensive, often
do not directly convey structural information. Recently, scholars introduced the theories of
operational calculus and operator algebra, achieving succinct and direct results [21].
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Nevertheless, prior studies [13,21–26] have proceeded under the unverified assump-
tion that the physical fractal entities under investigation exhibit self-similarity throughout
their structure, thus guiding the computation of the overall response through the formula-
tion of stiffness operator algebraic equations. Such dependence on fractal-based reasoning,
however, lacks theoretical validation of its accuracy. To enhance and refine this methodol-
ogy, the present paper leverages the operational calculus and operator algebra theories to
rigorously demonstrate its suitability.

Moreover, the nascent stage of operator algebra theory previously left researchers
unable to fully interpret operator expression outcomes, compelling them to rely on approx-
imation techniques, such as asymptotic expansions in Ref. [23], for their research. We have
advanced the theories of operational calculus and operator algebra, integrating them with
integral transforms to devise the operator kernel function (OKF) method [27]. This ap-
proach has allowed us to revisit fractional viscoelastic models, develop algebraic equations
for stiffness and compliance operators for self-similar fractal structures, and finally derive
functional expressions.

By comparing the OKF with Boltzmann’s superposition principle, we have established
a link between the kernel function and quasi-static behavior, i.e., the relaxation function
and the creep function, thus offering new insights into the viscoelastic behavior of fractal
structures and highlighting the significant potential of fractal operators in simplifying the
computational complexity associated with analyzing viscoelastic materials.

The organization of this paper is as follows: Section 2 utilizes operator algebra to
prove the convergence of operators in fractal trees and ladders. Section 3 delineates
the transformational relationships between fractal operators and the creep function or the
relaxation function, highlighting the differences that set operator theory apart from classical
viscoelasticity. Section 4 explores the discretization of continuous media, illustrating
the standard approach to resolving fractal stiffness operators. Through this structured
exposition, we bridge the gap between the fractal mechanics and conventional viscoelastic
principles, offering a holistic framework that enriches our grasp and application of fractal
operator theory within materials science.

2. Convergence Analysis of Viscoelastic Fractal Operators
2.1. Stiffness Operator Method and Compliance Operator Method

Linear viscoelastic materials, representing synergy between elasticity and perfect
viscosity, serve as a transitional phase bridging the gap between the elastic behavior of
Hookean solids and the ideal viscosity of Newtonian fluids, with several classic viscoelastic
models illustrated in Figure 1.

Maxwell

Eh

(a)
Kelvin-Voigt

E

h

(b) (c)

1E
2E

h
General Kelvin-Voigt

Figure 1. Some typical viscoelastic models. (a) The Maxwell model. (b) The Kelvin–Voigt model.
(c) The General Kelvin–Voigt (GKV) model.

Establishing a structure’s total constitutive relationship demands the amalgamation of
stress-based equilibrium equations, strain-based compatibility equations, and the distinct
constitutive relations for each element. The methodology for solving this comprehensive
set of differential equations to ascertain the constitutive equation in a unidimensional
framework is elaborated upon in Appendix A.

This method is viable for viscoelastic models constituted by a finite ensemble of
elements. Nonetheless, with an increase in the number of elements, there is a proportional
rise in the number of unknowns and equations, consequently amplifying computational
complexity. In scenarios involving models with an infinite array of elements, the infinite
count of unknowns renders this computational strategy untenable.
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Hu et al. [13] pioneered the application of operator algebra to non-Newtonian fluid
dynamics, utilizing force–electricity analogies to elucidate the stress–strain relationships
inherent in viscoelastic materials. This innovative methodology has since been adopted by
various researchers to explore a wide range of topics, including the viscoelastic properties
of ligaments [22], the spiking and propagation of neural electrical signals [23], the complex
dynamics of blood flow within the infinite elastic cavity model [25], and the intricate
mechanical behaviors of bone [26]. Herein, we offer a concise review of this method.

Leveraging the concept of the force–electricity analogy, the integration of two mechani-
cal elements in series results in a combined stiffness analogous to the parallel configuration
of electrical resistors within a circuit. Similarly, their cumulative compliance corresponds
to the series arrangement of resistors. Conversely, the parallel coupling of mechanical
elements yields a composite stiffness akin to resistors in series, whereas their collective com-
pliance mirrors the parallel arrangement of resistors. This correlation is visually depicted
and clarified in Figure 2.
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=
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Figure 2. Schematic of the force–electricity analogy. (a) The stiffness interaction among mechanically
series-connected elements is similar to the behavior of electrical resistors in a parallel configuration;
(b) conversely, the stiffness of mechanically parallel-connected elements corresponds to electrical
resistors arranged in series.

In the subsequent sections, we will adopt an operator-based framework where stiffness
is expressed through operators, termed the stiffness operator method (SOM), and compli-
ance is articulated in a similar manner, denoted as the compliance operator method (COM).
This paper primarily focuses on thoroughly exploring and elucidating the stiffness operator
methodology.

