
Citation: Sun, T.; Feng, M.; Pu, W.;

Liu, Y.; Chen, F.; Zhang, H.; Huang, J.;

Mao, L.; Wang, Z. Fractal-Based

Multi-Criteria Feature Selection to

Enhance Predictive Capability of

AI-Driven Mineral Prospectivity

Mapping. Fractal Fract. 2024, 8, 224.

https://doi.org/10.3390/

fractalfract8040224

Academic Editor: Norbert Herencsar

Received: 6 February 2024

Revised: 8 April 2024

Accepted: 9 April 2024

Published: 12 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Fractal-Based Multi-Criteria Feature Selection to Enhance
Predictive Capability of AI-Driven Mineral
Prospectivity Mapping
Tao Sun 1,2,* , Mei Feng 2, Wenbin Pu 2, Yue Liu 2, Fei Chen 1,2,*, Hongwei Zhang 2, Junqi Huang 2, Luting Mao 2

and Zhiqiang Wang 3

1 Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal
Mineral Resources, Ganzhou 341000, China

2 School of Resources and Environmental Engineering, Jiangxi University of Science and Technology,
Ganzhou 341000, China

3 School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology,
Xiangtan 411201, China

* Correspondence: suntao@jxust.edu.cn (T.S.); 9120100049@jxust.edu.cn (F.C.); Tel.: +86-0797-831-2751 (T.S.)

Abstract: AI-driven mineral prospectivity mapping (MPM) is a valid and increasingly accepted tool
for delineating the targets of mineral exploration, but it suffers from noisy and unrepresentative
input features. In this study, a set of fractal and multifractal methods, including box-counting calcu-
lation, concentration–area fractal modeling, and multifractal analyses, were employed to excavate
the underlying nonlinear mineralization-related information from geological features. Based on
these methods, multiple feature selection criteria, namely prediction–area plot, K-means clustering,
information gain, chi-square, and the Pearson correlation coefficient, were jointly applied to rank
the relative importance of ore-related features and their fractal representations, so as to choose the
optimal input feature dataset readily used for training predictive AI models. The results indicate
that fault density, the multifractal spectrum width (∆α) of the Yanshanian intrusions, information
dimension (D1) of magnetic anomalies, correlation dimension (D2) of iron-oxide alteration, and the
D2 of argillic alteration serve as the most effective predictor features representative of the correspond-
ing ore-controlling elements. The comparative results of the model assessment suggest that all the
AI models trained by the fractal datasets outperform their counterparts trained by raw datasets,
demonstrating a significant improvement in the predictive capability of fractal-trained AI models
in terms of both classification accuracy and predictive efficiency. A Shapley additive explanation
was employed to trace the contributions of these features and to explain the modeling results, which
imply that fractal representations provide more discriminative and definitive feature values that
enhance the cognitive capability of AI models trained by these data, thereby improving their predic-
tive performance, especially for those indirect predictor features that show subtle correlations with
mineralization in the raw dataset. In addition, fractal-trained models can benefit practical mineral
exploration by outputting low-risk exploration targets that achieve higher capturing efficiency and
by providing new mineralization clues extracted from remote sensing data. This study demonstrates
that the fractal representations of geological features filtered by multi-criteria feature selection can
provide a feasible and promising means of improving the predictive capability of AI-driven MPM.

Keywords: fractal; mineral prospectivity mapping; feature selection; AI-driven; machine learning;
Gannan district

1. Introduction

Mineral resources are a vital material foundation for economic and social develop-
ment [1]. The exploration of new mineral prospects is urgently required to meet the
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ever-growing demand of mineral resources due to the progressive advancement of urban-
ization and industrialization [2]. Mineral prospectivity mapping (MPM) is a fundamental
step in mineral exploration, aiming to quantify and map the probability of the presence
of mineral deposits of the sought-after type that may be found by exploration in a given
study area [3,4]. Essentially, MPM is a data mining procedure that mines information,
knowledge, and insights from available multi-source exploratory data, which specifically
includes obtaining mineralization-related information from evidential features, discovering
knowledge of mineral systems based on multi-layer information, and gaining insights
into mineral exploration strategies by integrating geo-knowledge [5–8]. Over the past
two decades, artificial intelligence (AI) techniques, primarily machine learning algorithms,
which are widely accepted to be excellent data mining techniques in both industry and
academia, have proven to be promising tools for MPM [5,9]; e.g., artificial neural net-
works [10,11], random forest [12–14], logistic regression [15,16], and various deep learning
algorithms [17–19].

Although AI algorithms have matured and proved to be valid for the outputting
predictions of mineral prospectivity, the input data for AI models are not sound enough to
objectively represent the target mineral systems [20], which degrades the effectiveness of
AI models in practical exploration activities. This is mainly attributed to the intrinsically
complex and noisy nature of geological features employed in the MPM task. Mineral de-
posits, as the targets of MPM, are end-products of the complex interplays between diverse
ore-forming processes that leave behind their signatures in the form of various geolog-
ical features [21,22], which are additionally overlaid by numerous temporal alterations
and/or spatial deviations, resulting in nonlinear correlations between these features and
mineral deposits that seem to be far too complex to be adequately handled by traditional
prospectivity approaches that are mainly based on empirical judgement and qualitative
analyses [18,23,24]. Therefore, two prerequisites for conducting an effective and efficient
AI-driven MPM include (i) the construction of a sound input dataset that digs the underly-
ing nonlinear ore-forming information from original features, and (ii) an exhaustive search
for the optimal feature subset of the input dataset.

Fractal geometry provides an excellent solution for the first issue (i). The major at-
traction of fractal geometry stems from its ability for characterizing the irregular shapes of
natural features that traditional Euclidean geometry fails to describe [25]. Diverse fractal
and multifractal methods have been demonstrated to be powerful pattern recognition
engines that can effectively reveal complex patterns in chaotic and irregular geological
phenomena along with their underlying nonlinear dynamic processes [26–30]. Among
the wide fractal applications in geoscience, great efforts have been made to probe the
correlation between mineral deposits and ore-related evidential features via various frac-
tal exponents [31–34]. The concentration–area (C–A) fractal model, proposed by Cheng
et al. [35] and originally applied to identify mineralization-related geochemical anoma-
lies [36,37], has been widely employed in MPM to separate geophysical anomalies [38–40],
detect hydrothermal minerals from remote sensing data [25,41], discretize continuous val-
ues and classify mineral potential [31,42–45], and to outrank exploration layers [46]. On
the other hand, multifractal analysis, taking into account fuzzy spatial distribution patterns
as well as the irregular geometric shapes of geological features under multiple scaling
rules [38], stands as an effective tool for portraying the overall complexity of mineralization
systems [27,47–49]. All these fractal representations of geological features effectively recog-
nize the inherent distribution patterns of mineralization-related features that can be used
to trace the footprints of ore-related processes and are, thus, suitable to feed AI algorithms
for training prospectivity models. Furthermore, fractal analyses yield the quantitative
measurements of related features, which can be seamlessly integrated into the numeric
input dataset and readily used for model training.

