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Abstract: This paper proposes an automatic, machine learning methodology for precision agriculture,
aiming at learning management zones that allow a more efficient and sustainable use of fertiliser. In
particular, the methodology consists of clustering remote sensing data and estimating the impact
of decision-making based on the extracted knowledge. A case study is developed on experimental
data coming from winter wheat (Triticum aestivum) crops receiving site-specific fertilisation. A first
approximation to the data allows measuring the effects of the fertilisation treatments on the yield
and quality of the crops. After verifying the significance of such effects, clustering analysis is applied
on sensor readings on vegetation and soil electric conductivity in order to automatically learn the
best configuration of zones for differentiated treatment. The complete methodology for identifying
management zones from vegetation and soil sensing is validated for two experimental sites in
Denmark, estimating its potential impact for decision-making on site-specific N fertilisation.

Keywords: unsupervised learning; interpretable machine learning; remote sensing; precision agriculture;
management zones

1. Introduction

Precision agriculture seeks to extract relevant knowledge from various types of sensing
information, in order to implement site-specific treatments for an efficient and sustainable
management of crops. Such knowledge should allow improving the expected benefits for
producers with respect to the already-existing practices and for the environment. In this
way, data can be collected by sensors, continuously monitoring the condition of the field,
and based on machine learning techniques, transforming the available information into
relevant knowledge for intelligent decision-making.

Following the precision agriculture perspective, the management of the agricultural
fields can be further improved to achieve greater gains or savings, by choosing the appropri-
ate management zones for site-specific treatment. In this sense, this study is set out to test if
by learning subareas in the field based on experimental local sensor readings, the expected
costs of fertilisation can be minimised while ensuring the (post-harvest) levels of yield and
quality obtained under a uniform approach. As a consequence, it should be noted that this
application does not address the optimal fertilisation of the fields, but rather, it intends
to show how soil and vegetation local sensors can aid the fertilisation decision process.
Thus, it allows understanding the crop development and building a future decision support
system that takes into account soil and vegetation real-time information.

Under this setting, management zones are understood as a group of parcels or plots,
which are the experimental units that have been used for testing four different N-fertilisation
treatments (consisting of one dose of 50 kg N/ha, from now on kg/ha, or repeated doses
of up to 150, 200, and 300 kg/ha) on the yield and protein contents of winter wheat
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(Triticum aestivum) crops. The available data were collected from experimental sites at
Kalundborg and Bjerringbro in Denmark.

In a first approach to the data, the effects of the fertilisation treatments are estimated,
given the initial (experimental) parcelwise configuration. Then, after learning a new config-
uration for the management zones through unsupervised machine learning techniques, its
impact is estimated by comparing the expected gains with respect to the uniform appli-
cation, testing if a more sustainable use of resources can be achieved without negatively
affecting the quality and quantity of the cereal production.

Revising the existing literature on learning management zones for precision agricul-
ture, there has been a fair amount of studies related to clustering parcels due to soil and
terrain properties for optimising yield [1]. Regarding this issue, quadratic discriminant
and k-nearest neighbour analysis were tested (see again [1]), these being (supervised)
classification techniques, examining the effectiveness of two such delineation procedures
to identify yield temporal patterns from the specific site properties. That is, knowing
the attributes of the field (as in any supervised learning task), the relation between yield
and site attributes was verified, offering evidence for the relevance of studies developing
unsupervised methodologies (like ours) to learn (sub-)optimal configurations of the field.
These studies should allow achieving greater gains for the producers. Besides, it should be
noted that our proposal not only considers yield, but also quality parameters such as the
percentage of protein.

Considering different applications, one decision tool [2] has been developed for zone
mapping application, also estimating the optimal number of management zones. Such a
tool uses satellite imagery and field data provided by users, learning the zones according
to the natural variation of the soil organic matter and nutrients, reporting that their zone
maps were quite similar to what is produced by traditional means. It should be noted that
our methodology goes more into the micro-perspective, with (vegetation and soil) sensor
readings being the main input, as the most basic system that can be implemented for fields
trying to implement precision agriculture.

Another application can be found for geographical data [3], where authors stress the
strong connection between the challenges of precision agriculture with machine learning
problems. More related to our approach, a cluster-based application [4] has been proposed
to identify management zones (for cotton production), focusing on both yield and field
properties together with spatial information. This work uses only one clustering methodol-
ogy, K-means, which is implemented looking at spatially contiguous zones (see also [5]).
As this work also addresses identifying an optimal number of management zones, it should
be noted that our approach does not impose geographical adjacency, as our main focus
consists of the automatic implementation of the methodology by sensor-based machine
learning techniques.

Hence, we explore different types of clustering methods (both hierarchical-agglomerative
and iterative) along with the corresponding stopping criteria, which allow evaluating
how well the partition performs regarding its statistical properties. After the purely
computational analysis, results are validated considering the case study for the wheat
experimental fields.

In this sense, our approach addresses the automatic identification of the areas to be
considered as site-specific management zones for the crops. Furthermore, our methodology
is built on the optimisation of the resulting partition through clustering analysis, and it is
validated with respect to the expected savings in fertilisation costs.

In this line of research, fuzzy K-means was applied to minimise the variability of
cereal (wheat) crops, based on remote sensing information, vegetation, soil, and yield
attributes [6]. There, it was shown that the variance of the crop nutrients, wheat spectral
parameters, and yield can be reduced under the proposed specification of the different
zones. As their focus was mainly concentrated on the use of (satellite) remote sensing,
our approach addresses only soil and vegetation local sensors. We acknowledge that this
(sensor) information could be used together with other sources of information, including
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remote sensing and the observed or historical measurements of yield and crop nutrients
(quality parameters), but aiming at developing a first local precision system, we focus only
on sensor-based management zones and then validate its impact on yield and quality.

Most importantly, we stress that our study examines clustering analysis in detail,
looking at the robustness of the solution from a statistical perspective. Therefore, we
implemented different clustering methods according to a set of key information measures,
optimising the statistical performance of the obtained partitions, which correspond to the
proposed management zones, and validate the results according to the expected savings
in fertiliser application. Besides, we propose a dissention degree among pairs of partitions,
which allows us to measure how much any two zone configurations differ in terms of their
cluster composition.