This study explores the viscoelastic behavior of models comprising energy-storing
components, symbolized by springs, and energy-dissipating components illustrated by
dashpots, as demonstrated in Figure 3. The stiffness operators for the springs T1 and for
the dashpots T2 are represented as

T1 = E, T2 = ηp. (1)

where p = d
dt denotes the Heaviside operator, E denotes the elastic module of the spring,

and η denotes the coefficient of viscosity.

Elastic Element

E

(a) (b)

h

Dashpot Element

1 E=T 2 h=T p

Figure 3. The stiffness operators of (a) elastic element and (b) dashpot element.

Utilizing this method enables the swift calculation of the stiffness operator for the
Maxwell model as follows:

T Maxwell =
Eηp

E + ηp
. (2)

The stiffness operator for the Kelvin–Voigt model is defined as

TKV = E + ηp. (3)
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Similarly, the stiffness operator for the GKV model is determined as

TGKV =
(E1 + ηp)E2

E1 + E2 + ηp
. (4)

Appendix A provides a guide to employing stiffness operators for determining the
functional relationship between stress and strain in these models.

2.2. Algebraic Equations of Stiffness Operators for Fractal Cells

This section revisits the application of the SOM to fractal cells, as depicted in Figure 4.
The figure demonstrate that a fractal tree or ladder, viewed in its entirety, matches a single
fractal cell (as depicted on the left-hand side in Figure 4a,b); similarly, these structures can
also be equated to a fractal element (as shown on the right-hand side in Figure 4a,b). Utiliz-
ing this equivalence, algebraic equations for stiffness operators are formulated. Solving
these equations yields precise operator expressions for both fractal ladders and trees, thus
providing a structured approach for analyzing their mechanical properties.

(a) (b)

Figure 4. Schematic diagram of fractal structure cells. (a) Fractal ladder structure. (b) Fractal
tree structure.

For the fractal ladder structure, see Figure 4a; based on the equivalence of compliance,
we have

1
T

=
1
E
+

1
T + ηp

. (5)

In Equation (5), the left side represents the compliance operator of the fractal element,
while the right side corresponds to the compliance operator of the fractal cell. Equation (5)
forms a quadratic algebraic equation of operators. Solving Equation (5) and considering
the condition for positive stiffness [24,28–30], we obtain the operator for the fractal ladder:

T =

√
(ηp)2

4
+ Eηp − ηp

2
. (6)

For the fractal tree structure, see Figure 4b; based on the equivalence of stiffness,
we have

T =
ET

T + E
+

ηpT
T + ηp

, (7)

In Equation (7), the left side represents the stiffness operator of the fractal element,
while the right side corresponds to the stiffness operator of the fractal cell. Equation (7)
is a quadratic algebraic equation of operators. Solving Equation (7) and considering the
condition for positive stiffness [24,30] yields the operator for the fractal tree:

T =
√

Eηp. (8)

Remark 1. From a mathematical perspective, both Equations (5) and (7) are expected to have two
radical results [28–30]. Indeed, earlier research by Yin et al. [24] has shown that an nth-order
operator algebra equation should have at least n solutions in more general circumstances. However,
for the specific issue considered in this paper, the relationship between stress and strain is represented
as σ(t) = Tε(t), indicating that an increase in positive strain applied to the structure should cause
increased stress in the same direction. Given that the action of operators is realized through the
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convolution of the operator kernel function with the input, it necessitates that the structure’s kernel
function be positive, which also implies that the stiffness operator must be positive. Therefore, only
the positive roots of Equations (6) and (8) have been retained.

This section delves deeper into the operator expressions for fractal ladders and trees,
with a focus on Equations (6) and (8). We unravel how these structures respond to a given
stimulus, revealing a fundamental similarity in their behavior: both are characterized
by quadratic radical operators, underscoring their non-rational nature. Yet, a striking
divergence emerges in their complexity. The operator for the fractal tree is remarkably
straightforward, a reflection of its symmetrical topology. In contrast, the operator for the
fractal ladder exhibits greater complexity due to the disruption of this symmetry. This
contrast not only highlights the distinctive architectural influences on their mechanical
responses but also enriches our understanding of their intrinsic properties, offering a
nuanced perspective on the dynamics of fractal-based structures.

2.3. The Logical Foundation of the Equivalence Postulate

In the preceding analysis, an implicit assumption of equivalence was introduced
such that

fractal elements ≈ fractal trees or ladder ≈ fractal cells.