For the second issue (ii), feature selection is beneficial for improving model perfor-
mance, elevating computational efficiency, and for decreasing the requirements of memory
storage, given that exploratory data comprise a large number of irrelevant, redundant,
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and noisy features [50]. Feature selection can be broadly categorized into filter, wrapper,
and embedded methods [50]. Since the wrapper and embedded methods evaluate the
quality of selected features based on predefined machine learning algorithms before the
implementation of specific AI algorithms, the problem of conditional independence among
the judgement criteria of different AI algorithms may arise; therefore, filter methods, which
are independent of any machine learning algorithms, are commonly used in AI-driven
MPM. The filter methods focus on evaluating feature importance according to the inherent
characteristics of geo-data and their contributions to final predictions. A set of evaluation
criteria have been proposed and applied in MPM, such as information gain [18], Gini
index [51], principal component analysis [52], and correlation [52]. Apart from these com-
mon criteria, several geologically constrained criteria, based on the principles of mineral
prospectivity targeting and represented by the prediction–area (P–A) plot, have also been
proposed and used to evaluate the ability of individual features to predict prospectivity in a
practical MPM task [53–55]. Usually, in previous MPM studies, only one of these criteria has
been utilized; however, given that geological features generally exhibit subtle correlations
with mineralization in various complicated formats, the employment of multiple criteria
is important as it is the only way that the different evaluation results of these complex
features can be benchmarked and contrasted.

Although fractal and multifractal exponents are widely used in MPM studies and
have proven to be an effectively nonlinear measurement, they commonly serve as global
variables characterizing the distribution patterns of the whole study area. Few studies
have employed them as direct predictor features that reflect the fine variation of local
mineralization patterns due to the lack of implementation framework and the massive
computation tasks. In this study, an elaborate scenario of multifractal calculation was
carried out to obtain fractal representations of lithological, structural, geophysical, and
remote sensing features related to mineralization in each predictive unit of the study
area. Based on these, multiple evaluation criteria were employed to select the optimal
combination of features used for training predictive AI models. The results demonstrate
the effectiveness of the proposed framework in enhancing the predictive performance
of AI-driven predictive models and contribute to delineating reliable targets for future
exploration in the study area.

2. Study Area and Data Used

The Gannan ore district, located in the eastern segment of the famous Nanling metal-
logenic belt (Figure 1), was chosen as the case study area, since it is a matured tungsten
mining area with an exploration history of more than a century. A large number of tungsten
deposits have been well explored, and abundant geo-information are available, including
geological, geophysical, geochemical and remote sensing data, which provide a data-rich
foundation for this MPM study.

The sedimentary successions outcropped in this area consist mainly of Proterozoic
lower greenschist facies clastic rocks and Paleozoic shallow marine carbonate and sili-
ciclastic rocks, as well as Mesozoic volcaniclastics and terrigenous red-bed sandstone
(Figure 1) [56]. Three groups of regional faults, trending approximately NE, NW, and EW,
constitute the tectonic framework of this region (Figure 1). This area has experienced four
episodes of granitic magmatism, namely Caledonian (Early-to-Middle Paleozoic), Hercy-
nian (Late Paleozoic), Indosinian (Early Mesozoic), and Yanshanian (Late Mesozoic) [59,60];
of these, the Yanshanian tectono-magmatic activities are believed to be responsible for
widespread tungsten mineralization in this region. More than 400 outcropped granitic
intrusions, mainly biotite monzogranite, monzonite, and porphyritic monzogranite, have
been identified in this region [60], which occupies an extensive area of approximately
14,000 km2 (Figure 1). The tungsten mineralization in this study is characterized by the
quartz-vein type [59], containing eight large-scale, 18 moderate-scale, and considerable
small-scale deposits with a total proved tungsten reserve of 1.7 Mt [60].
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Eight features were originally selected from the multi-source spatial dataset. The
geological and geophysical features, including Yanshanian intrusions, regional faults, and
magnetic anomalies, were extracted from the Dataset of Geological Bureau of Mineral
Resource of Ganzhou City, based on a regional geological survey, and were examined in the
published literature [56,57,61]. The iron-oxide and argillic alterations were extracted from
Landsat-8 remote sensing data with a spatial resolution of 15 m, based on an unpublished
work conducted by our team. The geochemical anomalies of W, Mn, and Fe were selected
from 39 elements as they are the basic constituents of wolframite ((Fe,Mn)WO4), which
dominates the economic ores in this region. These anomalies were derived from the
results of China’s National Geochemical Mapping Project with a sampling density of
one sample per km2 [62,63].

A total of 118 tungsten occurrences, including historical mines, discovered deposits,
and verified prospects, were employed as training samples. The study area was subdivided
into 195,174 predictive units with a cell size of 450 m, following the rasterizing scenario of
our previous work [18], based on the criterion proposed by Zuo and by Carranza [64,65].
The evidential features were transformed into raster maps in which each cell has a numerical
representation of the features.

3. Methods
3.1. Proposed Framework

Numerous methods and procedures are involved in this study, including data prepa-
ration, fractal and multifractal analyses, feature selection, AI model training, model assess-
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ment, and interpretation. Figure 2 illustrates the flowchart of the proposed framework; the
following sections describe in detail the key methods and processes used, i.e., fractal and
multifractal methods, feature selection, and AI-driven models.
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Figure 2. Flowchart of the proposed framework of this study.

3.2. Fractal and Multifractal Methods

Fractal geometry provides a quantitative tool for portraying the complex distribution,
connectivity, and self-similarity of a system [66]. In this paper, fractal geometry is used to
dig the nonlinear information within the tungsten system in the study area. Specifically,
the box-counting method is employed to depict the fractal characteristics of tungsten
occurrences; the multifractal indices of ore-related features are measured using the moment
method, with the aid of a sliding-window algorithm, which aims to capture sufficient data
for a multifractal calculation.

The box-counting method is one of the most commonly used methods in fractal
geometry. In this method, the evidential features are covered by a set of boxes with a side
length of r. The number of non-empty boxes is denoted as N(r). The box-counting fractal
dimension Db is defined as [28,67–69]:

Db = − lim
r→0

log(N(r))
log(r )

(1)
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In practical calculations, Db can be estimated from the slope of the fitting line on the
double logarithmic plot of N(r) vs. r using the least square method [70]. In addition, Fry
analysis is employed in this study to interpret the results of the fractal analyses, which
helps in enhancing the subtle patterns of mineral occurrences and in delineating the spatial
autocorrelations between these occurrences and geological features. This method is not
elaborated here due to limited space. For detailed information of Fry analysis, readers are
referred to [71–76].

Multifractal analysis, as an extension of monofractal analysis, has been extensively
applied to quantify complex natural phenomena or to processes that exhibit similarity over
a wide range of scales [47,66,77–79]. Before multifractal calculations, the sliding window
algorithm is employed to assist in capturing sufficient local features within the massive
predictive units in this study [80–83]. The sliding procedure can be described as follows
(Figure 3a): (i) The feature under analysis is entirely covered by a series of grids. A window
with a side length of m slides successively along the grids. The grid at the bottom left corner
is set as the starting position. (ii) The window slides horizontally from left to right within
a row. (iii) After crossing the row, the window moves upwards to the leftmost position
of a new row and repeats step (ii). (iv) The window sliding procedure is finished when it
reaches the end position at the upper right corner.
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After acquiring data via the sliding window procedure, the moment method, originally
proposed by Halsey et al. [84], is used to estimate the multifractal spectrum. The captured
features are covered by a defined number of boxes with a side length of r. This procedure
is repeated 10 times with a varying r ranging from r1 to r10, as illustrated in Figure 3b. For
a given r, the probability mass function of the ith box can be expressed as [28,84,85]:

Pi(r) =
Ni(r)

Nt
∝ rαi , (2)

where Ni(r) denotes the measurement of the targeting features, such as the length of the
faults or the area of the intrusions, in the ith box at scale r, and Nt is the sum of the
measurements of the targeting features across the entire window. The exponent αi indicates
the singularity of a fractal structure in the targeting system.
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The partition function χq(r) is the probability-weighted summation of each box, which
is given by the following equation [28,84]:

χq(r) =
n

∑
i=1

Pq
i (r) = rτ(q) q ∈ R, (3)

where q represents the order of the statistical moment, and n is the total number of boxes
in the window. There is an apparent relationship between χq(r) and r on the log–log plot
(Figure 3c). The mass exponent τ(q) can be estimated from the slope of the fitting lines at a
specific q, which can be formulized as [67,86]

τ(q) = lim
r→0

log(χq(r)
)

log(r)
= lim

r→0

log(
n
∑

i=1
Pq

i (r)
)

log(r)
(4)

The generalized fractal dimension Dq can be calculated using the following formula
(Figure 3d) [67,87]:

Dq =
τ(q)
q− 1

=
1

q− 1
lim
r→0

log(χq(r)
)

log(r)
=

1
q− 1

lim
r→0

log(
n
∑

i=1
Pq

i (r)
)

log(r)
(5)

In particular, when q equals 0, 1, and 2, D0, D1, and D2 refer to the capacity dimension,
information dimension, and correlation dimension, respectively. As q ̸= 1 in Formula (5),
D1 follows the L’Hôpital’s rule, which is defined as follows [88]:

D1 = lim
r→0

N
∑

i=1
Pilog(Pi)

log(r)
(6)

The singularity exponent α and multifractal spectrum f (α) can be formulized as [67]

α(q) =
dτ(q)

dq
(7)

f (α) = q · α(q)− τ(q) (8)

The plot of f (α) against α usually exhibits a bell-shaped unimodal curve (Figure 3e).
On this plot, the width of the multifractal spectrum is denoted as ∆α, which signifies
the uniformity and singularity of the feature distribution throughout the measurement.
The difference in spectrum height is represented by ∆f (α), indicating the distribution
discrepancy between high- and low-probability subsets.

The pseudo code for the implementation of multifractal calculations based on a sliding
window is presented in Algorithm 1.

Algorithm 1: Implementation of multifractal calculation based on sliding window

Input: Evidence layer L, center-of-mass coordinate set S, window length m,
list of q values Q, list of r values R.

Output: Capacity dimension D0, information dimension D1, correlation dimension D2,
spectral width ∆α, and spectral height ∆f (α) for the evidence layer.

Procedure: Window starts from the bottom-left corner of L.
Slide right first, then slide up.
Window ends at the upper-right corner of L.
Calculate partition function χq, mass exponent τq, and generalized fractal dimension Dq.
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Algorithm 1: Cont.

for row in S do
center_x = row [0]
center_y = row [1]
w_length = m
w_position←[center_x, center_y]
window←Create(w_length, w_position)
a = Intersection_region(window, L)
for r in R do

p←number(element)/total_number(window)
Save[P]←p

χq←(P, Q), τq←(χq, R), Dq←(R, χq, Q)
if q==0 then D0 = Dq=0
if q==1 then D1 = Dq=1
if q==2 then D2 = Dq=2

α(q) = dDq/dq, f (α) = qα − τq, ∆α = αmax − αmin, ∆f (α) = f (αmin) − f (αmax)
Save[A]←(a: D0, D1, D2, ∆α, ∆f (α))

Output[A]
end

3.3. Criteria for Feature Selection

The criteria used for feature selection in this study include P–A plot, K-means cluster-
ing, information gain, chi-square, and the Pearson correlation coefficient. The former two
criteria have some exclusive steps in MPM studies and, thus, are described in detail below.

Before the generation of the P–A plot, the logistic function is utilized to transform the
values of evidential features into the same fuzzy space (Figure 4a) [53,89,90], which can be
formulized as [55]

fFd =
1

1 + e−s(Fd−i)
, (9)

where fFd is the fuzzy score in the logistic space; Fd is the feature value assigned to each cell
in an evidential map; and s and i are the slope and inflection point of the logistic function,
respectively. The key parameters of s and i are determined via the data-driven method
proposed by Yousefi and Nykänen [55], which is formulized as follows:{

s = 9.2
Fdmax−Fdmin

i = Fdmax−Fdmin
2

, (10)

where Fdmax and Fdmin represent the maximum and minimum value of an evidential feature.
The transformed fuzzy scores can be categorized into different classes using the

discriminative thresholds derived from a C–A model [35,43,55], which exhibits a power–
law relationship between the fuzzy score fFd and the area A( fFd), as given by [35,91]

A( fFd ≤ ν) ∝ fFd
−α1 ; A( fFd > ν) ∝ fFd

−α2 , (11)

where ν represents the threshold, and α1 and α2 correspond to different fractal dimensions.
The thresholds of different classes are represented by the intersections of the fitting lines on
a log-log plot of cumulative area vs. the corresponding fuzzy score (Figure 4b) [31,43].
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The P–A plot is generated based on the above logistic transformation and C–A model-
ing. On a P–A plot, two curves, which show the cumulative percentage of known mineral
occurrences predicted by different evidential classes and their corresponding cumulative
percentage of area coverage, are plotted against the class thresholds [31,92,93]. The inter-
section point of these curves is recorded, while the percentage of predicted occurrences (Pr)
and the percentage of occupied area (Oa) derived from the intersection points are used to
define the normalized density (Nd) of a feature (Figure 4c), which is employed as a criterion
for evaluating the relative importance of features [31,94]:

Nd =
Pr

Oa
(12)

Nd provides a quantitative means to rank the priority of predictor features with respect
to occurrence-capturing ability. If an intersection point has a high Nd, i.e., it has a relatively
high Pr value and a low Oa value, this implies that the evidential feature identifies a
large number of mineral occurrences within a limited area, indicating a strong predictive
capability (Figure 4c).

K-means is a widely used unsupervised learning algorithm for partitioning samples
in a dataset into K distinct clusters and ensuring high similarity among samples within
the same cluster [95–97]. X = {xi, I = 1, 2, . . ., n} is taken as the dataset to be clustered, and
K clusters C = {ck, k = 1, 2, . . ., K} are initially created. The K-means algorithm seeks to
generate a partition such that the squared error between the empirical mean of a cluster
and the data within that cluster is minimized [98], which is achieved by minimizing the
following summation [98]:

J(C) =
K

∑
k=1

∑
xi∈ck

||xi − µk||2, (13)

where µk represents the center of the clusters. This objective function is minimized through
multiple iterations in which the cluster centers are continuously updated until the cluster
membership stabilizes [98,99].

Regular K-means clustering lacks effective ways of ranking feature importance when
applied to MPM. To address this issue, we have proposed an improved K-means clustering,
which focuses on the assessment of the capturing ability of target features. For each
feature, five clusters (i.e., K = 5) are firstly generated by the K-means algorithm. Based on
these clusters, two exponents are measured, namely (i) the percentage of the occurrences
included in the cluster (Pk), and (ii) the percentage of the cells involved in the cluster
(Ok). The measurement of a criterion (Nk) is defined by Pk/Ok for each cluster. In order to
mitigate the random effect of this algorithm, a series of K values from K = 5 to K = 20 are
adopted, resulting in 200 clusters by which to measure each feature. The highest value of
Nk identified within 200 clusters serves as an index for estimating the importance of the
corresponding feature.
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Detailed descriptions of the other regular criteria for feature selections can be consulted
in the corresponding references, e.g., [100,101] for information gain, [102] for the Pearson
correlation coefficient, and [103,104] for chi-square statistic.

