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Abstract: Soil arching is significantly influenced by relative density, while its mechanisms have barely
been analyzed. A series of DEM numerical simulations of the classical trapdoor test were carried
out to investigate the multi-scale mechanisms of arching development and degradation in granular
materials with different relative density. For analysis, the granular assembly was divided into three
zones according to the particle vertical displacement normalized by the trapdoor displacement δ. The
results show that before the maximum arching state (corresponding to the minimum arching ratio),
contact forces between particles in a specific zone (where the vertical displacement of particles is
larger than 0.1δ but less than 0.9δ) increase rapidly and robust arched force chains with large particle
contact forces are generated. The variation in contact forces and force chains becomes more obvious
as the sample porosity decreases. As a result, soil arching generated in a denser particle assembly is
stronger, and the minimum value of the arching ratio is increased with the sample porosity. After
the maximum arching state, the force chains in this zone are degenerated gradually, leading to a
decrease in particle contact forces in microscale and an increase in the arching ratio in macroscale.
The recovery of the arching ratio after the minimum value is also more significant in simulations
with a larger relative density, as the degeneration of contact force chains is more obvious in denser
samples. These results indicate the importance of contact force chain stabilities in specific zones for
improving soil arching in engineering practice.

Keywords: soil arching; discrete element modeling; persistent homology; multi-scale analysis;
relative density

1. Introduction

Soil arching in geotechnical engineering, investigated by Terzaghi [1], has attracted
increasing attention in recent years as it is a general phenomenon in sandy soil and other
granular materials. Soil arching is developed when a soil mass yields. The shear resistance
developed at the interface between the yielded portion and the adjoining stationary portion
will result in stress transformation and redistribution. The degree of soil arching can be
assessed through the arching ratio (ρ),defined as the ratio of the stress within a certain
area to the overburden stress at the same location [2]. The variation in the arching ratio
with the increase in relative displacement of soil mass can be described by the ground
reaction curve (GRC), as presented in Figure 1 [3]. GRC is very important in describing
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soil arching because it can clearly illustrate the four stages of soil arching: initial arching,
maximum arching, load recovery, and the ultimate state. The applicability of the GRC to
describe the load–displacement relationship in a trapdoor test has been investigated by
several authors [4–6].
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Recently, to further analyze the mechanisms of soil arching evolution as shown in GRC,
many researchers have also conducted single trapdoor tests [7,8] and multiple trapdoor
tests [9,10]. According to these studies, soil arching evolution is related to the progressive
development of slip surfaces induced by relative displacement of soil mass. Triangular
slip surfaces are observed at the maximum arching stage, while vertical slip surfaces
are generally observed at the ultimate state. The test results also show that soil arching
evolution is significantly influenced by the relative density (RD), which is defined as:

RD = (nmax − n)/(nmax − nmin), (1)

where nmax, nmin, n represent the maximum porosity, the minimum porosity and the poros-
ity of the granular materials, respectively. In the trapdoor tests with different sample
densities, the arching ratio for the test at a lower relative density is higher than that for the
test at higher relative density, indicating that soil arching is less mobilized in the backfill
at a lower relative density [10]. PIV results of the shear strain field in trapdoor tests show
that triangular slip surfaces also cannot be formed when the relative density of soil mass
is low [11]. On the other hand, DEM simulation results of the trapdoor test also indicate
that the stick–slip behavior of the arching ratio is more obvious for the case with a higher
density at a given fill height [12,13], and the failure mechanisms of dense sand and medium
dense sand in the trapdoor simulations are different [14]. However, previous studies have
not explicitly explained why soil arching shows different development and degradation
processes with different soil relative densities. Since soil arching is widely encountered in
tunnels, pile-supported embankments, retaining structures, etc., and the relative densities
of granular soil in engineering are different from each other, understanding the evolution
mechanisms of soil arching in granular materials with different densities is critical for
geotechnical engineering practices. Actually, the evolution of soil arching is a macroscopic
reflection of the mechanical properties of soil particles in microscale. At present, the load
transfer mechanisms [15] and deformation patterns [16,17] of soil arching in macroscale
have been well examined. In microscale, the particle–particle interaction during the evo-
lution of soil arching [18,19] has been considered extensively, and some effort has also
been made to describe and analyze the particle behaviors in the fill with different particle
sizes [20] and particle shapes [21,22], but how the particle behaviors in microscale influence
the variation in the arching ratio in macroscale is still largely unknown.