This perception, more intuitive than deductive, lays the groundwork for formulating
algebraic equations specific to fractal operators. Closer scrutiny of these equations unveils
an underlying presumption: the existence of stiffness operators for fractal ladders and trees.
Our approach progresses by first positing the existence of fractal operators, then using this
equivalence to derive the relevant algebraic equations, and finally solving these equations
to construct the fractal operators. This methodology combines intuitive reasoning with
analytical rigor to unravel the intricacies of fractal mechanics.

While this approach is standard for structures with a finite hierarchy, the premise
becomes less clear when dealing with fractal structures of infinite levels. Appendix B
explores the generalized Maxwell model, which is derived by arranging infinitely many
Maxwell models in parallel. This approach results in paradoxes, rendering the model
unsolvable. Hence, this indicates that methodologies effective for finite structures may not
extend straightforwardly to infinite ones, highlighting the need for a logical and robust
theoretical basis for their existence.

Our investigation primarily concentrates on two pivotal structures: fractal trees and
fractal ladders. The former embody symmetric fractal topology, whereas the latter illustrate
a fractal topology characterized by disrupted symmetry. This distinction not only informs
our understanding of fractal mechanics but also enriches our comprehension of the diversity
within fractal structures.

2.4. Fractal Ladder

The basic unit of the fractal ladder structure is the Maxwell element, which consists
of a spring and a dashpot connected as shown in Figure 5. Due to the entire topology
presenting a ladder-like configuration, when the number of structural levels approaches
infinity, a fractal topology is formed; hence, the term ’fractal ladder’ is used. The fractal
ladder is not a traditional geometric fractal exhibiting self-similarity but rather a self-similar
physical fractal composed of identical elements.

n=1 n=2 n=ꝏ

(a) (b) (c) (d)

Fractal Ladder

Figure 5. Schematic diagram of fractal ladder structures from level 1 and level 2 to infinite level.
(a–c) The first, the second and the infinite level of fractal ladder. (d) Fractal ladder cell.
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In Figure 5, according to operator algebra, the stiffness operator of adjacent nth level
structures and (n + 1)th level structures satisfies the following recursive relationship:

1
Tn + ηp

+
1
E
=

1
Tn+1

. (9)

Upon simplification, we can obtain

Tn+1 =
(Tn + ηp)E
Tn + ηp + E

. (10)

Similar to the fractal tree structure, we will now prove that the sequence of operators
constituting the fractal ladder structure converges to a limit.

Proof. The stiffness operators for the first- and second-level structures are, respectively,
represented as

T1 =
ηEp

ηp + E
, T2 =

Eηp(2E + pη)

E2 + 3Eηp + η2 p2 . (11)

Equation (11) can be derived to yield

T2 − T1 =
E3ηp

(E + ηp)(E2 + 3Eηp + η2 p2)
> 0. (12)

We thus proved that T2 > T1. Assuming Tn > Tn−1, we next prove that Tn+1 > Tn. Let
the function f (x) be

f (x) =
(x + ηp)E
x + ηp + E

= E − E2

x + ηp + E
. (13)

Differentiating Equation (13) with respect to x yields

f ′(x) =
E2

(E + x + ηp)2 > 0. (14)

Therefore, the function is monotonically increasing, implying(x2 − x1)[ f (x2)− f (x1)] > 0.
Given that Tn > Tn−1, it follows that

f (Tn) > f (Tn−1). (15)

Combining Equations (10), (13) and (15), we arrive at

Tn+1 > Tn. (16)

Note that the fractal ladder, formed by connecting a spring on the outermost side
in series with other structures, inherently has an equivalent stiffness lower than that of a
single spring. This proposition’s validity is further supported by Equation (13):

f (x) = E − E2

x + ηp + E
< E. (17)

Therefore, the sequence of stiffness operators for the fractal ladder structure is a
monotonically increasing and bounded sequence of operators. Consequently, this sequence
of operators must have a limit, and lim

n→∞
Tn+1 = lim

n→∞
Tn = T .

Remark 2. Mikusiński rigorously defined the concept of operator sequence convergence in Ref. [30]:
If there exists T̃ ̸= 0 such that the sequence of operators {Tn/T̃} has a uniformly convergent
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sequence of kernel functions, then the sequence of operators {Tn} is said to converge. Furthermore,
it is denoted by lim

n→∞
Tn = T̃ lim

n→∞
Tn/T̃. In fact, the above proof process can be viewed as setting

T̃ = I, where I represents the identity operator.

Taking the limit of both sides of Equation (9) yields the fractal operator algebraic
Equation (5). As mentioned previously, this is a quadratic algebraic equation for the fractal
operator, with a radical solution (see Equation (6)). Clearly, for the fractal ladder, the fractal
operator is of a non-rational type. Its non-rationality still stems from the infinity of the
fractal ladder’s structural levels.

It is verifiable that a finite-level self-similar ladder structure, once the number of
structural levels exceeds three, can be replaced by an infinite-level self-similar fractal ladder.
Therefore, the use of fractal operators enables not only the attainment of concise and direct
results but also ensures sufficient accuracy within the characteristic time.