3.4. AI-Driven MPM
3.4.1. Machine Learning Algorithms

The main aim of this study is to evaluate and interpret the predictive performance of
models trained by raw or fractal index datasets after the above-mentioned feature selections;
therefore, some advanced but structurally complicated algorithms, such as deep learning
and meta learning, are absent due to the difficulty of explaining their results. Instead,
we employ a set of commonly used and easily interpretable machine learning algorithms,
including artificial neural network (ANN), decision tree (DT), random forest (RF), and
logistic regression (LR).

ANN, inspired by the structure of biological neurons [105], is one of the most widely
used machine learning algorithms. A feed-forward neural network is adopted in this
study due to its simple setup and strong robustness in executing MPM tasks [10,11,24].
In this model, neurons are the basic functional units for processing received information.
The advantage of ANN lies in its ability to adjust the connections and weights between
neurons [106–108]. A classic ANN includes an input layer, several hidden layers, and
an output layer. The logistic function, also known as the sigmoid function in the ANN
algorithm, is regarded as the transfer function between nodes in the hidden layer and
output layer, which has a similar form to Formula (9):

sigmoid(x) =
1

1 + e−x , (14)

where x is the input data. The neurons across different layers are fully connected. The
communication of information begins at the input layer, passes through the hidden layers,
and arrives at the output layer in a unidirectional process. Information propagation is
facilitated by the weights assigned to the connections between neurons, which can be
formulized as follows [12]:

yi = f
(
∑ ωjixi + bj

)
, (15)

where yi is the estimated value of neuron i; ωji represents the weight connecting neuron i in
the previous layer to neuron j; bj denotes the bias term for neuron j; and f is the activation
function. An optimizing procedure is implemented by updating the model parameters
according to the loss calculation during the back-propagation process.

DT algorithm is a supervised learning algorithm used for both classification and
regression. It constructs a tree-like model consisting of a root node, several branches,
internal nodes, and leaf nodes [109–112]. The algorithm starts from the root node and
progressively splits it into branches and leaf nodes. The main aim of DT is to make the
best splits between nodes that optimally divide the feature dataset into the correct classes.
To this end, information gain and Gini impurity are commonly used as decision criteria.
The so-called “purity” in the DT algorithm is the degree to which all samples are correctly
classified according to their true labels; therefore, Gini impurity quantifies the probability
of misclassifying a randomly chosen sample from the dataset, which is formulized as [109]

Gini = 1−
n

∑
i=1

pi
2, (16)

where pi denotes the probability of a specific sample belonging to a specific class.
RF is a classic ensemble learning algorithm that integrates multiple decision trees [113–115].

This algorithm employs two random scenarios. Firstly, bootstrap sampling is performed
to create training datasets by randomly selecting samples from the original dataset with
replacement. Secondly, a subset of features is randomly selected for the splitting of the
nodes in each decision tree. The introduction of randomness increases the diversity among
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the trees and mitigates the risk of overfitting [12,18]. Following these scenarios, multiple
decision trees are constructed based on node splitting criteria such as information gain or
Gini impurity. The final predictions are determined by a majority-voting mechanism that
aggregates all the decision trees in the forest.

LR uses a maximum likelihood estimation to classify an input sample into a particular
class [116–119]. In MPM applications, LR is used for binary classification, i.e., the predicted
class is either 1 (mineral occurrence) or 0 (non-occurrence). In contrast to linear regression,
the predictions of LR are transformed using the logistic function, which can be formulized
as [120,121]

p(x) =
eβ0+β1x1+β2x2+...+βnxn

1 + eβ0+β1x1+β2x2+...+βnxn
, (17)

where p(x) denotes the predictive result; β0 is the intercept of the model; β1~βn represent
the partial regression coefficients; and x1~xn represent the evidential feature variables.

3.4.2. Performance Metrics

A series of performance metrics are jointly employed in this study to comprehensively
assess and interpret the predictive capability of AI models, including Accuracy, Kappa
index, success rate curve, uncertainty, and the Shapley additive explanation (SHAP).

Accuracy and Kappa index, derived from the confusion matrix, are utilized to assess
the classification accuracy of the trained model [122,123]:

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

Kappa =
(TP + TN)− (TP+FN)(TP+FP)+(FP+TN)(FN+TN)

(TP+TN+FP+FN)

(TP + TN + FP + FN)− (TP+FN)(TP+FP)+(FP+TN)(FN+TN)
(TP+TN+FP+FN)

(19)

In these formulas, the true positive (TP) denotes the number of samples with positive
labels that have been correctly classified as positive; the true negative (TN) counts the times
that negative samples are correctly classified as negative; the false positive (FP) records the
number of negative samples that are incorrectly classified as positive; and the false negative
(FN) refers to the number of positive samples that are incorrectly classified as negative.

The success rate curve measures predictive efficiency in a straightforward way [124–127].
It is generated by plotting success rate against area rate at varying thresholds. The success
rate denotes the percentage of known mineral occurrences included in the prospective
regions, and the area rate refers to the percentage of occupied area that the prospective
regions cover. The slope of the fitting line denotes the ratio of the success rate on the
Y-axis against the occupied area on the X-axis. A larger slope suggests a higher predictive
efficiency that captures more occurrences within smaller delineated areas. The slope of the
first fitting line measures the predictive efficiency of the cells with top prospectivity values,
which is employed as an efficiency indicator.

There is an inevitable uncertainty in all the processes involved in MPM modeling due
to the complexity of mineral systems, as well as to the inherent and stochastic errors brought
about by model training. In order to quantify that uncertainty and to alleviate uncertainty-
induced performance degradation, 10-iteration modeling procedures are conducted for
each algorithm. The mean and standard deviation of the predictions at each cell are used to
modulate the prospectivity value and quantitative uncertainty [101,128,129].

The SHAP algorithm, inspired by game theory, interprets machine learning models by
evaluating the impact of predictor features on the model output [130–132]. This algorithm
employs a linear additive feature method suitable for explaining linear or tree-like AI
models, which can be formulized as [133]:

g
(
α′
)
= ∅0 +

J

∑
j=1

∅jα
′
j, (20)
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where g(α′) is the explanation function; ∅0 is the model output without any features; ∅j
represents the SHAP value regarding the evidential feature j; and α′j denotes the occupancy
of the feature j. The SHAP plot elucidates the impact of each sample on model output
with respect to a specific feature, whereas a higher SHAP value indicates stronger impact
exerted by the sample.

3.5. Implementation of the Proposed Framework

The core steps of the proposed framework were implemented in Jupyter Notebook
using Python. We wrote codes to perform the sliding-window-based multifractal analysis,
Fry analysis, generation of the P–A plot, K-means clustering, and ANN predictive modeling.
The DT, RF, and LR algorithms were implemented through calling code packages of
scikit-learn. The source codes are included in the Supplementary Materials. The SHAP
analysis was conducted using the SHAP package. Information gain, the Pearson correlation
coefficient, and chi-square statistic were calculated with the aid of RapidMiner Studio 9.10.

The sliding-window-based multifractal analysis was time-consuming due to the elab-
orate scenario of region splitting and moment calculating conducted on each of the 195,174
predictive units for a single exponent within a specific feature map. It took approximately
300 h to obtain five multifractal representations, i.e., D0, D1, D2, ∆α, and ∆f (α), for all the
available predictor features, using a computer with Intel Core i9-10920X CPU@3.50 GHz,
NVIDIA RTX A4000.