In order to do so, this paper is organised as follows. Firstly, the setting for collecting
and analysing the experimental data is explained, together with the methodology for
learning management zones. Then, in Section 3, the results are presented and illustrated
with the experimental crop data. In Section 4, the methodology is validated and the results
are discussed, assessing its impact on the producers’ expected gains/savings. The final
Section 5 ends with some conclusions and comments for future research.

2. Methodology
2.1. Sensor Data and Experimental Measurements on Yield and Quality

Two different experimental fields in Kalundborg and Bjerringbro, Denmark, were
used during 2017 to study the effects of site-specific dosage on yield and protein attributes
of wheat crops. Each field was randomly divided into a fixed number of parcels, 108 for
Kalundborg and 52 for Bjerringbro, such that each parcel received a specific dose level of
50, 150, 200, and 300 kg/ha. Hence, there are four initial groupings for parcels according to
the amounts of dosage (kg/ha) they received. Each parcel was 30 × 6 m, where each plot
or parcel was harvested and weighed entirely.

For each parcel, data were collected by means of electrical in situ sensors, measuring
the inherent characteristics of the crop by vegetation and soil electro-conductivity. Vege-
tation was measured by the N-sensor (https://www.yara.us/, accessed on 9 May 2022),
which offers an approximate crop status. The N-sensor scans 50 m2/s and measures light
reflectance in the range from 450 to 900 nm. The N-sensor also has an upward sensor that
measures irradiance in the same wavelength range as the downward sensor. The data
outputs from the sensor were used in combination with an algorithm to give a relative
biomass map and an N-rate map. Information on the specific wavelengths and algorithms
used is not publicly available. In the current study, we used the relative biomass value for
each plot as the input to our model. The N-sensor readings were made per plot, and the
values were from 1.6 to 16.9 and are referred to as “YARA biomass readings” in Table 1.

Table 1. Monthly YARA biomass readings (YBR) by region and treatment.

Region Treatment YBR(1) YBR(2) YBR(3) YBR(4)

Kalundborg

50 1.973 3.277 6.506 8.188
150 1.967 3.404 8.333 10.220
200 1.959 3.347 8.881 11.876
300 1.965 3.458 9.771 12.920

Bjerringbro

50 2.356 3.602 7.792 7.317
150 2.301 3.678 11.842 12.157
200 2.326 3.644 12.382 13.561
300 2.339 3.618 13.861 14.979

On the other hand, the soil electro-conductivity was measured by DualEM
(https://dualem.com/, accessed on 9 May 2022) instruments, which explore simultane-
ously different depths of the soil. For the vegetation measurements, four different readings

https://www.yara.us/
https://dualem.com/


Nitrogen 2022, 3 390

were taken between March and June of 2017 (once per month), and for the soil readings,
four different depths were considered, at 30, 60, 90, and 180 cm.

Additionally, post-harvest measurements were taken on the dry matter yield and
protein of the cereal in the field. Dry matter yield was at 85% dry matter, and protein was
measured using the combustion method, obtaining the total nitrogen and converting it to
protein. In this way, all samples were ground through a 1 mm sieve and stored in small
glass bottles (5.5 cm × 2.5 cm, height × diameter) before the subsequent measurement of
the N concentration. Nitrogen concentration in the ground samples was measured using
an elemental analyser (Vario EL III Germany), and N content in kg/ha was subsequently
calculated by multiplying dry matter by N concentration.

2.2. Assessing Treatment Effects

Given a specific grouping of parcels according to the configuration of management
zones, it is required to infer if there are significant effects of the amount of fertiliser dosage
on the quantity and quality of the production. Then, after verifying the significance of the
factor treatments, the effects that the different fertilisation strategies may have on dosage
savings can be estimated.

Firstly, the initial dosage treatments were explored according to their effects on the
yield and protein of the crop by the analysis of variance, that is measuring the deviation
from the mean performance according to

yij = µ + τi + εij, (1)

where yij is the response variable, in this case the observed amounts of yield, or the protein
production levels, for each treatment i and parcel j. Here, µ is the mean production or mean
protein levels for all parcels, τi stands for the i-th (dosage) treatment effects, and εij is the
random error component, assuming it to have a normal distribution with zero mean and
constant variance (for more details, see [7]).

Then, a family of pairwise comparisons was developed on the dosage treatments
for mean yield and protein levels (as in Tukey [8]), identifying the significant differences
between them (while controlling the risk of rejecting the null hypothesis when in fact it
should not be rejected). In this way, it is possible to select the best treatment under the
initial experimental setting that minimises the use of fertiliser while achieving the same
average yield or protein levels.

Regarding the impact of following different fertilisation strategies (referring to a
uniform or a site-specific strategy), the potential savings on the fertilisation dosage can be
roughly estimated by comparing the amounts of fertiliser that would be used under one
setting (e.g., the experimental configuration) or another (e.g., a uniform dosage according to
the Danish norm for winter wheat). Have in mind that this estimation assumes equivalent
conditions of the fields where the different strategies were implemented.

Furthermore, if we take the Danish norm for winter wheat [9], the uniform fertilisation
would be given by N∗ = 224 kg/ha at Kalundborg (due to its classification as a clay type of
soil) and by N∗ = 212 kg/ha at Bjerringbro (being a sandy clay type of soil). Therefore, it
could be said that if a different setting allows achieving satisfactory mean levels of yield
and quality while using less fertiliser, then this would entail greater savings and higher
potential net benefits.

Besides the experimental setting, we would also like to explore if by learning a different
configuration for management zones, it would be possible to save on fertilisation costs. The
methodology that we examine in the next Section 2.3 will address the construction of new
management zones for optimising the performance of the crops, and it will be validated
against the uniform strategy. Then, its impact on decision-making can be assessed with
respect to how much input of fertilisation could be saved if we applied a site-specific
amount regarding the needs of each zone.

In this way, we take the mean amount of dosage for each (new) zone, computed
over all parcels belonging to that zone, and measure the difference with respect to the
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uniform-norm treatment, checking if there are potential savings that can be achieved while
ensuring desired levels of yield and quality.

Here, the mean expected fertilisation savings Fs are given by

Fs =
1
K

K

∑
g=1

N∗ − Ng, (2)

where K stands for the number of zones, N∗ stands for the (uniform) amount received by
each parcel under the Danish norm for winter wheat, and Ng stands for the mean dosage
applied to all parcels belonging to the same zone.