2.5. Fractal Tree

Figure 6 illustrates the generative process of a fractal tree, depicting the evolution from
a finite-level structure to an infinite-level structure. According to the operator stiffness
method, the stiffness operator of the nth level structure is related to that of the (n + 1)th
level structure through the following recursive relation:

Tn+1 =
ETn

Tn + E
+

ηpTn

Tn + ηp
. (18)

n=1 n=2 n=ꝏ

...

(a) (b) (c) (d)

Fractal Tree

Figure 6. Schematic diagram of fractal tree structures from level 1 and level 2 to infinite level.
(a–c) The first, the second and the infinite level of fractal tree. (d) Fractal tree cell.

Given that the stiffness operator and the compliance operator are inversely related,
taking the reciprocal of both sides of Equation (18) yields the recursive relation for the
compliance operator:

1
Tn+1

=
(Tn + E)(Tn + ηp)

ETn(Tn + ηp) + ηpTn(Tn + E)
. (19)

Leveraging the principle of monotonic boundedness for operator sequences, we prove
the existence of a limit for the sequence of operators, specifically lim

n→∞
Tn = T .

Proof. Firstly, we establish the boundedness of the operator sequence. During the loading
process, the applied stress (strain) induces an increasing strain (stress), ensuring that the
stiffness operator remains positive and, consequently, has a lower bound.

Utilizing mathematical induction, we will prove that the sequence of stiffness operators
is decreasing. For the first-level structure, we have

T1 = E + ηp. (20)
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Substituting Equation (20) into Equation (18) yields

T2 =
ET1

T1 + E
+

ηpT1

T1 + ηp
= (E + ηp)

(
E

2E + ηp
+

ηp
E + 2ηp

)
. (21)

Subtracting Equation (20) from Equation (21), we obtain

T2 − T1 = −
(E + ηp)

(
E2 + Eηp + η2 p2)

(2E + ηp)(E + 2ηp)
< 0. (22)

We thus proved that T2 < T1. Assuming Tn < Tn−1, we next prove that Tn+1 < Tn. Let
the function f (x) be

f (x) =
Ex

x + E
+

xηp
x + ηp

. (23)

Differentiating Equation (23) results in

f ′(x) =
E2

(E + x)2 +
ηp2

(ηp + x)2 > 0. (24)

Therefore, the function is monotonically increasing, implying (x2 − x1)[ f (x2)− f (x1)] > 0.
Given that Tn < Tn−1, it follows that

f (Tn) < f (Tn−1). (25)

Combining Equations (18), (23) and (25), we arrive at

Tn+1 < Tn. (26)

By immediate application of mathematical induction, it is evident that the stiffness
operator decreases as the structural level n increases. Given that the stiffness operator is
monotonically decreasing and bounded below, it necessarily converges to a limit as follows:
lim

n→∞
Tn+1 = lim

n→∞
Tn = T .

Since the sequence of linear operators converges and has a unique limit, taking the
limit of both sides of Equation (18) simultaneously yields the fractal stiffness operator
Equation (7) mentioned earlier by Guo and Yin et al. [23]. As discussed, this is a quadratic
algebraic equation for the fractal operator, with a radical solution. As mentioned, the radical-
type fractal operator in Equation (8) is a non-rational operator.

At this point, we can make a fundamental judgment: for finite-level self-similar
structures, the operator is rational; for infinite-level self-similar fractal structures, the fractal
operator is non-rational. Clearly, the non-rational nature of the fractal operator arises
from the infiniteness of the structural levels. The properties of rational and non-rational
operators differ significantly. As outlined in Mikusinski’s work [30], kernel functions
for rational operators typically manifest as elementary functions. Our earlier research
confirms that kernel functions associated with non-rational operators are typically non-
elementary functions.

Figure 7 illustrates the creep response of structures from levels 1 to 3 compared to an
infinite-level structure. With the increase in structural levels, the multi-level structure’s
creep curves rapidly converge to the fractal tree within a characteristic time range, as indi-
cated by the red dashed line. The findings suggest that, as the hierarchy of a finite-level
structure extends beyond three levels, its mechanical behavior within the characteristic
time can be represented by an infinite-level structure. Additionally, the analytical process
for determining the behavior of an infinite-level structure proves to be simpler than for
a finite-level structure, thus enhancing the model’s practical applicability in viscoelastic
investigations. Moreover, the level-1 Voigt model entirely lacks the long-term relaxation
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effect. The greater the number of structural levels, the more pronounced the long-term
relaxation effect becomes. An infinite-level fractal structure exhibits the most pronounced
characteristics of ultra-long relaxation time. This discovery holds significant importance
for understanding the mechanical behavior of complex viscoelastic materials.
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Figure 7. Creep response functions to step stress for structures at various levels. τ = η/E denotes the
characteristic time. The red dashed line represents the response at the characteristic time τ = 1.