The scenario of the machine learning prediction is described below.
(i) Dataset. The dataset included a labelled dataset used for model training and an

unseen dataset used for prediction. The labelled samples were derived from our previous
study, conducted in the same area [101], which comprised 118 known tungsten occurrences
(positive samples) and 346 non-occurrences (negative samples). The negative samples were
randomly selected according to the criteria proposed by Carranza and by Zuo [64,134]. Ten
training datasets were then generated from the labelled dataset, and each training dataset
included 118 positive samples and 118 negative samples that were randomly selected from
346 non-occurrences. These training datasets were then used for training 10 independent
models for each AI algorithm. We implemented this step for two reasons. Firstly, the
negative samples were randomly selected. Although the widely used selection criteria have
been verified to be robust, including 10 independent model training processes is beneficial
in alleviating the effect of randomness. Secondly, fluctuations in predictions can be observed
across 10 independent models, so as to assess the predictive uncertainty mentioned above.
The unseen dataset contains 195,174 predictive units with numerical feature values. The
unseen dataset was input to the trained models to yield predictions. All the labelled
datasets, training datasets, and the unseen dataset have two sets of representations, namely
raw datasets with original feature values and fractal datasets with fractal representations
of raw features. All these datasets are included in the Supplementary Materials, along with
a detailed explanatory document (File S1: AlgorithmDetails.docx).

(ii) Model training. Each AI model was trained according to the grid-search strategy,
i.e., the parameters of the models were determined by a trial-and-error procedure that tested
all possible combinations of parameters within a reasonable range [135]. A description
of the model parameters and their possible ranges is listed in Table S1. The training
performance was evaluated via a stratified 10-fold cross-validation. In this procedure, the
input training dataset was subdivided into 10 subsets with equal sizes and balanced labels,
among which a single subset was retained as the validation dataset and the other nine
were used for training models. This process was repeated 10 times until each subset had
been used as the validation dataset once. The stratified cross-validation was chosen over a
simple cross-validation, since previous studies have proved that MPM models trained by
balanced datasets tend to be more stable [136]. The stratified 10-fold cross-validation was
executed using the StratifiedKFold function in the code packages of scikit-learn.

(iii) Model assessment. The model performance was comprehensively assessed in
terms of classification and prediction. The classification performance, including Accuracy
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and Kappa, was directly evaluated by the 10-fold cross-validation. For a given AI algorithm,
the prediction of each cell was obtained by averaging the output of 10 models trained using
different training datasets. Based on this prediction, the success rate curve was drawn to
evaluate predictive efficiency.

4. Results
4.1. Fractal Representations of Mineralization-Related Features

The distribution pattern of mineral occurrences, which is an intrinsic feature of the
mineral system, can be revealed and effectively portrayed using fractal analysis. The box-
counting fractal calculation indicates that the distribution of tungsten occurrences exhibits
a tri-fractal pattern, i.e., the log–log plot of the counted boxes N vs. the box size r can be
fitted by three regression lines (Figure 5). From a fractal perspective, a single power–law
(fractal) relationship implies an independent scale-invariant pattern that results from a
specific pattern-forming mechanism. In this regard, the multi-line fractal model indicates
that the tungsten mineralization in this area is subject to three different ore-controlling
mechanisms operating at different scales, which can be identified by the intersections of
the neighboring fitting lines in Figure 5, namely a camp scale ranging from 0 to 1703 m
and a local scale between 1703 m and 4638 m, as well as a regional scale beyond 4638 m
(Figure 5).

Figure 5. Result of box-counting fractal analysis of tungsten occurrences.

A Fry analysis was conducted to further investigate the multi-scale ore-controlling
mechanisms revealed by the above fractal results. As shown in Figure 6a, 13,806 Fry points
were generated from 118 tungsten occurrences. Based on this, rose diagrams were drawn to
unveil the preferential trends of plausible ore-related controls at various scales. The results
indicate that the Fry points illustrate evident NE and EW trends at the local and regional
scales, respectively (Figure 6c,d); however, the rose diagram shows no obvious dominant
trend at the camp scale (Figure 6b). This suggests that tungsten mineralization is controlled
by fundamental NE- and EW-trending features, which are mostly likely linked to the NE-
and EW-trending faults in the study area. The NW-trending faults exhibit subtle controls in
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the rose diagrams at all scales, which implies that these faults were either inactive during
the ore-forming periods or were formed after mineralization events, thus exerting subtle
control on mineralization. Such an inference is consistent with the results of a previous
study that performed a distance distribution analysis in this region, which also emphasized
the controls of NE- and EW-trending faults on tungsten mineralization [33].

Activated faults commonly serve as pathways for transporting ore-forming compo-
nents (e.g., metals, fluids, and ligands) from deep-source regions to shallow trap zones.
The NE- and EW-trending faults are believed to play such a role in the Gannan district
due to the Fry analytical results and, thus, can be considered as effective predictor features
closely related to mineralization. In order to dig the nonlinear information from these
features, multifractal indices, including D0, D1, D2, ∆α, and ∆f (α), were calculated using
the framework described in Section 3.2. Figure 7 depicts the contour maps of these indices,
together with a density map of the faults that serves as a numerical representation of the
raw fault data.

Figure 6. Results of Fry analysis of mineral occurrences (a) showing dominant ore-controlling trends
at camp scale (b), local scale (c), and regional scale (d).

The Yanshanian granitic intrusions are interpreted as providing the metals and fluids
required for ore formation, since many previous studies have proven that the tungsten
mineralization in the study area is temporally, spatially, and genetically associated with
Yanshanian intrusions [137–139]. Proximity to outcropped Yanshanian intrusions was em-
ployed as a pathfinder for tungsten mineralization (Figure 8a). In addition, the occurrences
of the Yanshanian intrusions can be further represented by their multifractal indices, as
shown in Figure 8b–f. The magnetic anomalies were used to trace the buried intrusions,
given that intrusive rocks in this region exhibit obvious magnetic susceptibility and sed-
imentary wall rocks have no magnetism [140]; therefore, magnetic anomalies and their
multifractal representations were employed as spatial proxies of mineralization (Figure 9).
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Hydrothermal deposits are direct products of massive metal deposition; therefore,
hydrothermal alterations and geochemical anomalies, which are footprints of ore-forming
chemical deposition, were used as evidential features for MPM. Mappable alterations
including iron-oxide and argillic alterations were extracted from Landsat-8 data after remote
sensing processing (Figures 10a and 11a). The multifractal quantifications of hydrothermal
alterations were also calculated and presented in Figures 10 and 11. Furthermore, W,
Mn, and Fe anomalies were employed as geochemical evidence. However, multifractal
representations of geochemical anomalies are absent in this study, because the original
sampling data necessarily required for fractal calculation are confidential and inaccessible
at present. Instead, we extracted anomaly information from the rasterized maps of W, Mn,
and Fe anomalies as evidential layers for the subsequent MPM modeling (Figure 12).
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of argillic alteration.
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The geological significance of the predictor features in MPM lies in their ability to
recognize mineralization patterns. In this regard, fractal representations of the features are
beneficial in providing discernible information favorable for identifying mineralization
patterns, since various multifractal indices depict the different underlying ore-related pat-
terns of the target features in terms of their irregularities and scaling characteristics. All
the multifractal indices of faults and the raw data of fault density exhibit a similar distri-
bution pattern that highlights NE-trending clustering of high index values. The tungsten
occurrences are identified to be located in the intersection zones of NE-trending high-value
zones with EW-trending highlighted zones (Figure 7). The multifractal representations
of the Yanshanian intrusions have a similar pattern, which delineates the outcropped
zones of the intrusions (Figure 8), except for the ∆α and ∆f (α) of intrusions that exhibit
worm-shaped clusters of high-value cells (Figure 8e,f). The highlighted zones detect the
inner and outer contact zones between outcropped intrusions and wall rocks, which are
interpreted to be favorable locations for mineralization, as the known tungsten occurrences
suit the range of the worm-shaped belts, especially for the western region, where 27 tung-
sten occurrences are situated around a ring-shaped zone (see the marked range shown in
Figure 8e,f). The D0, D1, and D2 of magnetic anomalies outline the extensive areas of high
magnetic susceptibility (Figure 9b–d). The ∆α and ∆f (α) of magnetic anomalies also show
worm-shaped belts, but their correlation with mineralization is weak. Only the tungsten
occurrences in the SW regions coincide with the highlighted zones, whereas most of the
other occurrences fall beyond the range of high-value zones (Figure 9e,f). The original
evidential maps of iron-oxide and argillic alterations have the highest spatial resolution
of 15 m. They provide detailed information regarding altered minerals but, on the other
hand, they may bring about unrelated or noisy information that impedes the recognition of
mineralization patterns (Figures 10a and 11a). The fractal representations of the alterations
assist in extracting ore-related information and in reducing data dimension and volume, as
shown in Figures 10b–f and 11b–f. Among the multifractal indices, the D2 of the alterations
provides distinguishable zonation that is favorable for recognizing mineralization. The
tungsten occurrences can be clearly identified in the limited zones with moderate-to-high
D2 values (Figures 10d and 11d). In contrast, the other multifractal indices exhibit weaker
recognition ability. For example, although most of the known occurrences are located in the
high-value zones in the D0 maps (Figures 10b and 11b), these zones occupy an excessively
extensive area, which is not conducive for AI models in their creation of an efficient criterion
to recognize mineralization.