Next, we present the methodology for learning management zones. Cluster analysis
will be developed, aiming at answering the question of how many clusters allow obtaining
a good partition.

2.3. Learning Management Zones by Cluster Analysis

The methodology of machine learning by clustering techniques was applied on the
characteristic attributes for the agricultural parcels, consisting of the sensor data readings
for soil and vegetation status. The techniques that were included in the analysis are
hierarchical clustering (by forward agglomeration) and the iterative K-means, K-medoids,
and fuzzy K-means. As will be discussed, each method has different construction principles,
which allow obtaining heterogeneous partitions to find the one with the best statistical
properties.

In general, clustering techniques allow searching for a particular structure in the data,
based on evaluations of the similarity among the parcels. Here, the data that were used
for building the clusters, which are regarded as the management zones, consisted of four
readings for vegetation (taken at different points in time between March and May 2017) and
four readings on soil conditions (taken at different depths). Hence, by applying different
techniques and learning the best partition among parcels, the clusters or zones that better
characterise the parcels can be properly identified.

2.3.1. Hierarchical Clustering

The methodology of hierarchical clustering that we explore here is agglomerative (as
opposed to divisive), i.e., under the initial condition that each parcel is on its own, and
the most proximal parcels are joined together under the same cluster until every parcel
makes part of one final cluster. Hence, in the beginning of the process, clusters tend to be
composed by very similar units, but as the process develops, the similarity threshold gets
lower, allowing clusters to be composed of more dissimilar observations.

This technique (see, e.g., [7]) allows building a tree-like hierarchical grouping, where
the most proximal or similar parcels are sequentially grouped together. Therefore, under
this approach, the similarity s(k, l) between two clusters (ck and cl) is measured by the
inverse of the distance function d(k, l), as in

s(k, l) =
1

1 + d(k, l)
. (3)

Here, we take the Euclidean distance function, such that the distance between any pair
of clusters is given by (∀xi ∈ ck, xj ∈ cl)

d(k, l) =
nk

∑
i=1

nl

∑
j=1

√√√√ P

∑
p=1

(xip − xjp)2, (4)

where nk and nl stand for the number of observations i = 1, . . . , nk and j = 1, . . . , nl in
clusters ck and cl , respectively.
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Regarding the linkage criterion for joining different clusters into a new cluster, we
computed two types of partitions. They were built according to the minimum (maximum)
distance, namely the single linkage (complete linkage) between the observations belonging
to different clusters, in this way building different forms of groupings according to the
way we compute the proximity between groups of observations. As an advantage of this
methodology, it allows identifying clusters without a specific predefined shape, under two
opposite linkage criteria (the single linkage, where the most proximal elements determine
the configuration of the cluster, and the complete linkage, where proximity depends on
the most distant elements), as the specific grouping depends on the chain of reasoning for
(cluster) pairwise proximity. Nonetheless, this methodology still requires that the different
clusters are well separated for a good partition to be achieved, but having in mind that the
means to properly assess the quality of a partition will be addressed in Section 2.4.

2.3.2. K-Means Clustering

The clustering methodology of K-means partitions the set of parcels according to
a given number K of different groups. An important requisite for implementing this
algorithm is that the number of groups has to be previously established, so K can be set as
a free parameter to be optimised with respect to the given clustering performance criteria.

The K-means procedure can be understood by a heuristic search of the K best clusters
that minimise the variability within the clusters. This problem is solved by finding the
partition that minimises the within-cluster variability (see, e.g., [10]):

WK =
K

∑
g=1

ng

∑
i=1

P

∑
p=1

(xip − x̄gp)
2, (5)

where the variability is measured against the mean of the cluster. Hence, the mean x̄g of a
cluster cg, with elements xi ∈ cg, stands as the prototype of that cluster.

In general, the K-means procedure obtains spherical clusters of comparable size, but
it is highly sensitive to outliers, as the mean is easily influenced by extreme values. In
this sense, a technique that is not as sensitive as K-means to outliers is used, namely
K-medoids [10], which is examined next.

2.3.3. K-Medoids Clustering

A variant of the K-means procedure allows building partitions that are more robust to
noise and outliers. Instead of the mean, it uses a medoid prototype, which refers to a real
observation. Such a prototype is regarded as the most centrally located observation of the
cluster, with the minimum sum of dissimilarities to the other members of the cluster [10].

The pairwise dissimilarities are computed by the absolute differences:

K

∑
g=1

ng

∑
i=1

P

∑
p=1
|xip − x̂gp|, (6)

where x̂g is the corresponding observation standing as the centroid prototype of the
g-th cluster.

2.3.4. Fuzzy K-Means Clustering

Among the different clustering techniques reviewed up to now, it is observed that the
assignation of a parcel to a cluster follows a hard or binary decision. That is, it belongs to
just one specific cluster. Nonetheless, the frontiers between clusters are not always that
clear, and in most cases, they have to be built under some degree of uncertainty. This is
recognised by different soft methodologies, allowing each observation to belong to multiple
clusters with different degrees of membership (see, e.g., [10,11], but also [12]). Hence, the
fuzzy K-means clustering algorithm is considered here [13], where each element belongs to
different clusters with different degrees of intensity.
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In the same line as the iterative K-means and K-medoids, the fuzzy K-means partitions
the data into a given number of K clusters. Each cluster is represented by a prototype,
which is as similar as possible to all the observations that are members of that cluster,
obtained by minimising the function (see again [13])

K

∑
g=1

n

∑
i=1

µm
igdig, (7)

where µig ∈ [0, 1] stands for the membership degree of observation xi to cluster cg, dig is
the distance function between xi and the (simple) mean prototype of cg, and the parameter
m represents the tolerance for cluster overlapping or how fuzzy the borders of clusters are
allowed to be. That is, a higher value of m allows a smoother transition form one cluster to
another one than with smaller values (see, e.g., [14]).

Then, under the restriction (∀i = 1, . . . , n) that

K

∑
g=1

µgi = 1, (8)

the solution of the fuzzy K-means algorithm corresponds to

µgi =
1

∑K
h=1

( dgi
dhi

) 1
m−1

. (9)

As a general rule, an observation xi is assigned to the cluster for which it has maximum
membership intensity µgi or to the cluster with minimal distance dgi.