In order to bridge the gap between microscale particle behaviors and macroscale
arching effect, mesoscale behaviors related to the force network in soil arching should be
quantitatively analyzed, because the force chains always play a key part in load transfer [23].
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Recently, significant progress has been made toward developing a better understanding
of force networks using a variety of tools [24–27]. In this paper, we focus on the topolog-
ical analysis method—persistent homology (PH) [28,29]—for the analysis of mesoscale
structures in 2D granular material. Persistent homology is a fractal method that performs
multi-scale analysis on fractional complex networks and identifies their topological struc-
tures such as clusters, holes and cavities. Such an approach has been used to discuss
the mesoscale structure of force networks in granular systems that were compressed [30],
vibrated [31,32], sheared [33] and used for the analysis of the yielding of a granular system
during pullout of a buried intruder [34]. Therefore, it allows for formulation of simple
but informative measures describing the force networks, and for comparison of different
networks during the evolution of soil arching.

According to the literature review presented above, a series of 2D DEM simulations
of the trapdoor test were conducted to investigate the soil arching development and
degradation in granular materials with different porosity. Persistent homology (PH) was
adopted in this study to quantitatively analyze the features of force networks at different
arching stages that related, in a broad sense, to so-called force chains. The main objects
of this paper are: (i) Identifying the different development and degeneration processes
of soil arching in granular materials with different relative densities; (ii) Identifying the
corresponding particle behaviors in the different processes; (iii) Specifying how the particle
behaviors in microscale influence the variation in arching ratio in macroscale.

2. Materials and Methods

PFC2D 5.0 is adopted in this study to simulate the trapdoor test procedure and analyze
the multi-scale mechanisms of soil arching. Figure 2 presents the DEM model of the 2D
trapdoor test. In this model, the trapdoor is simulated by a rigid wall at the bottom with
width B = 0.6 m. The height of the granular sample is denoted as H. The distance between
the trapdoor and the two side walls is equal to B. This boundary distance is comparable to
that in the literature [12,20,21,35,36] (range from 0.5B to 2B). A wider boundary distance
would provide more accurate results. However, it would also increase the simulation time
and have little effect on the behaviors of soil arching with different relative densities of
granular material.
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Figure 2. Schematic representation of the DEM model.

The particle size of DEM sample is based on the purely two-dimensional trapdoor
test conducted by Xu et al. [37], in which Taylor–Schneebeli soil analogues with perfect
disk cross-sections were used to simulate soil. Circular disks with three different diameters
(3 mm, 4 mm and 5 mm) mixed at a mass ratio of 1:1:1 are randomly rained into the
rectangular region (1.8 m × H) with different initial frictional coefficients (µp-p = 0.1, 0.3,
0.5) layer-by-layer using the Grid-Method [38] to generate the simulation sample with
different porosity (n = 0.16, 0.18, 0.20). After all particles have been settled down, µp-p
is reset as 0.5 and the assembly is cycled to equilibrium for later simulation. During the
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simulation of trapdoor test, the trapdoor is moved downward and the movement speed is
controlled at 1 × 10−4 m/s so that the simulation process satisfies the quasi-static condition.
As listed in Table 1, six simulations with different sample porosity and buried depth ratio
(H/B) are planned to be conducted in this study. For example, “H1-n0.16” represents a
simulation with H/B =1 and n = 0.16.

Table 1. General configuration of DEM simulation.

Simulation Name H1-n0.16 H1-n0.18 H1-n0.20 H2-n0.16 H2-n0.18 H2-n0.20

H/B 1 1 1 2 2 2
n 0.16 0.18 0.20 0.16 0.18 0.20

Particle number 82,000 80,000 78,000 164,000 160,000 156,000

The Hertz–Mindlin contact model between particles is adopted in this study. The
micromechanical parameters of particles were determined and calibrated from numerical
biaxial tests and numerical trapdoor tests. In the numerical biaxial tests, particles were
randomly generated and then confined to different confining pressures (50 kPa, 100 kPa,
150 kPa) for biaxial compression test simulation. µp-p is adjusted to different values during
the confining process so that the porosity of the particle assembly is controlled at 0.17 before
loading. These parameters are totally the same as the model test conducted by Xu et al. [37].
The comparison between the simulation results and test results is presented in Figure 3,
with the micromechanical properties listed in Table 2. In general, the numerical results are
in good agreement with the experimental results. The maximum deviation between the
numerical and test results of deviatoric stress and arching ratio is around 10%. A relatively
larger deviation is observed in the comparison of volume strain, but these comparisons
show that the micro-mechanical parameters adopted in this study can still capture the basic
variation trend of the volume strain during the shear process.
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Table 2. Micro-mechanical parameters used in DEM analyses.