4.2. Multi-Criteria Feature Selection of Fractal Index Evidential Layers

Five feature selection criteria were used in this study to evaluate the capability of indi-
vidual evidential layers for predicting the prospectivity of tungsten mineralization (Table 1).
Among these criteria, information gain, chi-square, and the Pearson correlation coefficient
are regular and commonly used methods for general feature selection, while P–A plot
and K-means clustering are more relevant to MPM and are endowed with an exploratory
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significance. The normalized density Nd can be used effectively as a quantitative index to
measure the priority of predictor features in terms of their occurrence-capturing ability. For
example, as shown in Table 1 and Figure 13, the ∆f (α) of the faults captures 57.49% of the
known occurrences within 42.51% of the delimited area, yielding the highest Nd ratio on the
P–A plots for fault-related features, followed by the D1, raw density, D0, D2, and ∆α of the
fault distribution. Therefore, when judged by the criterion of P–A plot, the priority ranking
for fault-related features is as follows: ∆f (α) > D1 > fault density > D0 > D2 > ∆α. The
results of the K-means clustering also provide a ranking of the capturing efficiency of the
evidential features. For example, the best cluster for evaluating the D2 of the Yanshanian
granitic intrusions contains 1.71% of the cells, but captures 10.17% of tungsten occurrences,
yielding the highest Nk ratio (5.9474) among the granite-related features, followed by D1,
D0, ∆α, ∆f (α), and the raw granite feature.

Compared to the above-mentioned criteria emphasizing the capturing efficiency of
target predictor features, the regular criteria for feature selection, including information
gain, chi-square, and correlation, weigh the relative importance of evidential features
by evaluating their associations with tungsten occurrences from a data perspective. The
resulting indices of these criteria and their ranks are listed in Table 1. Figures 14–18 provide
a visual summary of the ranking results normalized to a [0, 1] range. Finally, the average
ranks of the five criteria were calculated (Table 1), and the first-ranked features, i.e., fault
density, the ∆α of granite intrusions, D1 of magnetic anomalies, D2 of iron-oxide alteration,
and the D2 of argillic alteration, were selected as the optimal features representative of the
corresponding ore-related elements.
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Table 1. Ranking of evidential features using multiple criteria.

P–A Plot K-Means Information Gain Chi-Square Correlation Average
RankPr Oa Nd Rank Pk Ok Nk Rank Value Rank Value Rank Value Rank

Fauden 56.82% 43.18% 1.3159 3 14.41% 6.78% 2.1254 3 0.2422 1 26.4954 1 0.1964 1 1.8
Fauden_D0 56.75% 43.25% 1.3121 4 9.32% 5.41% 1.7227 6 0.1422 5 16.3944 5 0.1514 4 4.8
Fauden_D1 57.12% 42.88% 1.3321 2 10.17% 5.34% 1.9045 4 0.1456 4 16.0892 6 0.1560 3 3.8
Fauden_D2 56.69% 43.31% 1.3089 5 9.32% 5.24% 1.7786 5 0.1731 2 16.8138 4 0.1579 2 3.6
Fauden_∆α 56.18% 43.82% 1.2821 6 9.32% 3.61% 2.5817 1 0.1352 6 23.6836 2 0.1325 6 4.2
Fauden_∆f (α) 57.49% 42.51% 1.3524 1 9.32% 3.83% 2.4334 2 0.1617 3 20.2765 3 0.1342 5 2.8

Granite 41.58% 58.42% 0.7117 6 28.81% 10.06% 2.8638 6 0.2651 1 56.8926 4 0.2961 2 3.8
Granite_D0 63.09% 36.91% 1.7093 1 10.17% 2.03% 5.0099 3 0.1336 6 68.0716 1 0.1814 4 3
Granite_D1 62.26% 37.74% 1.6497 3 10.17% 1.73% 5.8786 2 0.1336 5 65.2276 3 0.1672 5 3.6
Granite_D2 61.85% 38.15% 1.6212 4 10.17% 1.71% 5.9474 1 0.1336 4 66.7266 2 0.1635 6 3.4
Granite_∆α 62.92% 37.08% 1.6969 2 11.02% 2.78% 3.9640 4 0.1875 2 51.4997 5 0.2991 1 2.8
Granite_∆f (α) 58.03% 41.97% 1.3827 5 11.02% 2.92% 3.7740 5 0.1467 3 38.6398 6 0.1907 3 4.4

Mag 51.80% 48.20% 1.0747 1 34.75% 26.54% 1.3093 5 0.1490 4 11.9883 3 0.1022 1 2.8
Mag_D0 50.38% 49.62% 1.0153 3 30.51% 23.21% 1.3145 4 0.2117 3 12.1122 2 0.0345 6 3.6
Mag_D1 50.34% 49.66% 1.0137 4 26.27% 19.41% 1.3534 1 0.2117 2 12.3268 1 0.0348 5 2.6
Mag_D2 50.51% 49.49% 1.0206 2 26.27% 19.70% 1.3335 3 0.2117 1 11.4590 4 0.0350 4 2.8
Mag_∆α 47.80% 52.20% 0.9157 6 9.32% 6.92% 1.3468 2 0.1235 5 7.6186 6 0.0798 2 4.2
Mag_∆f (α) 48.63% 51.37% 0.9467 5 11.02% 9.52% 1.1576 6 0.0923 6 9.2446 5 0.0753 3 5

RSFe 50.51% 49.49% 1.0206 5 11.02% 4.23% 2.6052 2 0.2753 1 4.9470 6 0.1635 1 3
RSFe_D0 54.16% 45.84% 1.1815 4 12.71% 5.65% 2.2496 6 0.1387 4 6.1530 5 0.1020 5 4.8
RSFe_D1 58.85% 41.15% 1.4301 2 16.95% 7.38% 2.2967 5 0.2267 2 19.5754 2 0.1207 3 2.8
RSFe_D2 59.07% 40.93% 1.4432 1 12.71% 4.87% 2.6099 1 0.2185 3 32.1731 1 0.1235 2 1.6
RSFe_∆α 55.15% 44.85% 1.2297 3 14.41% 6.12% 2.3546 4 0.0918 5 13.6986 3 0.1098 4 3.8
RSFe_∆f (α) 47.47% 52.53% 0.9037 6 10.17% 4.24% 2.3986 3 0.0491 6 9.6391 4 0.0904 6 5