Taking the Euclidean distance (4), it can be shown that the cluster prototypes ẍg are
given by

ẍg =
∑n

i=1 µm
gixi

∑n
i=1 µm

gi
. (10)

Besides, by setting the parameter m = 1, both K-means and fuzzy K-means obtain
the same result, the former being a special case of the latter. Generally, the parameter m is
set to be m = 2. Here, we search for the best fuzzy partition with m = 2 fixed, but once
we identify the optimal number of clusters, we search for a different value for m that may
allow obtaining a better performance for the resulting partition.

This fuzzy algorithm allows examining how well separated or how fuzzy clusters
are, comparing its results with the other techniques and arriving at robust solutions for
management zones.

2.4. Stopping Criteria and Cluster Comparison

In order to find the statistically most adequate configuration of clusters for the hierar-
chical, (fuzzy) K-means, and K-medoids, different stopping criteria are used to determine
the optimal number of clusters, or the optimal partitioning of the available data. Such
criteria should be based on information measures assessing the quality of the partition, re-
garding the new knowledge that a partition generates, how close together the observations
are in a cluster, or how separated the different clusters are. The main idea here is to use
different criteria, each one measuring different aspects of the partitions, and choose the
best partition based on the information they provide.

Firstly, we considered the Gap statistic [15], which allows screening a range of possible
best partitions, including a partition consisting of only one cluster. This statistic compares
the total within-cluster variation (as in Equation (5)) for different values of K with their
expected values under a null reference distribution for the data (here taken as the uniform
distribution, which refers to a situation where clusters offer no relevant information). In
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this way, the Gap statistic measures the difference between the within-cluster variation and
its expected value under the null hypothesis.

The Gap statistic is given by (see again [15])

G(K) = E[log(WK0)]− log(WK), (11)

measuring the difference between the expected value of the within-cluster variance under
the null hypothesis (WK0) and the within-cluster variance resulting from clustering the
data observations (WK). Hence, this statistic should be as high as possible, referring to the
relevance of the knowledge generated by the construction of K clusters.

Besides the within-cluster variability, it is also of interest to measure the separation
among clusters as given by the variance between clusters. Such a measure consists of
(see, e.g., [7])

BK =
K

∑
g=1

P

∑
p=1

ng(x̄gp − x̄)2. (12)

In this way, the Calinski–Harabasz index [16] focuses on the ratio between both
variance measures WK and BK, given by

CH(K) =
BK/(K− 1)
WK/(n− K)

(13)

where its value should be as high as possible, as we want to have a low W, i.e., well-
connected clusters, and a high B, i.e., well-separated clusters.

A pair of related indexes is the Silhouette [17] and the C indexes [18], but these ones
measure the dissimilarity between or within clusters. The former is defined by

S(K) =
1
n

n

∑
i=1

b(i)− a(i)
max(a(i)− b(i))

, (14)

where a(i) = 1
ng

∑i,j∈cg dij is the mean dissimilarity of the i-th observation with all other
observations in its cluster and b(i) is the minimum mean dissimilarity of that observation
with the observations of a different cluster. Hence, this index should be as high as possible,
as it measures how separated clusters are.

For the C-index [18], it is defined by

C(K) =
SW − Smin

Smax − Smin
, (15)

where SW = ∑K
g=1 ∑i,j∈cg dij is the distance within clusters and Smax and Smin are the maxi-

mum and minimum distances between all the observations, respectively. Therefore, the
C-index can be understood as the normalised distance within clusters. Therefore, this index
should be as low as possible, as it measures how close together observations are belonging
to the same cluster (see, e.g., [19] and also [20] for a study on the performance of this index
for assessing the quality of a partition among different clustering methods). In fact, this
criterion was used to choose the best partition (from a purely statistical perspective) among
all the different techniques used in our methodology for learning management zones.

Finally, in order to explore the differences between the resulting partitions with the
various methods, relevant information can be gathered on the degree of dissention between
them (regarding how the parcels should be grouped together). The idea here consists of
comparing pairs of partitions Pl ,Pk with the same number of clusters (although, it could
be directly applied to partitions with an arbitrary number of clusters),and measuring on
which elements they disagree that should be grouped together.



Nitrogen 2022, 3 395

Such a degree is computed here by

Diss(Pl ,Pk) =
1

2/n(n + 1)

n

∑
i=1

n

∑
j=i
|pPl

ij − pPk
ij |, (16)

where Diss(·) ∈ [0, 1] and p
Pg
ij is the element of the matrix associated with the partition Pg,

such that p
Pg
ij = 1 if elements (i, j) are grouped together, and 0 otherwise.

In the following Section 3, we present and discuss the results for treatment effects,
management zones, and their impact on decision-making on fertilisation dosage.

3. Results

In this section, we present the results for learning management zones for both regions,
Kalundborg and Bjerringbro. These zones will be discussed in the following Section 4,
assessing their potential impact on the application of N fertilisation and potential savings.

3.1. N Fertilisation Treatment Effects

The summary of the mean yield and protein attributes of the harvested wheat is shown
in Table 2, under the initial experimental configuration.

Table 2. Initial experimental measurements with the mean amounts for both regions.

Region Treatment Yield Protein
(kg/ha) (hkg/ha) (%)

Kalundborg

50 69.8 7.9
150 89.9 9.6
200 90.9 11.2
300 86.2 12.8

Bjerringbro

50 56.2 7.7
150 84.7 8.7
200 87.9 9.9
300 88.1 11.7

As can be seen in Table 2, the mean amounts of yield and percentages of protein
contents for each zone seem to hold a positive relation with the applied amounts of dosage,
except for the yield levels at Kalundborg under the 300 kg/ha treatment, where it shows a
small decrement. Overall, Kalundborg received a mean dose of 172 kg/ha and Bjerringbro
160 kg/ha.

With the data collected from the experimental design, the performance of the crops
and the effects of the different fertilisation strategies can be assessed, with respect to the
levels of yield and protein (as a proxy of quality). In order to infer if there is a significant
effect of the amount of dosage of fertiliser that is applied on the crops, either on the yield or
on the protein contents, the analysis of variance is implemented, as stated in Equation (1).
The results on the effects on yield allow rejecting the null hypothesis for no significant
effects (p-value less than 2 × 10−16) for both regions, and the Tukey simultaneous pairwise
difference test allows identifying the N∗ = 150 kg/ha treatment as the one that achieves
(with a significance of 0.05), with the least amount of fertilisation, the average best results
for both regions.