Parameters Values

Particle density, ρp 2650 kg/m3

Particle shear modulus, G 2.5 × 1010 N/m2

Particle Poisson’s ratio, ν 0.3
Friction coefficient between particles, µp-p 0.5

Friction coefficient between walls and particles,
µp-w

0.0

Sample porosity, n 0.16, 0.18, 0.20
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3. Results
3.1. Macroscale Results Analysis
3.1.1. GRCs with Different Sample Porosity

In order to gather insights into the multi-scale mechanisms of soil arching development
and degradation, as well as the impacts of different sample porosity (n = 0.16, 0.18 and 0.20)
through DEM simulations of this study, the macro phenomena of soil arching, including
variation in the arching ratio and the displacement field evolution during the simulations,
are firstly analyzed.

In all simulations, the trapdoor is moved downward until δ/B = 0.1 (corresponding to
a trapdoor displacement of 60 mm), as 0.1 is recommended as the normalized displacement
(δ/B) corresponding to an ultimate arching ratio [6] according to the present trapdoor test
results. Figure 4a presents the GRCs of the simulations with H/B = 1. The arching ratio
ρ = P/P0 (P is the pressure on the trapdoor and P0 is the overburden stress on the trapdoor)
of H1-n0.16 and H1-n0.18 both decrease to the minimum value at around δ/B = 0.02,
and then increase to a steady ultimate value with the increase in normalized trapdoor
displacement. The minimum values of ρ in H1-n0.16 and H1-n0.18 are 0.55 and 0.62,
respectively, while the steady ultimate values of ρ in these two simulations are almost the
same (around 0.80). This indicates that the soil arching is initially gradually mobilized
by the trapdoor movement, but then degenerated as the trapdoor displacement increases
continuously. The minimum arching ratio increases with the increase in sample porosity,
meaning that the maximum soil arching is stronger in denser samples. However, the GRC
of H1-n0.20 is different. During the whole simulation, ρ continuously decreases to the
steady ultimate value that is identical with the ultimate values in the other two simulations.
As a result, no significant degradation process of soil arching can be observed in loose
samples. This phenomenon indicates the influence of relative density on soil arching. In
view of engineering, soil arching is highly correlated with the shear behaviors of soil. For
loose soil, no obvious strain softening stage can be observed in the stress–strain curve, and
therefore the degradation of soil arching is also insignificant in loose soil.
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Figure 4b presents the GRCs of the simulations with H/B = 2. The variation trends of
the GRCs in Figure 4b are similar to that in Figure 4a. δ/B corresponding to the minimum
arching ratio ρ in the scenario of H/B = 2 is almost identical with that when H/B = 1.
This phenomenon means that the relative displacement needed to fully motivate the
initial maximum soil arching in particle assemblies with different depths is identical. The
soil arching in the simulations with H/B = 2 is observed to be stronger than that in the
simulations with H/B = 1, as the minimum arching ratio on the GRCs of H/B = 1 is smaller
than that on the GRCs of H/B = 2. Therefore, the relative soil movement required to fully
motivate soil arching in the ultimate state when H/B = 2 is larger, so that the normalized
trapdoor displacement corresponding to the steady ultimate value of ρ in the scenario of
H/B = 2 is quite larger than that in the simulations with H/B = 1.
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3.1.2. Displacement Field and the Arching Zones

The soil arching development and degradation process as reflected by GRC can be
attributed to the gradual transformation of the movement patterns of soil mass within the
zone of arching [14]. Although many DEM numerical simulations [21,35,36,39], PIV analy-
ses [7,8,40] and X-ray CT scans [41] have been conducted to investigate the displacement of
soil mass in a trapdoor test, the “arching zone” that dominates soil arching has not been
clearly defined because the deformation patterns of soil mass at different soil arching stages
are complex.