RSOH 50.06% 49.94% 1.0024 6 13.56% 4.68% 2.8974 3 0.1305 4 23.0229 3 0.1002 6 4.4
RSOH_D0 54.77% 45.23% 1.2109 4 11.86% 4.03% 2.9429 2 0.1741 3 10.0611 6 0.1512 3 3.6
RSOH_D1 59.01% 40.99% 1.4396 2 17.80% 8.10% 2.1975 5 0.2473 2 31.6592 2 0.1731 2 2.6
RSOH_D2 59.44% 40.56% 1.4655 1 17.80% 7.57% 2.3514 4 0.2531 1 40.0043 1 0.1900 1 1.6
RSOH_∆α 57.09% 42.91% 1.3305 3 15.25% 7.48% 2.0388 6 0.1175 5 17.2985 5 0.1510 4 4.6
RSOH_∆f (α) 51.16% 48.84% 1.0475 5 10.17% 3.25% 3.1292 1 0.0774 6 21.3614 4 0.1155 5 4.2

Pr: percentage of captured occurrences; Oa: percentage of occupied area; Nd: normalized density; Pk: percentage of captured occurrences in best cluster; Ok: percentage of cells included
in best cluster; Nk: capturing measurement of K-means; D0: capacity dimension; D1: information dimension; D2: correlation dimension; ∆α: width of multifractal spectrum; ∆f (α): height
difference of multifractal spectrum; Fauden: fault density; Granite: Yanshanian granitic intrusions; Mag: magnetic anomalies; RSFe: iron-oxide alteration; RSOH: argillic alteration. The
numbers shown in bold are the optimal features through the feature selection.
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4.3. Predictive Modeling

The selected features were employed as evidential input to AI models. Each model
was trained 10 times to yield robust predictions. The model parameters and their optimal
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values derived from the 10-fold grid-search training process are listed in Tables S1–S5 in
the Supplementary Materials.

A comprehensive comparative study of model performance was conducted on the
four AI models trained by predictor features with different representations. The metrics
for assessing model performance include classification accuracy and predictive efficiency
(Figure 19). The former, measured by Accuracy and Kappa index, concerns classification
precision from an algorithmic perspective, while the latter emphasizes the occurrence-
capturing efficiency of mineral potential from an exploratory point of view. The success
rate curve was employed to assess predictive efficiency, as shown in Figure 20. The ANN
model trained by fractal representations yields the highest slope of 9.3785, which indicates
that 78.81% of the known occurrences are successfully captured within 9% of the delineated
area (Figure 20a), achieving the best predictive efficiency, followed by the fractal-trained RF
model with a high slope value of 8.8983. Figure 19 illustrates the overall performance of the
four algorithms trained by datasets with and without fractal representations. ANN and RF
outperform the other two algorithms in classification precision with respect to their leading
values of Accuracy and Kappa index, and they also perform better in predictive efficiency,
except for the RF model trained by raw data, which falls behind the fractal-trained DT
model. Regardless of the differences in model performance, it is noteworthy that, for
a given AI algorithm, a model trained by fractal feature datasets always outperforms
one trained by the raw data, demonstrated in the radar diagram (Figure 19), wherein
each algorithm’s fractal-trained model (depicted in solid lines) encloses its counterpart
(presented in dotted lines).

Figure 19. Radar diagram showing comprehensive performance of AI models.
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Figure 20. Success rate curves of AI predictive models. (a) ANN model trained by fractal dataset.
(b) ANN model trained by raw dataset. (c) RF model trained by fractal dataset. (d) RF model trained
by raw dataset. (e) DT model trained by fractal dataset. (f) DT model trained by raw dataset. (g) LR
model trained by fractal dataset. (h) LR model trained by raw dataset.
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The predictions yielded by the AI models are illustrated in Figure 21. Four levels of
mineral potential, including barren, low potential, moderate potential, and high potential,
are distinguished based on thresholds derived from the intersections of different fitting
lines on the success rate plots (Figure 20), and are delineated on the prospectivity maps
(Figure 21).
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5. Discussion

The comparative results of model performances reveal that, for each AI algorithm,
the model trained by the fractal dataset outperforms its counterpart trained by the raw
dataset. In this section, we discuss how the fractal index features improve the predictive
performance of AI models, and how these models can benefit practical mineral exploration.