Meanwhile, examining the variance of the levels of protein as a measure of quality for
the experimental fertilisation treatments, the null hypothesis for no significant effects was
rejected in both Kalundborg (p-value less than 1.22 × 10−15) and Bjerringbro (p-value less
than 2.16 × 10−16). Furthermore, in both regions, the simultaneous pairwise comparison
test allows identifying the N∗ = 300 treatment as the one that achieves the highest levels
for protein contents for both regions (with a significance of 0.05).
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The results for the mean differences in yield and protein are summarised in Table 3 for
both regions. In Kalundborg, both treatments of 150 and 200 kg/ha were similar for yield
(there was no significant difference). Thus, they obtained similar amounts of yield, and
both of them performed better than the other treatments of 50 or 300 kg/ha. On the other
hand, in Bjerringbro, the three treatments of 150, 200, and 300 kg/ha had no significant
differences and were better than the 50 kg/ha treatment. Considering protein contents,
both for Kalundborg and Bjerringbro, there were no pairs of means that were statistically
equal. Thus, all treatment means differed from each other, with the treatment of 300 kg/ha
being the one that achieved the highest performance. In both regions, a clear positive
relation can be observed between the dosage and the amount of protein.

Table 3. Mean differences between the treatments for yield and protein contents in both experimental
regions (* significant differences with p-value ≤ 0.05).

Region Difference in Yield Protein
Treatments kg/ha Difference Difference

Kalundborg

150–50 21.3 * 1.8 *
200–50 22.1 * 3.0 *
300–50 16.4 * 4.9 *
200–150 1.4 1.4 *
300–150 −4.5 * 3.3 *
300–200 −5.1 * 1.9 *

Bjerringbro

150–50 28.1 * 0.9 *
200–50 32.1 * 2.5 *
300–50 31.8 * 4.0 *
200–150 4.3 1.4 *
300–150 3.9 3.1 *
300–200 −0.2 1.7 *

In summary, the experimental data allowed identifying that the N∗ = 150 dose
achieved significantly the same yield results as a higher dosage and the N∗ = 300 dose
achieved better results in the percentage of protein in the crops. However, most importantly,
there is solid evidence for affirming that different fertilisation strategies have significant
effects on both the yield and quality of the cereal crops. Now, focusing on the configuration
of management zones for site-specific fertilisation, we turn our attention to the methodology
for learning management zones on the field based on cluster analysis of vegetation and soil
local sensor data.

3.2. Learning Management Zones

After measuring the effects of the different N treatments, clustering techniques were
implemented with the purpose of grouping parcels into management zones (so that each
cluster is the same as a management zone) that reveal similar characteristics on the basis of
their vegetation and soil properties. The mean readings by region and treatment, for both
vegetation and soil sensor readings, are presented in Tables 1 and 4, respectively.

The methodology for learning management zones consists of implementing hierarchi-
cal clustering with the Euclidean distances and single and complete linkage criteria (HS
and HC for hierarchical-single and hierarchical-complete methods, respectively), K-means
(KM), K-medoids (KD), and fuzzy K-means (FM). To evaluate the partitions produced by
these methods, the Gap, CH, and Silhouette indexes were computed, identifying the best
partitions for each method individually. Finally, to choose the best partition among all
methods, we minimised the C-index.
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Table 4. Four depth soil sensor readings (SSR) by region and treatment.

Region Treatment SSR(30) SSR(60) SSR(90) SSR(180)

Kalundborg

50 6.704 10.931 11.522 16.871
150 6.722 10.917 11.489 16.752
200 6.648 10.815 11.413 16.673
300 6.659 10.892 11.515 16.855

Bjerringbro

50 2.095 8.527 3.895 7.973
150 1.991 8.438 3.981 7.997
200 1.761 8.164 3.555 7.809
300 1.816 8.232 3.696 7.998

Taking into account the sensor data (Tables 1 and 4), capturing the electro-conductivity
of the soil and the status of the vegetation, the different clustering methods arrived at the
results shown in Table 5. To obtain these results, fuzzy K-means was computed with m = 2.
For the clustering methods in general, it can be seen that under the GAP statistic, it is
possible to evaluate a partition consisting of only one cluster, although the one that obtains
the highest GAP value points out that 2 clusters are needed for Kalundborg and 9 clusters
for Bjerringbro.

Table 5. Optimal partition for both regions according to the different stopping criteria (statistic,
number of clusters), for the Gap (GAP), Calinski–Harabasz (CH), and Silhouette (SIL) statistics.

Kalundborg Bjerringbro

Methods GAP CH SIL GAP CH SIL

HS (0.44, 2) (9.32, 2) (0.43, 2) (0.09, 1) (7.86, 2) (0.26, 2)
HC (0.41, 1) (25.6, 3) (0.45, 2) (0.09, 1) (26.9, 9) (0.34, 9)
KM (0.32, 1) (48.6, 3) (0.31, 2) (0.22, 2) (29.1, 9) (0.35, 9)
KD (0.34, 1) (40.8, 3) (0.25, 2) (0.26, 9) (28.7, 9) (0.35, 9)
FM (0.28, 1) (46.8, 3) (0.27, 3) (0.12, 5) (28.9, 8) (0.35, 8)

In this way, for Kalundborg, the hierarchical single-linkage (HS) method obtained
the highest Gap statistic for two clusters, but the worse values for the CH and Silhouette
(SIL) indexes. On the other hand, the CH statistic points out that K-means (KM) and fuzzy
K-means (FM) achieved good partitions (consisting of three clusters), while SIL favoured
K-medoids (KD) with two clusters, as well as FM with three clusters. Hence, any partition
of one, two, or three clusters seems to present a good representation of the different types
of parcels. In case only one group is required, then this would be equivalent to confirming
that a uniform treatment is enough, as no relevant information can be gained by building
some other cluster. In this sense, the fact that the HS allows affirming that building a second
cluster does not reveal any relevant information goes to show that the frontiers between
the different groups are not well separated, at least when measuring from the borders of
clusters (as happens with the single linkage criterion).