Figures 5 and 6 show the particle vertical displacement fields at different stages of
the simulations with H/B = 1 and 2, respectively. The particle displacement is normalized
by the trapdoor displacement to compare the displacement field at different stages. For
analysis, the DEM sample can be artificially divided into three zones according to the
vertical displacement: (a) “Zone-I” (marked as blue) with vertical displacement of particles
less than 0.1δ; (b) “Zone-II” with vertical displacement of particles less than 0.9δ but larger
than 0.1δ; (c) “Zone-III” (marked as red) with vertical displacement of particles larger than
0.9δ. The area ratios of the different zones denoted in these figures are calculated by dividing
the particle area of a certain zone into the whole particle area of the sample. According to
Figure 5, the boundaries of zone-III are similar to the triangular slip surfaces observed in the
model tests [5,7,9]. The area of zone-III is influenced little by sample porosity, while zone-I
and zone-II are observed to be significantly influenced by sample porosity. The area of
zone-II expands with the increase in sample porosity, leading to the reduction in the area of
zone-I. On the other hand, the area ratios of zone-I and zone-III are both increased with the
increase in trapdoor displacement, while the area of zone-II is decreased. This phenomenon
is more obvious when H/B = 2 (Figure 6). In the simulation results of H2-n0.16, the area
of zone-II decreases by around 19% when δ increases from 10 mm to 60 mm, while these
values in H2-n0.18 and H2-n0.20 are 17% and 13%, respectively. Therefore, significant shear
localization is generated in zone-II as the trapdoor displacement increases. According to
these results, the shear localization induced by the gradual development of particle motion
in zone-II is supposed to have a significant influence on the evolution of soil arching.
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3.2. Microscale Results Analysis
3.2.1. Coordination Number

According to the displacement field analysis, the relative displacement of particle
assemblies will lead to a variation in sample porosity. However, precisely calculating the
porosity in a zone of a DEM sample is quite difficult. Alternatively, the coordination number
is another parameter for evaluating the variation in sample density and the evolution of
microstructure in granular materials. The coordination number represents the average
number of contacts per particle, and it is highly correlated to the volume strain of granular
material and more sensitive than porosity [42]. The coordination number in a zone can be
calculated by:

Z = 2C/N, (2)

where C and N are the total contact number, and the particle number in the zone, re-
spectively. Figure 7 shows the variation in Z in different zones during the trapdoor test
simulations. According to these figures, variation in Z in zone-II is most significant among
the three zones. It decreases with the trapdoor displacement during the whole process
of soil arching development and degradation, and finally reaches a constant value at the
ultimate state when the arching ratio is no longer varied as trapdoor displacement increases,
indicating that the porosity of particle assemblies in zone-II increases continuously during
the evolution of soil arching (including development and degradation). According to a
previous study on the evolution of the coordination number in simulated granular materi-
als, the reduction in the coordination number is generally induced by shear dilation [43].
Therefore, the decrease in Z in zone-II may be largely attributed to the shear dilation of
particle assembly in this zone. As shear dilation is more significant in denser samples, the
reduction in Z in zone-II is reduced with sample porosity. Figure 8 shows the comparison
of Z in zone-II with different sample porosities. It is observed that although Z in zone-II is
initially different in the simulations with different sample porosities, they all decrease to a
consistent ultimate value at the end of the simulation. This ultimate constant value of Z
when H/B = 2 is a little larger than that in the simulations with H/B = 1 because the stress
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level of the particle assembly is increased with buried depth so that a lower decrease in Z is
induced by shear dilatancy when H/B = 2.
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Variation in Z in both zone-I and zone-III is less significant than in zone-II. And,
different to zone-II during the whole simulation process, Z values in both these two zones
are decreased with the increase in sample porosity. For zone-I, the average coordination
number increases during the development process of soil arching, because the upper load
is transferred toward zone-I under the arching effect, leading to the compression of particle
assembly in zone-I. Therefore, as soil arching is degenerated by the continuous increase in
particle relative displacement, it is observed that Z decreases gradually under the lateral
unloading effect and finally reaches a constant value. Especially in the simulations of
H1-n0.20 and H2-n0.20, no obvious decrease in Z is observed in Figure 7e,f, because the
degradation of soil arching in these two simulations is slight. The variation trend of Z in
zone-III is similar to that in zone-I. The maximum value of Z in zone-III is observed to
be larger than the maximum Z in zone-I because the stress level of the particle assembly
in zone-III (at the bottom of the model) is much larger, compared with the stress level in
zone-I at the beginning of the simulation. However, at the end of the simulation, the stress
level in zone-III is decreased under the influence of soil arching so that the ultimate Z value
in zone-III is less than that in zone-I.