Machine learning algorithms have an inherent black-box effect, i.e., they are unable
to offer transparent modeling processes suitable for explaining their predictions. In this
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study, the SHAP approach was employed to explain the output of ANN models which
were found to be optimal models after model assessment, with a focus on their predictive
performance when using four fractal index features (i.e., the ∆α of granite intrusions, D1 of
magnetic anomalies, D2 of iron-oxide alteration, and the D2 of argillic alteration), compared
to that when employing their raw data. As shown in Figure 22b, the points of the magnetic
anomalies, iron-oxide, and argillic alterations are intertwined in their raw datasets. More
specifically, the points with contrasting values cluster in the SHAP range of [−0.5~0.5]
for the magnetic anomalies, [−0.6~0.3] for iron-oxide alteration, and [−0.1~0.2] for the
argillic alteration, which indicates that both the high and low values of these features
endow equally poor contributions to the model output. In contrast, the points derived
from the fractal dataset for magnetic anomalies, iron-oxide, and argillic alteration are
distinguishable in their value colors and positions on the SHAP-axis (Figure 22a). Most
of the red points with high feature values are distributed on the positive SHAP-axis and
clearly separated from the blue points with low feature values on the negative SHAP-axis.
From a geological perspective, these anomaly-related features serve as indirect pathfinders
for mineralization, and commonly have subtle correlations with mineralization, thus
exhibiting less distinguishable patterns on the SHAP plots. The fractal representations of
these anomalies significantly improve their contributions to the model output by extracting
the underlying nonlinear ore-related information from the raw data. Yanshanian intrusions
are widely recognized as the most prominent ore-controlling factor in this region and serve
as a direct predictor of tungsten mineralization. They exhibit a clearly distinguishable point
pattern on the SHAP plot of the raw data (Figure 22b). Since this feature is represented
by proximity to Yanshanian intrusions, the blue points with low values, denoting closer
distances to the intrusions, make greater contributions to the model output. The fractal
representation (∆α) of the Yanshanian intrusions also has a strong impact on the model
output, with almost all the red points clustered in a range of [0.1~1.3] on the positive SHAP-
axis. In summary, for a given algorithm, fractal representations provide more discriminative
and definitive feature values that enhance the cognitive capability of the AI model trained
by these data, thereby improving its predictive performance, especially for those indirect
predictor features that show subtle correlations with the mineralization in the raw dataset.
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The contribution of individual predictor features on each model can be illustrated in
a more straightforward way when they are supported by information gain, as shown in
Figure 23. The W and Mn anomalies, which serve as direct ore-forming elements, exert
the most important influence on the predictive model in all the models. In the models
trained by raw datasets, the Yanshanian intrusions also make a significant contribution,
whereas other features contribute little to model output (Figure 23b). Such a pattern is
coherent with the findings of our previous two studies [18,101]. The iron-oxide and argillic
alteration, newly employed in this study, make very poor contributions to the raw datasets
(Figure 23b). In the models trained by fractal datasets, the ∆α of the Yanshanian intrusions
still make the third most significant contribution, while the D2 of iron-oxide alteration
and D2 of argillic alteration make a strikingly important contribution to the predictive
models, especially for the D2 of argillic alteration, which achieves an average weight
comparable to the Yanshanian intrusions (Figure 23a). Such findings are beneficial to the
practical prospecting work undertaken in this study. As a matured ore district, prominent
ore-controlling factors such as Yanshanian intrusions have long been applied in mineral
exploration, and the mineralization locations that are closely related to these factors and are
easy to recognize have already been explored. The new mineralization clues are important
but hard to find. Remote sensing alterations have been investigated but have proven to be
ineffective due to high vegetation cover and to the complex distribution pattern of altered
minerals. The findings of this study imply that the fractal representations of raw remote
sensing data provide a surprisingly effective way to recognize mineralization patterns and,
thus, contribute to mineral prospectivity. However, it should be noted that not all the fractal
representations facilitate model prediction. Magnetic anomalies show the worst weight
in the fractal-trained models (Figure 23a), whereas they make a moderate contribution to
the models trained by raw data (Figure 23b). This may be attributed to the low resolution
of the magnetic predictor map (Figure 9a), which may itself reflect a vague relationship
with mineralization in the raw dataset; however, its fractal representations are not precise
enough to extract nonlinear ore-related information.
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Mineral exploration is an expensive and high-risk activity; therefore, predictive ef-
ficiency and risk evaluation are essential for practical MPM, in addition to the common
model assessment that focuses mainly on predictive precision. The success rate curve is em-
ployed in Section 4.3 to assess predictive efficiency. The calculation of uncertainty is further
introduced here to evaluate the risk by 10-iteration predictive modeling. The uncertainty
values and prospectivity values are illustrated in Figure 24. The probability–uncertainty
diagrams for all the models show arch-shaped patterns to varying degrees. This pattern
suggests that the cells with high or low prospectivity values have low uncertainty, while
the cells with a moderate level of prospectivity have high uncertainty. This arch-shaped
pattern is favorable for mineral exploration from an exploratory perspective, since the
regions with the highest prospectivity values are the first-order regions of interest for future
prospecting, and it is profitable to know that the high prospectivity values of these regions
are verified to be certain and reliable. A scenario of prospectivity targeting that considers
both predictive efficiency and exploration risk is presented in Figure 24. Different levels of
mineral prospectivity are defined by the thresholds derived from the success rate curves
(Figure 20), and an uncertainty threshold of 0.1 is determined to delineate low-risk zones,
as the uncertainties of most cells containing known occurrences fall within this range. In
this scenario, the final exploration targets are delineated by the overlapping regions of
high-potential zones and low-risk cells (Figure 24). Targeting efficiency, which is similar
to predictive efficiency and defined as the percentage of occurrences included (i.e., the
number of occurrences within low-risk regions/total number of tungsten occurrences),
divided by the percentage of cells involved (i.e., the number of low-risk cells/total number
of cells), is used to quantitatively measure targeting performance (Table 2). This reveals
that all the AI models benefit from the employment of fractal index feature datasets, with a
12.83%, 11.1%, 14.42%, and 4.2% improvement in targeting efficiency for the ANN, RF, DT,
and LR models, respectively (Table 2).

The work presented in this paper is the third MPM study undertaken in the Gannan
district with the same labelled dataset. Compared to the previous two studies, which
were characterized by the employment of a deep learning algorithm [18] and few-shot
learning [101], this study contributes to the improvement of the predictive performance of
regular AI models by enriching predictor feature sets rather than further introducing newly
proposed machine learning algorithms with complex architecture. In this contribution, iron-
oxide and argillic alteration extracted from remote sensing data were utilized as predictor
features, which integrated the predictor feature set with all four multi-source data that
are commonly used in MPM studies, including geological, geophysical, geochemical, and
remote sensing information. Furthermore, and more importantly, the fractal representations
of the raw dataset greatly enrich the available features used for model training. The results
proved that, for a given machine learning algorithm, the enriched feature set is beneficial
in improving classification accuracy (Figure 19), predictive performance (Figure 20), and
targeting efficiency (Figure 24 and Table 2). The framework and findings of this paper can
provide an alternative for any AI-driven MPM study troubled by scarce predictor features
or the poor performance of available features.
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Figure 24. Scatter plots showing prospectivity and uncertainty of AI models. (a) ANN model trained
by fractal dataset. (b) ANN model trained by raw dataset. (c) RF model trained by fractal dataset.
(d) RF model trained by raw dataset. (e) DT model trained by fractal dataset. (f) DT model trained by
raw dataset. (g) LR model trained by fractal dataset. (h) LR model trained by raw dataset.
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Table 2. Targeting efficiency of the low-risk exploration targets delineated by AI models.

Model W Occurrence% Involved Cells% Targeting Efficiency

Fractal-trained ANN 78.81% 8.55% 9.2175
Raw-data-trained ANN 70.34% 8.61% 8.1696

Fractal-trained RF 50.85% 4.64% 10.9591
Raw-data-trained RF 55.93% 5.67% 9.8642

Fractal-trained DT 62.71% 7.45% 8.4174
Raw-data-trained DT 63.56% 8.64% 7.3565

Fractal-trained LR 65.25% 9.83% 6.6378
Raw-data-trained LR 66.95% 10.51% 6.3701

6. Conclusions

AI models boost MPM tasks in a data-driven way, but they suffer from noisy and
unrepresentative inputs. In this study, two attempts have been made to address this issue,
namely (i) the introduction of fractal and multifractal analyses for digging and extracting
the nonlinear ore-related information from the raw feature dataset, and (ii) the employment
of multi-criteria feature selection to choose the optimal representations of the predictor
features favorable for training AI models.

Eight multi-source evidential features, including NE- and EW-trending faults, Yansha-
nian granitic intrusions, magnetic anomalies, iron-oxide alteration, and argillic alteration, as
well as W, Mn, and Fe anomalies, serve as predictor evidence based on box-counting fractal
calculation, Fry analysis, and understanding of the mineral system. A set of multifractal
indices including D0, D1, D2, ∆α, and ∆f (α) were calculated and assigned to each predictive
unit, so as to represent different aspects of the target features regarding their irregularities
and scaling characteristics. The P–A plot, K-means clustering, information gain, chi-square,
and the Pearson correlation coefficient were jointly utilized for feature selection. The results
indicate that fault density, the ∆α of Yanshanian intrusions, D1 of magnetic anomalies,
D2 of iron-oxide alteration, and the D2 of argillic alteration averaged first rankings in the
corresponding feature representations, and can be considered to be the optimal features
used for training AI models.

The results of the model evaluation suggest that all the predictive models trained by
the fractal index feature dataset outperform their counterparts trained by raw dataset in
terms of Accuracy, Kappa index, and predictive efficiency. The SHAP analysis attributes
the superior performance of the fractal-trained models to improvement in the cognitive
capability of these AI models trained by fractal index features, which are more discrimi-
native and definitive. This improvement is especially significant for the indirect predictor
features that show subtle correlations with mineralization in the raw dataset. Furthermore,
the fractal-trained models benefit practical mineral exploration by yielding exploration
targets that achieve higher capturing efficiency and lower risk than the models trained
by the raw dataset. In particular, the fractal representations of remote sensing alterations
provide an effective way to recognize mineralization patterns and to contribute to mineral
prospectivity.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/fractalfract8040224/s1, Source codes and used data: Table S1:
Parameters used for training machine learning models; Table S2: Optimal parameters of ANN models
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