Regarding Bjerringbro, the results suggest a quite different intra-field behaviour. The
best GAP statistic was achieved by the KD method with nine clusters, the best CH index by
the KM technique also with nine clusters, and the maximal SIL value by the three KM, KD,
and FM algorithms. For those three, only the FM algorithm identified that eight clusters
allowed for the best partition. Therefore, any partition of nine or eight clusters should
present a good representation of the different types of parcels at this site, revealing a greater
soil/vegetation variability for the configuration of the necessary management zones.

Having applied five different clustering algorithms, we need to determine which one
of them provides the best grouping for each one of the two regions, meaning that we are
interested in comparing the grouping algorithms between them in order to determine the
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partition (and consequently, the number of groups) that provides a better discrimination
of the fields and their required fertilisation. As mentioned above, for this purpose, we
calculated the C-index, given its nice properties for inter-clustering validation tasks (see
again [20]).

The results in Table 6 show that the best partition for Kalundborg was obtained by
the FM method, with three management zones (three clusters), while the best one for
Bjerringbro was the one given by the KD technique, with nine zones (nine clusters). For
the fuzzy algorithm (FM), the fine-tuning of the parameter m, with respect to the number
of clusters, obtained that the best partition was achieved with m = 2 (for both regions,
according to the C-index). Hence, as previously mentioned after discussing the GAP
statistic output, the field in Kalundborg seems to present more difficulty for discriminating
between management zones (perhaps not being that significantly different from a uniform
approach), where the zones are more diverse and are composed by more spherical clusters
(with respect to the sensor information), while for the field in Bjerringbro, the zones are
more densely connected and have more of an arbitrary shape (suggesting a configuration
of zones that reveal heterogeneous parcels and justifying site-specific treatments).

Table 6. C-index for each clustering method (statistic, number of clusters).

Methods Kalundborg Bjerringbro

HS (0.19, 2) (0.21, 9)
HC (0.17, 2) (0.044, 9)
KM (0.21, 2) (0.045, 8)
KD (0.19, 3) (0.0352, 9)
FM (0.15, 3) (0.0359, 9)

Differences between the partitions (following Table 6), according to Equation (16), can
be computed between the resulting partitions with the same number of clusters. Hence,
for Kalundborg, the dissention degree between KD and FM was 0.11, which is a low
dissention degree. Figure 1 presents both partitions with respect to their first two principal
components (the first and second components appear along the horizontal and vertical
axes, respectively). On the other hand, for Bjerringbro, the dissention degree between KD
and FM was of 0.006, which is an even lower dissention degree. That is, both partitions are
almost identical. Figure 2 presents both partitions. This measure on dissention provides
some insight into the stability of the solution, as low values between the different possible
solutions point out their consensus towards arriving at an optimal partition.

(a) (b)

Figure 1. Crop partitions for Kalundborg. The first and second components appear along the horizontal
and vertical axes, respectively. (a) K-medoids for Kalundborg. (b) Fuzzy K-means for Kalundborg.
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(a) (b)

Figure 2. Crop partitions for Bjerringbro. The first and second components appear along the horizontal
and vertical axes, respectively. (a) K-medoids for Bjerringbro. (b) Fuzzy K-means for Bjerringbro.

After learning the zones, we explore in the next section the potential of the proposed
partitions for expected savings on the use of fertiliser.

4. Discussion

Following the results of the clustering methodology on the fields in Kalundborg and
Bjerringbro, we can evaluate the impact of the management zones for decision-making on
the application of fertiliser and their potential expected savings. Therefore, we compared
the amount of fertiliser that would be applied on the field under a uniform dosage according
to the Danish norm and under a site-specific treatment according to the requirements of
each zone. In order to estimate the amounts of fertiliser that should be given to each
zone, we took the mean amount of fertiliser that the parcels belonging to the same zone
received under the initial experiments. In this way, we explored the potential savings that
the management zones can have over the amounts of dosage on the field.

As mentioned above in Section 2.2, the uniform dosage according to the Danish
norm for winter wheat at Kalundborg is N∗ = 224 kg/ha, while for Bjerringbro, it is
N∗ = 212 kg/ha. Then, by assessing the site-specific setting for the management zones
obtained in Section 3.2, the mean expected savings (by Equation (2)) at Kalundborg added
up to 52 kg/ha, which corresponds to the total mean savings (illustrated under Zone 0).
On the other hand, for the crops at Bjerringbro, the expected mean savings added up
to 52 kg/ha (again corresponding to the total mean savings illustrated under Zone 0).
It should be stressed that such savings refer to the amount of fertiliser that would be
applied according to the Danish norm, against the mean amount of fertiliser used in the
site experiments. Hence, we did not control for the effects of applying different amounts
of fertiliser on the yield or protein levels, although from a statistical point of view and as
follows from the analysis of the experimental sites (see again Section 3.1), the yield did
not show significant differences with respect to the different fertilisation levels of 150, 200,
and 300 kg/ha. In this sense, it can be expected that by reducing the amount of fertiliser
inside those bounds of [150, 300], the yield would remain statistically similar to a uniform
application of the Danish norm.

The complete results are shown in Table 7 for Kalundborg and in Table 8 for Bjerringbro,
presenting the savings or losses for each zone and the amount of fertiliser (kg/ha) that
would be applied under the proposed parcelwise configuration (recall that, for each zone,
we took the mean dosage among all its member parcels). The number of parcels belonging
to each zone is given under the column Parcels, and Zone 0 illustrates the total mean
results obtained under a uniform treatment where every parcel receives the same amount
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of 172 kg/ha at Kalundborg and 160 kg/ha at Bjerringbro, given by the total mean dosage
of the initial experiments.

Table 7. Expected savings and mean performance for each zone at Kalundborg.

Zone Parcels Treatment Savings Yield Protein
(kg N/ha) (kg N/ha) (hkg/ha) (%)

1 38 178 46 89.8 11.5
2 25 230 −6 81.9 10.1
3 45 107 117 78.6 8.9

0 108 172 52 84.1 10.3

Table 8. Expected savings and mean-performance for each zone at Bjerringbro.