3.2.2. Particle Contact Force

Variation in the coordination number of granular assemblies will change the contact
state between particles. The particle contact force, f, in microscale can be resolved into
two components:

f = f nx + f sy (3)

where f n and f s are the normal contact force and the tangential contact force between
particles, respectively. The average values of f n and f s in a certain zone are denoted as <f n>
and <f s>, respectively.

Figure 9 shows the variation in <f n> in different zones during the simulation. Since
the analysis of tangential contact forces evolution leads to similar results with normal
contact forces, it is not discussed here. As we can see in the figures, <f n> in zone-II is
supposed to be important in the development and degradation of soil arching. During the
initial arching stage, <f n> increases rapidly because of the large particle relative movement
and interlocking in zone-II, leading to the sharp decrease in the <f n> in zone-III. Because
the arching ratio is correlated with the contact force acting on the trapdoor, a decrease in
the arching ratio is observed in this process, indicating the gradual development of soil
arching. As a result, the upper load is transferred toward two sides so that the particle
contact force in zone-I increases. Then, <f n> in zone-II decreases gradually with δ because
of the continuous decrease in the coordination number as indicated in Figure 7. As a result,
<f n> in zone-I is also decreased. Meanwhile, a recovery of the arching ratio, representing
soil arching degradation, is observed, according to Figure 9. The variation in <f n> in
different zones tends to be more significant as the sample porosity decreases, which is
coincident with the fact that the development and degradation process of soil arching is
much more obvious in granular assemblies with lower porosity. It is also observed that
the decrease in <f n> in zone-II after the maximum value when H/B = 1 is more significant
than that in the scenario of H/B = 2, and therefore, degradation of soil arching in H1-n0.16
and H1-n0.18 is more obvious than that in H2-n0.16 and H2-n0.18. On the other hand,
it is noted that the evolution of <f n> in H2-n0.20 shows a different tendency comparing
with other simulations. The <f n> in the three zones all decrease gradually as δ increases.
According to Figure 6c, zone-II extends to the rigid boundaries in this simulation. The
different evolutionary tendency of <f n> may be attributed to the boundary effect.
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Figure 9. Evolution of the average normal contact force against the trapdoor displacement:
(a) H1-n0.16; (b) H2-n0.16; (c) H1-n0.18; (d) H2-n0.18; (e) H1-n0.20; (f) H2-n0.20.

The mobilization of friction between two contact particles can be mathematically
evaluated by the friction mobilization index Im [44]:

Im = |f s|/(µf n) (4)

where µ is the friction coefficient between particles. When local failure occurred between
two particles, Im = 1 and particle sliding occurred at the contact. In this study, sliding is
believed to occur when Im is larger than 0.9999, and a slip ratio is defined as the number
of sliding points divided by the total contact numbers. Figure 10 presents the slip ratios
in different zones. According to the figures, the slip ratios of different zones in different
simulations all increase sharply during the same initial stage. Then, they decrease sub-
stantially and maintain nearly constant with increases in trapdoor displacement. In all
simulations, it is observed that the slip ratio in zone-II is obviously larger than that in the
other two zones, and the slip ratios in zone-I and zone-III are generally identical. Therefore,
the friction mobilization degree in zone-II is the highest among the three zones. The slip
ratio of zone-II increases rapidly during soil arching development, indicating that the
friction between particles in zone-II is fully mobilized in this process. Comparing with
Figure 9, it is interesting to find that the slip ratio in zone-II reaches the maximum value
at a similar trapdoor displacement, corresponding to the maximum value of <f n> and the
minimum arching ratio value. Then, as soil arching is degenerated gradually, the slip ratio
in zone-II also decreases and reaches a constant value at the end of the simulation. As
presented in Figure 11, the maximum sliding ratios in zone-II decreased with the initial
porosity. However, they tend to the same residual value at the end of the simulation. The
decreases in the sliding ratio in zone-II may be attributed to the continuous decreases in
the coordination number. The sliding contact fades away as the porosity increases, leading
to particle rearrangement and a decrease in the sliding ratio. On the other hand, it can also
be observed that the sliding ratios in zone-I and zone-III also initially increase because of
the particle dislocation induced by trapdoor movement, but then they decrease rapidly to
a low level (less than 30% of the sliding ratio in zone-II) with soil arching evolution and
load redistribution.
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3.3. Mesoscale Results Analysis