3. Viscoelastic Response Curves of Fractal Structures
3.1. Correspondence between Operator Kernel Functions and Relaxation and Creep Functions

This section establishes a direct and intrinsic link between fractal operators and
the functions governing relaxation and creep. This correlation renders fractal operators
exceptionally apt for delving into the dynamics of creep and relaxation behaviors. Systems
constituted by linear physical elements inherently display linearity, aligning with the
Boltzmann superposition principle:

σ(t) = ε0Y(t) +
∫ t

0+
Y(t − τ̃)

dε(τ̃)

dτ̃
dτ̃. (27)

ε(t) = σ0 J(t) +
∫ t

0+
J(t − τ̃)

dσ(τ̃)

dτ̃
dτ̃. (28)

In the equations, Y(t) represents the material’s relaxation function, and J(t) denotes the
material’s creep function. Utilizing integration by parts, Equations (27) and (28) can be
rewritten in a convolution form:

σ(t) = Y(t) ∗ ε̇(t) = ε(t) ∗ Ẏ(t). (29)

ε(t) = J(t) ∗ σ̇(t) = σ(t) ∗ J̇(t). (30)

Notice that both Equations (29) and (30) are convolution expressions. In fact, in Mikusin-
ski’s monograph [30], operators are defined through convolution. This implies that con-
volution expressions in creep and relaxation theories often correspond to a certain fractal
operator. Specifically, in Equation (29), we can consider strain as the input signal and
stress as the output signal, making the creep function J(t) necessarily the kernel function
of some fractal stiffness operator. Similarly, the relaxation function Y(t) in Equation (30) is
undoubtedly the kernel function of a fractal compliance operator.
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Let the stiffness operator of the viscoelastic material be denoted as T and its compliance
operator as 1

T . Then, the viscoelastic stress–strain relationship expressed in terms of
operators is

σ(t) = T(p)ε(t), or ε(t) =
1
T
(p)σ(t). (31)

Based on the operator kernel function theory previously discussed [27], operator opera-
tions are defined through the convolution integral of their corresponding kernel functions
(generalized functions), namely

σ(t) = L −1[T(p)](t) ∗ ε(t). (32)

ε(t) = L −1[
1
T
(p)](t) ∗ σ(t). (33)

Comparing Equations (29) and (30) with Equations (32) and (33) yields

L −1[T(p)](t) = Ẏ(t), or Y(t) =
∫ t

0+
L −1[T(p)](τ̃)dτ̃. (34)

L −1[
1
T
(p)](t) = J̇(t), or J(t) =

∫ t

0+
L −1[

1
T
(p)](τ̃)dτ̃. (35)

Equations (34) and (35) indicate that, once the stiffness or compliance operator of a
structure is known, the OKF can be obtained through the inverse Laplace transform, thereby
deriving the relaxation or creep function. It is important to note that the above operations
only require manipulation of the stiffness or compliance operator, without involving the
input and output signals.

As mentioned, the stiffness and compliance operators characterize the intrinsic proper-
ties of self-similar fractal structures themselves. By understanding the intrinsic properties
within the physical fractal space, one can determine the creep and relaxation functions.
This facilitates research into creep and relaxation phenomena.

3.2. Comparison of Mechanical Behavior between Several Classical Viscoelastic Models and Fractal
Tree, Fractal Ladder Structures

As discussed earlier, we now summarize the relaxation and creep functions, along
with the response curves under cyclic loading, for classical viscoelastic models and fractal
tree and ladder structures in Figure 8.

Figure 8a–e display the schematic diagrams and corresponding stiffness/compliance
operator expressions for the classical Maxwell model, Voigt model, generalized Kelvin–
Voigt model, fractal tree model, and fractal ladder model. Comparing the creep response to
step stress in Figure 8f–j, it is evident that fractal models significantly differ from classical
models. Upon instantaneous loading, the fractal ladder structure’s end has a series spring
element that produces instantaneous elastic deformation, similar to the Maxwell and three-
parameter GKV models. In contrast, the fractal tree model and Voigt model, lacking an
independent load-bearing structure, do not exhibit instantaneous strain. During the steady
creep stage, models with a finite number of elements rapidly stabilize in deformation rate,
indicating transfer of all viscous forces to the elastic el‘ements. In comparison, the elements
of the infinite-level fractal model continuously transmit stress, leading to ongoing creep
with a characteristic time far exceeding that of finite-level structures.