Zone Parcels Treatment Savings Yield Protein
(kg N/ha) (kg N/ha) (hkg/ha) (%)

1 4 50 162 60.8 8.2
2 5 230 −18 78.5 10.5
3 10 210 2 87.9 9.8
4 5 230 −18 84.6 10.8
5 11 213 −1 89.6 10.1
6 5 240 −28 90.3 10.3
7 4 50 162 53.6 7.5
8 3 166 46 86.2 8.6
9 5 50 162 54.2 7.6

0 52 160 52 79.2 9.5

We can also examine in more detail the composition of each zone regarding its perfor-
mance and potential for optimising the yield and quality of the harvest. In Tables 7 and 8.
we can see the mean levels for each zone, regarding the yield and protein contents. Tak-
ing into account the initial experimental measurements of Table 2, it can be seen that the
proposed management zones reconfigured the parcels aiming at optimising their mean
performance on yield and quality.

Hence, for Kalundborg, three zones were identified with mean yield levels of 78.6,
81.9, and 89.8 hkg/ha. The higher amounts of yield correspond to a higher dose of 178
and 230 kg/ha, achieving also higher mean levels of protein content. For the third zone
with the least fertiliser application, it should be noted that it accomplished higher levels
than the ones obtained under the experimental dose of 50 kg/ha, while using less than the
experimental optimum of 150 kg/ha.

Regarding the Bjerringbro site, nine zones were identified with mean yield levels
ranging from 54.2 to 90.3 hkg/ha. In this case, the higher amounts of yield and quality
do not necessarily correspond to higher levels of fertilisation, as, e.g., with 240 kg/ha,
it obtained a mean yield of 90.3 hkg/ha; with 230 kg/ha, it achieved 84 hkg/ha; for a
166 kg/ha dose, it obtained a mean yield of 86.2 hkg/ha, but anyway achieving similar
levels to the ones obtained in the experimental setting for a dose of 150 kg/ha and higher.
On the other hand, focusing on the three zones with a mean dose of 50 kg/ha, the mean
levels of yield and protein were approximately similar to the ones obtained under the initial
experimental setting for the same amount of fertilisation, but Zone 1 suggests that some of
the parcels that were given a 50 kg/ha application showed potential for achieving a greater
level of yield and quality.

Overall, previously, it was identified that, under the initial experimental setting, the
dose of 150 kg/ha achieved significantly equivalent results as the ones obtained with
a greater dosage. With simulations and backward induction analysis inspired by the
same field experiments in Denmark, it was found that variable rate nitrogen application
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could gain a potential differential gross margin between EUR 19 and 56 per ha based on
a combination of sensor and soil information compared to uniform application [21]. The
proposed zones allow distinguishing which zones could be specifically treated to aim at
higher yield and quality levels and which ones should be left for low yield and quality
production. Then, a future study can be projected taking into account these management
zones in the initial experiments, under the different fertilisation strategies, thus including
from the beginning the soil and vegetation characteristics that local sensors allow capturing.

In [22], it was concluded that the larger the difference in potential yield between
zones, the more economic benefit from zone management. We used intra-field behaviour
to describe differences within the field, and this difference is most probably also related to
the difference in potential yield. However, a strategy based on past yield maps to develop
management zones is not a good guide, and additional information is needed to predict
nitrogen optima [23]. We provided additional information that can be used to develop
management zones. Another possibility is to use satellite data (see, e.g., [24]), as models that
rely solely on remote sensing data are comparatively less expensive than hybrid models.

5. Conclusions

An automatic methodology was proposed and validated for learning management
zones, making use of local sensor data (vegetation and soil readings). Such a methodology
optimises information measures regarding the relevance of the knowledge that is gathered
by the specific zones (GAP), the explained variability (CH), the separation or how well
identified the borders can be between groups (SIL), and the similarity between the parcels
being grouped together (C-index).

As a result, fuzzy K-means (FM) and K-medoids (KD) achieved stable solutions
according to the proposed dissimilarity degree (the partitions obtained under both methods
were significantly similar). The impact of the algorithms was estimated for decision-making,
and it remains for future research to harness the methodology so it optimises over a metric
that adequately represents the preferences of the producers.

Regarding the explainability of the algorithm’s outcome, the expected savings were
estimated based on the new management zones. For this case study, the expected savings
were shown to be positive (following a uniform dosage strategy), having in mind that the
mean productivity accomplished under the Danish norm can be even higher than the
one accomplished under the experimental setting and that the amount of fertiliser that is
actually used by farmers may vary from the norm for diverse uncontrollable reasons.

Besides, the case study presented in this paper suggests that the fertilisation strategies
are not the only factor to take into account when trying to explain the different perfor-
mances of the experimental parcels. In this sense, the inherent characteristics of the soil
and vegetation are important factors to take into account. We are also aware that many
other topics such as irrigation, nutrient form, and application method, together with the
utilisation of the applied nutrient are related to the optimum fertilisation strategy, but this
is out of the scope of the current study to explore.

This methodology sets a solid foundation based on vegetation and soil sensing, but it
should be extended to consider topography and year-to-year variability, e.g., by the use of
open data sources and specific on-site experiments collecting more historical observations
on the behaviour of crops (while controlling all the relevant factors), including locally
observed historical yield and quality data. Besides, other sources of information, such as
market prices (affecting the desired level of quality to be achieved), should offer relevant
knowledge for a more efficient and sustainable use of resources.

In a related line of research, it would be useful to build a model for predicting the
optimal amount and timing of fertilisation that each zone requires according to its inherent
(soil and vegetation) attributes and the desired levels of yield and quality. Such a model
would involve understanding the behaviour of the crop under different conditions (such as
the weather or topography), and it would allow obtaining much more precise estimates on
the potential savings of the proposed methodology.



Nitrogen 2022, 3 402

Author Contributions: Conceptualisation, C.F. and S.M.P.; methodology, C.F., N.M. and S.M.P.;
software, C.F. and N.M.; validation, C.F., S.M.P. and R.G.; formal analysis, C.F., S.M.P. and R.G.;
investigation, C.F., S.M.P. and R.G.; resources, C.F. and S.M.P.; data curation, C.F. and N.M.; writing—
original draft preparation, C.F. and N.M.; writing—review and editing, C.F., N.M., S.M.P. and R.G.;
visualisation, C.F. and N.M.; supervision, C.F. and S.M.P.; project administration, S.M.P.; funding
acquisition, S.M.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been partially supported by the Innovation Fund Denmark (Innovations-
Fonden), under the Future Cropping partnership.