Variations in particle contact force and the coordination number mean that the mesoscale
behaviors related to the force network, spanning roughly 10–15 particles, are also influ-
enced by soil arching. In order to analyze the mesoscale cluster structure of force networks’
evolution during soil arching development and degradation, the topological analysis
method—persistent homology (PH) [23,24]—is adopted in this study. PH could be thought
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of as a tool for describing the weighted force networks between particles in the form of
diagrams, so called persistent diagrams (PDs), which are obtained by filtering, or thresh-
olding, the strength of the interactions between the particles. For example, considering a
normal contact force network between particles in Figure 12, the numbers in Figure 12a
represent the magnitude of particle contact force, and the simplest persistence diagrams in
Figure 12b, called PDβ0, encode how distinct connected components in the force network
appear and then merge as the threshold θ (denoted the normal contact force value here)
decreases. Each point (called a generator) in this diagram has two coordinates: ‘birth’ and
‘death’. A birth in PDβ0 occurs when an edge not connected to any existing edge is added
to the contact force network, or a set of all contacts, and a death occurs when a newly added
edge connects two existing force networks. Each point (b, d) (where b denotes the birth
coordinate and d denotes the death coordinate) in PDβ0 describes a feature of the network,
and the lifespan of a point (defined as b–d) can be interpreted as the notable degree of the
feature. Therefore, PDβ0 can essentially trace how ‘force chains’ appear as the filtration
level is decreased, or disappear as two structures merge. The reader is referred to [24] for a
more in-depth presentation of this method.
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Figure 12. Toy example illustrating contact force network and persistence diagrams: (a) Normal
contact force network; (b) Persistence diagrams PDβ0.

In order to analyze the mesoscale cluster structure of force networks’ evolution during
soil arching development, the persistence diagrams of the normalized force networks (all
contact forces are normalized by the corresponding <f n> in different zones) are computed.
according to the DEM simulation results. Figures 13 and 14 show the corresponding
diagrams of the H1-n0.16 and H2-0.16 simulations, respectively. In the analysis of these
results, it is important to remember that the points (generators) that are close to the diagonal
represent features that persist over only a small range of thresholds and, therefore, are
not significant for the purpose of identifying robust features. According to Figure 4, soil
arching develops gradually when δ increases from 0 mm to around 10 mm. During this
process, a lot of generators with large ‘birth’ coordinates can be observed away from the
diagonal of PDβ0, meaning that robust contact force chains with large normal contact
force are generated. And these arched force chains are mostly within zone-II. Then, as soil
arching is degenerated gradually, the robust cluster structures disappear and the generators
in zone-II gradually shrink to the diagonal of PDβ0. This phenomenon can be observed in
both Figures 13 and 14.

On the other hand, information about the variations in the contact structure within
zone-I and zone-III is not readily available from the point clouds in Figures 13 and 14.
Hence, the average lifespans of all points within different zones are then calculated and
presented in Figure 15. Generally, long lifespan represents robust force chains in the contact
force network. As shown in the figures, in the simulations with n = 0.16 (H1-n0.16 and H2-
n0.16), the average lifespan of generators in zone-II increases with trapdoor displacement
during the initial arching stage (δ < 10 mm), meaning that robust force chains with large
normal contact force are formed in this zone. Under the influence of this arched force chain,



Fractal Fract. 2024, 8, 247 13 of 19

the particle contact force acting on the trapdoor is decreased, leading to the decrease in the
arching ratio in this process. Then, the average lifespan of generators in zone-II decreases
gradually with trapdoor displacement (δ ≥ 10 mm), meaning that the arched structure
of the force chain is weakened and destroyed. As a result, load recovery is observed on
the GRC.
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Figure 13. PDβ0 of the contact force networks in different zones (H1-n0.16): (a) δ = 0 mm (K0 condi-
tion); (b) δ = 5 mm; (c) δ = 10 mm (maximum arching); (d) δ = 20 mm; (e) δ = 40 mm; (f) δ = 60 mm.
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Figure 14. PDβ0 of the contact force networks in different zones (H2-n0.16): (a) δ = 0 mm (K0 condi-
tion); (b) δ = 5 mm; (c) δ = 10 mm (maximum arching); (d) δ = 20 mm; (e) δ = 40 mm; (f) δ = 60 mm.