Figure 8k–o show the stress relaxation behavior to step strain. These curves reveal
that the behavior of fractal structures is significantly different from finite-level models.
In terms of instantaneous behavior, the fractal tree model and Voigt model exhibit a sharp
increase in stress, whereas the Maxwell, GKV, and fractal ladder models, which contain
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independent load-bearing elastic elements, predominantly absorb instantaneous strain
through these elements. For long-term relaxation, fractal structures exhibit characteristics
of decaying over time and eventually tending to zero, with a gradually decreasing rate of
decay, similar to the Maxwell model. Notably, fractal structures more distinctly exhibit the
tailing or dragging phenomenon, prevalent in rock creep tests, indicating that fractional
viscoelastic models are more effective in describing such materials.

Maxwell Kelvin-Voigt General Kelvin-Voigt Fractal Tree
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Figure 8. Quasi-static responses of classical viscoelastic models and fractional viscoelastic models.
(a–e) Schematic diagrams and operator expressions of classical linear viscoelastic models and fractal
viscoelastic models. (f–j) Creep function curves of the structures, with black line segments indicating
applied step stress, loaded at time t/τ = 1 and unloaded at time t/τ = 5. The horizontal axis
represents dimensionless time, while the vertical axis represents the dimensionless creep function.
(k–o) Relaxation function curves, with black line segments indicating applied step strain, loaded at
time t/τ = 1. The vertical axis is dimensionless stress. (p–t) Creep curves under multiple loading
cycles, with black line segments indicating applied step stress, loaded at time t/τ = 1.

Figure 8p–t present the response curves of the models under multiple loading condi-
tions. From these curves, it can be observed that, due to their prolonged characteristic times,
fractal models cannot disperse external forces promptly within one loading cycle and thus
enter the next cycle. This characteristic indicates that the mechanical behavior exhibited
by fractal structures under periodic loading more closely resembles rheological properties.
This behavior reveals the uniqueness of fractal structures in handling dynamic loads, which
is significant for understanding the response of such structures in practical applications.
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4. Discretization of Continuous Viscoelastic Bodies into Fractal Topological Structures

Discrete fractal models, built from physical elements, showcase the intriguing ability
to transition between discretization and continuity. Peng et al. [25] investigated the infinite
elastic cavity model of arterial blood flow, transforming the continuous vascular wall into a
myriad of microelastic cavities, crafting a physical fractal model that mirrors blood flow
dynamics. Similarly, Mario Di Paola et al. [31] explored fractional viscoelastic theory, adopt-
ing the strategy of breaking continua into discrete segments. This section, as illustrated by
Figure 9, elucidates the process of discretizing an elastic body with distributed viscous con-
straints and illustrates how this approach leads to the fractalization of force transmission
pathways, thereby offering a novel perspective on modeling complex physiological and
material behaviors.

...discretize

continuous

renormalize

condenceexpand
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Figure 9. Schematic diagram of the discretization process from a continuous model to a physical
fractal model. (a) Elastic body subjected to distributed viscous constraints. (b) Discretization of
continuous structure. (c) Schematic diagram of force transmission paths. (d) Renormalization to
fractal ladder structure. (e) Equivalent relationship between fractal ladder cells and elements.

Figure 9a,b depict an elastic body under lateral forces at its upper boundary, experienc-
ing shear deformation that initiates force transmission from top to bottom. By dividing the
body vertically (z-direction) into thin slices (each with thickness ∆z), it transitions from a
continuous entity (Figure 9a) to a discrete system (Figure 9b), where slices are linked by elas-
tic elements and to boundaries by viscous elements, allowing force to propagate through
springs and dashpots. This setup leads to the multi-level self-similar model in Figure 9c:
applied forces traverse internal elastic components, bifurcating at each level—one path
through dashpots to boundaries and the other to subsequent elastic layers. This repeti-
tive sequence crafts a layered mesh of elastic and viscous connections. Drawing on this
model, Schiessel and Blumen [16,17], Heymans et al. [18,19], and Mario Di Paola et al. [31]
introduced a pivotal transformation relationship, correlating the body’s internal elastic
constants with the external viscous constraints’ viscosity coefficients by

Ek =
1

2k − 1
Γ(β)

Γ(1 − β)

Γ(k + 1 − β)

Γ(k − 1 + β)
E0. (36)

ηk = 2
Γ(β)

Γ(1 − β)

Γ(k + 1 − β)

Γ(k + β)
η0. (37)

This leads to the derivation of a fractional relationship between stress and strain:

σ(t) =
dβ

dtβ
ε(t). (38)

It is important to note that the constraint relations between physical constants
(Equations (36) and (37)) are artificially designed with the purpose of deriving the frac-
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tional viscoelastic constitutive as in Equation (38). Such an operation is not natural. Below,
we provide a more intuitive explanation.