Acknowledgments: The authors would like to thank Leif Knudsen at SEGES and the Future Cropping
partnership for allowing us to use the experimental data in this study. Special thanks to Merete
Styczen for her valuable comments during the writing of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Disclaimer: The views expressed are purely those of the authors and may not in any circumstances
be regarded as stating an official position of the European Commission.

References
1. Martin, N.; Bollero, G.; Kitchen, N.; Kravchenko, A.; Sudduth, K.; Wiebold, W.; Bullock, D. Two classification methods for

developingand interpreting productivity zones using site properties. Plant Soil 2006, 288, 357–371. [CrossRef]
2. Zhang, X.; Shi, L.; Jia, X.; Seielstad, G.; Helgason, C. Zone mapping application for precision-farming: A decision support tool for

variable rate application. Precis. Agric. 2010, 11, 103–114. [CrossRef]
3. Ruß, G.; Brenning, A. Data Mining in Precision Agriculture: Management of Spatial Information. Lect. Notes Comput. Sci. 2010,

6178, 350–359.
4. Schuster, E.W.; Kumar, S.; Sarma, S.E.; Willers, J.L.; Milliken, G.A. Infrastructure for data-driven agriculture: Identifying

management zones for cotton using statistical modeling and machine learning techniques. In Proceedings of the 8th International
Conference & Expo on Emerging Technologies for a Smarter World, Hauppauge, NY, USA, 2–3 November 2011; pp. 1–6.

5. Li, X.; Pan, Y.; Zhang, C.; Liu, L.; Wang, J. A new algorithm on delineation of management zone. In Proceedings of the 2005 IEEE
International Geoscience and Remote Sensing Symposium, Seoul, Korea, 29 July 2005; p. 4.

6. Song, X.; Wang, J.; Huang, W.; Liu, L.; Yan, G.; Pu, R. The delineation of agricultural management zones with high resolution
remotely sensed data. Precis. Agric. 2009, 10, 471–487. [CrossRef]

7. Morrison, D.F. Multivariate Statistical Methods; McGraw-Hill: New York, NY, USA, 1982.
8. Luce, R.D.; Tukey, J.W. Simultaneous conjoint measurement: A new type of fundamental measurement. J. Math. Psychol. 1964,

1, 1–27. [CrossRef]
9. Landbrugsstyrelsen. Vejledning om Gødsknings og Harmoniregler—Planpe-Rioden 1 August 2018 til 31 July 2019; Miljø og Fødevarem-

inisteriet: Copenhagen, Denmark, 2018.
10. Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1990.
11. Krishnapuram, R.; Keller, J. A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1993, 1, 98–110. [CrossRef]
12. Pal, N.; Keller, J.; Bezdek, J. A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 2005, 13, 517–530.

[CrossRef]
13. Bezdek, J. Cluster validity with fuzzy sets. J. Cybern. 1974, 3, 58–73. [CrossRef]
14. Klawonn, F.; Höppner, F. What is fuzzy about fuzzy clustering? understanding and improving the concept of the fuzzifier. Lect.

Notes Comput. Sci. 2003, 2810, 254–264.
15. Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. B 2001,

63, 411–423. [CrossRef]
16. Calinski, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat.—Theory Methods 1974, 3, 1–27. [CrossRef]
17. Rousseeuw, P. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,

20, 53–65. [CrossRef]
18. Hubert, L.; Levin, J. A general statistical framework for assessing categorical clustering in free recall. Psychol. Bull. 1976,

83, 1072–1080. [CrossRef]
19. Diday, E.; Escoufier, Y. Selected Contributions in Data Analysis and Classification; Springer: Berlin/Heidelberg, Germany, 2007.
20. Bezdek, J.C.; Moshtaghi, M.; Runkler, T.; Leckie, C. The generalized c index for internal fuzzy cluster validity. IEEE Trans. Fuzzy

Syst. 2016, 24, 1500–1512. [CrossRef]
21. Pedersen, M.F.; Gyldengren, J.G.; Pedersen, S.M.; Diamantopoulos, E.; Gislum, R.; Styczen, M.E. A simulation of variable

rate nitrogen application in winter wheat with soil and sensor information—An economic feasibility study. Agric. Syst. 2021,
192, 103147. [CrossRef]

22. Robertson, M.J.; Lyle, G.; Bowden, J.W. Within-field variability of wheat yield and economic implications for spatially variable
nutrient management. Field Crops Res. 2008, 105, 211–220. [CrossRef]

http://doi.org/10.1007/s11104-006-9126-z
http://dx.doi.org/10.1007/s11119-009-9130-4
http://dx.doi.org/10.1007/s11119-009-9108-2
http://dx.doi.org/10.1016/0022-2496(64)90015-X
http://dx.doi.org/10.1109/91.227387
http://dx.doi.org/10.1109/TFUZZ.2004.840099
http://dx.doi.org/10.1080/01969727308546047
http://dx.doi.org/10.1111/1467-9868.00293
http://dx.doi.org/10.1080/03610927408827101
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1037/0033-2909.83.6.1072
http://dx.doi.org/10.1109/TFUZZ.2016.2540063
http://dx.doi.org/10.1016/j.agsy.2021.103147
http://dx.doi.org/10.1016/j.fcr.2007.10.005


Nitrogen 2022, 3 403

23. Milne, A.E.; Webster, R.; Ginsburg, D.; Kindred, D. Spatial multivariate classification of an arable field into compact management
zones based on past crops yields. Comput. Electron. Agric. 2012, 80, 17–30. [CrossRef]

24. Rokhafrouz, M.; Latifi, H.; Abkar, A.A.; Wojciechowski, T.; Czechlowski, M.; Naieni, A.S.; Maghsoudi, Y.; Niedbała, G. Simplified
and hybrid remote sensing-based delineation of management zones for nitrogen variable rate application in wheat. Agriculture
2021, 11, 1104. [CrossRef]

http://dx.doi.org/10.1016/j.compag.2011.10.007
http://dx.doi.org/10.3390/agriculture11111104

	Introduction
	Methodology
	Sensor Data and Experimental Measurements on Yield and Quality
	Assessing Treatment Effects
	Learning Management Zones by Cluster Analysis
	Hierarchical Clustering
	K-Means Clustering
	K-Medoids Clustering
	Fuzzy K-Means Clustering

	Stopping Criteria and Cluster Comparison

	Results
	N Fertilisation Treatment Effects
	Learning Management Zones

	Discussion
	Conclusions
	References