Similar trends can also be observed in the simulations of n = 0.18 and n = 0.20, but
the variation in the average lifespan of the generators tends to be less significant with the
increase in sample porosity, which corresponds to the variation in the arching ratio and
<f n> in different simulations. Figure 16 presents the comparison of the average lifespan
of generators in zone-II of different simulations. The maximum average lifespan value is
decreased with the initial porosity, but, similar to the average coordination number and
the slip ratio, the residual values of the average lifespan at the end of the simulations
with different initial porosities are identical to each other. According to these results, the
variation in average lifespan may be attributed to the particle motion with increasing
trapdoor displacement. In dense samples, during the initial arching stage, particle contact
in zone-II decreases because of sliding and the coordination number decreases sharply,
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too. With this effect, particle contact force is increased, and arched force chains are formed
gradually in this stage so that the average lifespan is increased. Under the shield of these
arched force chains, the arching ratio is decreased. Then, as relative displacement between
particles in zone-II continues to increase, particles separate with each other gradually,
the coordination number continuous decreases and <f n> starts to decrease. As a result,
the arched force chains are degenerated, leading to the soil arching degradation. In loose
samples, a smaller decrease in the coordination number means that contact particles in zone-
II would not separate further. Force chains are gradually formed in zone-II, as indicated by
the average lifespan, and no obvious load recovery stage is observed in this case.
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Figure 15. Variation in average lifespan of PDβ0 in different zones during the simulations:
(a) H1-n0.16; (b) H2-n0.16; (c) H1-n0.18; (d) H2-n0.18; (e) H1-n0.20; (f) H2-n0.20.
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On the contrary, the average lifespan of generators in zone-I and zone-III show adverse
variation trends. This phenomenon indicates that the force chains in zone-I and zone-III
are degenerated when the force chains in zone-II are reinforced during the development of
soil arching. Then, the force chains in zone-I and zone-III develop gradually as the force
chains in zone-II are degenerated by the decreasing particle contact force when δ ≥ 10 mm.
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4. Discussion

In this work, multi-scale analysis on the mechanisms of soil arching development and
degradation in granular materials with different relative density was conducted through a
series of DEM simulations of the trapdoor test. Analysis of results indicates that the evolu-
tion of force chains and particle contact forces in zone-II is important in the development
and degradation of soil arching. The main results are summarized in Table 3.

Table 3. Summary of the main analysis results.

Factors
Arching State

Influence of Relative Density
Development Degradation Ultimate State

Arching ratio Sharply decreased Slowly increased Constant value
The minimum value is increased
with density, while the ultimate

value is little influenced by density

Coordination
number in zone-II Sharply decreased Slowly decreased Constant value

The variation is more significant in
denser samples, while the ultimate
value is little influenced by density

Average particle
contact force in

zone-II
Sharply increased Slowly decreased Constant value

The variation is more significant in
denser samples, while the ultimate
value is little influenced by density

Slip ratio in zone-II Sharply increased Slowly decreased Constant value
The maximum value is increased
with density, while the ultimate

value is little influenced by density

Average lifespan of
force network in

zone-II
Sharply increased Slowly decreased Constant value

The maximum value is increased
with density, while the ultimate

value is little influenced by density

Careful analysis of the mesoscale network structure through PH in this study provides
new insight into the development and degeneration of soil arching. According to the analy-
sis results in zone-II, before the maximum arching state (corresponding to the minimum
arching ratio), robust arched force chains with large normal contact forces are generated
because of the interlocking between particles. As a result, contact forces between particles
in zone-II increase rapidly. After the maximum arching state, the arched force chains are
degenerated gradually with the continuous increase in trapdoor displacement, leading
to the continuous decrease in particle contact forces and an increase in the arching ratio.
The arched force chains are more easily generated in denser samples, leading to a stronger
maximum arching in the cases with higher density. However, as the slip ratio, the average
particle contact force and the average lifespan of the force network all reach the same value
at the ultimate state of soil arching, regardless of relative density, the ultimate arching ratio
is also little influenced by porosity.