In this scenario, we imagine a structure where each level is composed of identical
elements, ensuring uniform elastic constants and equal viscosity coefficients for all viscous
constraints. By applying the principle of self-similarity, we can transform the model in
Figure 9c into a fractal ladder configuration, as shown in Figure 9d. Remarkably, this fractal
ladder mirrors the topology of the ladder in Figure 5 exactly. Moving forward, we abstract
the fractal cell from the ladder, and, by developing and resolving the algebraic equation
for the fractal stiffness operator (mirroring Equation (5)), we arrive at the fractal operator
expression (aligned with Equation (6)). This illustrates that the fractal ladder, while an
abstract and idealized structure, accurately represents the physical reality of viscoelastic
bodies. Thus, the fractal operator, a conceptual entity derived from logical reasoning,
ubiquitously characterizes the viscoelastic domain.

Although the fractal operators on the fractal ladder and the fractional derivatives in
the viscoelastic constitutive equations (Equation (38)) appear different, this discrepancy
is only superficial. At their essence, they are fundamentally identical; that is, the fractal
operator (Equation (6)) inherently operates as a fractional operator. This unity is further
evidenced when analyzing Figure 8i,j, where the elimination of the outermost independent
spring element from the fractal ladder aligns the creep and relaxation behaviors of both
models closely. Such parallels emphasize the inherent similarity across these mathemati-
cal formulations.

In Section 2, we detailed the convergence attributes of the fractal ladder structure.
Focusing on the imagery in Figure 9, as ∆z → 0, the level of the structure moves towards
infinity, i.e., n → ∞. At this juncture, the discrete model transitions from discrete to a
coherent fractal ladder form. On the other hand, as ∆z → 0, the discrete model again
converges to the continuous form depicted in Figure 9a. This transformative process,
described as continuum → discrete → fractalize, fascinatingly facilitates the fractalization
of the force transmission imagery and unveils the source of fractional-order effects in
viscoelastic bodies.

The derivation of fractional-order effects in viscoelastic substances is traced back to
fractal operators. The intrinsic non-rationality of radical-type fractal operators signifies a
root cause of fractional-order dynamics. Appendix C shows that the kernel functions for
radical-type fractal operators are typically non-elementary functions. This suggests that
accurately depicting fractional-order effects and the characteristic tail effect in viscoelastic
bodies requires the use of non-elementary functions. This approach not only encapsu-
lates the sophisticated dynamics of these systems but also offers a fresh perspective on
understanding and modeling viscoelastic behavior.

5. Conclusions

This paper delves into the convergence of operators in the viscoelastic theories per-
taining to fractal ladder and tree structures, highlighting the robustness and predictability
of these models in complex mechanical settings. We have rigorously demonstrated that the
sequences of stiffness operators for both structures are monotonically bounded, thereby
establishing definitive limits. This groundwork allows us to assert that, beyond a third-level
hierarchy, the mechanical behavior of finite-level structures can effectively be represented
by an infinite-level fractal framework. This insight offers a significant reduction in compu-
tational complexity, streamlining the analyses that involve structural stiffness operators.

During steady-state creep and relaxation, forces within fractal structures are transmit-
ted in a tiered manner, resulting in characteristically prolonged durations. This behavior,
prevalent in rock rheology, underscores the superiority of fractal models in capturing the
nuanced rheological properties of materials.

Furthermore, we explore the transformative linkage between continuous medium
models and their discrete fractal counterparts. Increased granularity in structural subdivi-
sion and level augmentation leads to fractalization of internal force pathways, culminating
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in a seamless transition to a fractal model. This process not only bridges the gap between
continuous and fractal representations but also reinforces fractal operator theory as a potent
tool for addressing intricate mechanical challenges, promising wide-ranging applications
in the field.

This paper investigates the utilization of SOM and COM to characterize the quasi-static
mechanical properties of materials, such as relaxation and creep. In real-world engineering
applications, materials frequently undergo cyclic alternating loads, highlighting the impor-
tance of understanding the dynamic mechanical responses of viscoelastic materials. In our
future work, we aim to further develop SOM and COM, broadening their application to
the dynamic mechanical characterization of materials. This initiative is directed towards
providing new insights into the dynamic mechanical behaviors of viscoelastic materials.
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Appendix A

Focusing on the three-parameter General Kelvin–Voigt (GKV) model as a case study,
the structure is formed by paralleling a viscous element with an elastic element, followed
by their serial connection to another elastic element. To ascertain the structure’s compre-
hensive constitutive relationship, it involves the simultaneous solution of two stress-based
equilibrium equations: {

σ = σ2
σ = ση + σ1

, (A1)

two strain-based compatibility equations:{
εη = ε1
ε = ε1 + ε2

, (A2)

and the constitutive relationships of each element:
σ1 = E1ε1
σ2 = E2ε2

ση = η
dεη

t

. (A3)

Addressing this set of seven differential equations with eight unknowns unravels the
constitutive equation for a one-dimensional system:

σ(t) = E2

[
δ(t)− E2

η
e−

t(E1+E2)
η

]
∗ ε(t). (A4)

While this approach is viable for models with a finite number of elements, the rapid
increase in the number of elements escalates both the number of unknowns and the
computational complexity. For models composed of an infinite number of elements, leading
to an endless count of unknowns, this computational strategy becomes unfeasible.
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Based on the stiffness operator from Equation (4) and the operator kernel function
method proposed by Yu et al. [27], the formula for converting the stress–strain relation-
ship of the GKV model, as represented by operators, into a functional relationship is the
following:

σ(t) = L −1[TGKV(p)] ∗ ε(t) = L −1
[
(E1 + ηp)E2

E1 + E2 + ηp

]
∗ ε(t). (A5)

Simplifying Equation (A5) yields the same result as Equation (A4). This process does not
require solving any differential equations, and all steps are algebraic manipulations.