In practical engineering, such as pile embankments, soil arching will be degenerated
gradually with the continuous increase in relative settlement between the pile and the
sub-soil, leading to the decrease in the pile–soil stress ratio and pile efficacy, which is not
favorable to the whole structure. A higher compaction degree can improve the performance
of the embankment, but it should also be noticed that soil arching degeneration is more
significant in denser fills. According to this study, soil arching development and degrada-
tion can be attributed to the evolution of arched force chains in specific zones. Therefore,
improvement of the stability of force chains in this specific zone, such as adding geotextiles,
is supposed to be considered in the measures to improve the persistence of soil arching and
performance of pile-supported embankments. On the other hand, the method and results
presented in this study can also provide guidance for studies of soil arching under complex
conditions, such as surcharge loading, suffusion influence, etc.

However, it is noted that the DEM simulations in this paper are conducted under 2D
conditions with circle particles, so it cannot capture the influence of particle shape and
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particle size on the multi-scale mechanisms of soil arching development and degradation
in real 3D conditions, which also needs further analysis.

5. Conclusions

In this study, two-dimensional DEM numerical analysis was conducted to investigate
the multi-scale mechanisms of soil arching development and degradation in granular mate-
rials with different relative density. Six DEM simulations, considering two different buried
depth ratios of granular assemblies with three different porosities of particle assembly,
were conducted. For analysis, the particle sample is artificially divided into three zones
according to the normalized vertical displacement field: (a) “Zone-I” with vertical displace-
ment of particles less than 0.1δ; (b) “Zone-II” with vertical displacement of particles less
than 0.9δ but larger than 0.1δ; (c) “Zone-III” with vertical displacement of particles larger
than 0.9δ. The evolution of the mesoscale structure of contact force networks during the
evolution of soil arching is quantitatively analyzed through persistence homology. The
influence of force network evolution on the macroscopic and mesoscopic phenomena of
soil arching are carefully evaluated. The major conclusions are summarized according to
the analysis results:

1. The porosity of particle assembly has a significant influence on the development and
degradation of soil arching. According to the ground reaction curves (GRC), soil
arching generated in a denser particle assembly is stronger as the minimum value of
the arching ratio is increased with the initial porosity. However, the arching ratios at
the end of simulations with different initial porosities are identical. The recovery of
the arching ratio after the minimum value is more significant in the simulation with a
denser particle assembly, which indicates a more obvious degeneration of soil arching.
In macroscope, the development and degradation of soil arching can be attributed to
the shear localization generated in zone-II at different arching stages according to the
normalized vertical displacement fields.

2. According to the microscale analysis accounting for the coordination number and the
slip ratio of contact, particle friction is mobilized and dilatancy is generated during
the initial arching stage, leading to the rapid development of soil arching in a granular
assembly. The granular fills in zone-II undergo the most significant shearing during
the simulations. As a result, soil arching is highly correlated to the particle contact
forces’ evolution in zone-II. In all cases, the average normal contact forces in zone-II
increase during the development of soil arching. Then, they decrease gradually after
the maximum arching stage, accompanied with soil arching degradation.

3. Quantitative network analysis results indicate that the force chains show different
evolution in simulations with different sample densities. The force chains in zone-II
influence both the particle behaviors in microscale and the arching ratio in macroscale.
Before the maximum arching state (corresponding to the minimum arching ratio),
robust force chains with large normal contact forces are generated in zone-II. Stronger
force chains are generated in denser samples at the maximum arching state. After
the maximum arching state, the arched force chains are degenerated gradually with
relative displacement between particles, leading to the decrease in normal particle
contact forces in microscope and the increase in the arching ratio in macroscope. In
loose samples, force chains are gradually generated with relative soil displacement
until the ultimate state of soil arching, so no obvious degradation of soil arching
is observed.

4. The slip ratio, the average particle contact force and the average lifespan of the force
network in zone-II undergo similar evolution processes during the development and
degradation of soil arching, but all reach the same value at the ultimate state of soil
arching regardless of relative density. As a result, the arching ratio at the limit state of
soil arching is also independent with the relative density.
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