Based on the outcomes of Equations (34) and (35), this approach does not require
assuming any form of input to directly determine the model’s relaxation function:

Y(t) =
∫ t

0+
L −1

[
(E1 + ηp)E2

E1 + E2 + ηp

]
(τ̃)dτ̃, (A6)

and the creep function:

J(t) =
∫ t

0+
L −1

[
E1 + E2 + ηp
(E1 + ηp)E2

]
(τ̃)dτ̃. (A7)

Throughout this process, we consistently engage in various algebraic operations rather
than solving systems of linear differential equations.

Appendix B

Consider the generalized Maxwell model derived from an infinite parallel connection
of Maxwell elements, as illustrated in Figure A1.

Eh

Eh

Eh
(a) (b) (c)

Figure A1. Schematic diagram of general Maxwell model. (a) Fractal cell. (b) General Maxwell model.
(c) Fractal element.

Utilizing a calculation method analogous to that for fractal trees and fractal ladders,
the model must fulfill the following stiffness operator algebraic equation:

1
1
E + 1

ηp
+ T = T . (A8)

Thus, we have

Eηp
E + ηp

= 0. (A9)

The paradox presented by Equation (A9) arises because, as the number of levels in the
structure increases, the stiffness of the generalized Maxwell model also increases. When
the structure approaches an infinite number of levels, the stiffness becomes infinitely large,
failing to converge to a specific stiffness operator T . Therefore, the aforementioned method
is no longer applicable.
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Appendix C

The expression for the stiffness operator of the fractal ladder structure is the following:

T =

√
T2

2

4
+ T1T2 −

T2

2
=

√
(ηp)2

4
+ Eηp − ηp

2
=

η

2

(√
p2 +

4p
τ

− p

)
, (A10)

where τ = η
E represents the relaxation characteristic time. The kernel function correspond-

ing to the fractal operator is

T = L −1[T(p)] = −Ee−
2t
τ

t
I1(

2t
τ
) + Eδ(t), (A11)

wherein In(
2t
τ ) denotes the nth-order modified Bessel function and δ(t) represents the Dirac

function. Similar kernel functions also appear in the study of stress relaxation effects in the
hemodynamics of small arteries by Peng et al. [25]. Applying a step strain ε(t) = ε0H(t) to
the fractal structure yields the stress expression as follows:

σ(t) = Tε(t)

= −
[

Ee−
2t
τ

t
I1(

2t
τ
) + Eδ(t)

]
∗ [ε0H(t)]

= Eε0e−
2t
τ

[
I0(

2t
τ
) + I1(

2t
τ
)

]
, (A12)

where H(t) denotes the Heaviside step function.
The expression for the compliance operator of the fractal ladder structure is

1
T

=
2
η

1√
p2 + 4p

τ − p
=

τ

2ηp

(√
p2 +

4p
τ

+ p

)
=

1
2Ep

(√
p2 +

4p
τ

+ p

)
. (A13)

Equation (A13) can be further simplified such that

1
T

=
1

ηE
1
p

η

2

(√
p2 +

4p
τ

− p + 2p

)
=

1
ηE

1
p
(T + ηp) =

1
ηE

1
p

T +
1
E

. (A14)

The kernel function corresponding to the compliance operator is

1
T

=
1
E

δ(t) +
1
η

e−
2t
τ

[
I0(

2t
τ
) + I1(

2t
τ
)

]
. (A15)

Applying step stress σ(t) = σ0H(t) to the fractal ladder results in the creep response
as follows:

ε(t) =
1
T

σ(t)

=

{
1
E

δ(t) +
1
η

e−
2t
τ

[
I0(

2t
τ
) + I1(

2t
τ
)

]}
∗ [σ0H(t)]

=
σ0

4η
e−

2t
τ

[
−e

2t
τ

η

E
+
(

6t +
η

E

)
I0(

2t
τ
) + 6tI1(

2t
τ
)

]
+

1
E

σ0

=
σ0

4η
e−

2t
τ

[(
6t +

η

E

)
I0(

2t
τ
) + 6tI1(

2t
τ
)

]
+

3σ0

4E
. (A16)
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