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Abstract: The application of Feynman’s diagrammatic technique to classical link models with
local constraints seems impossible due to (i) the absence of a free Gaussian theory on top of which
the perturbative expansion can be constructed, and (ii) Dyson’s collapse argument, rendering the
perturbative expansion divergent. However, we show for the classical 3D Ising model how both
problems can be circumvented using a Grassmann representation. This makes it possible to obtain
an expansion of the spin correlation function and the magnetic susceptibility in terms of the inverse
temperature in the thermodynamic limit, through which the values for the critical temperature and
critical index <y are evaluated within 1.6% and 5.4% of their accepted values, respectively. Our work
is a straightforward adaptation of the theory previously developed in an earlier paper.
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1. Introduction

The Ising model was introduced in 1920 by Lenz [1] and solved for the first time by Ising in the 1D
case [2]. Nearly 20 years later it was solved exactly in the 2D case by Onsager [3] in the thermodynamic
limit. For the 3D Ising model no exact solution is known. One typically makes use of Monte Carlo
(MC) simulations in order to find its critical temperature and critical indices (although the recently
developed conformal bootstrap method [4] can yield results that are two orders of magnitude more
precise). MC methods such as the single spin-flip Metropolis algorithm [5] or the superior worm
algorithm [6] are applied to finite-size systems. By means of finite size scaling theory one determines
the value of the critical indices by demanding that all the rescaled data lines collapse onto each other
in the proximity of the critical point (see Ref. [7] for a pedagogical introduction).

Diagrammatic Monte Carlo simulations by contrast simulate the method directly in the
thermodynamic limit. The application of diagrammatic Monte Carlo simulations to the 3D Ising
model seems at first questionable because (i) there is no free gaussian theory readily available
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necessary for the application of Wick’s theorem, and (ii) the nature of classical link variables and
local constraints is inherently bosonic such that Dyson’s collapse argument, originally formulated
for quantum electrodynamics [8], implies a divergent series. One of us (LP) proposed in Ref. [9],
together with M. Kiselev, N. V. Prokof’ev and B. V. Svistunov, a theory in which (pairs of) Grassmann
variables [10] represent all degrees of freedom of the high-temperature series expansion of the classical
partition function (or, more generally, any discrete representation of the system can be used). The
resulting expansion is a Feynman series for the spin correlation function, from which the susceptibility
can be computed. The susceptibility ) is known to diverge at the critical point as (T — T.)~”. Since
the series is found to be convergent down to the critical temperature T;, the convergence radius of
the power series gives therefore access to the critical temperature, T, and the critical index, . The
results presented here have been obtained following the Grassmannization recipe developed by Pollet
et al. [9] and by generalizing the code written by Pollet from the 2D case to the 3D case.

2. Results

2.1. Grassmannization of the Ising Model

The approach proposed by Pollet et al. [9] consists of representing the partition function of the
3D Ising model in terms of pairs of Grassmann variables. We do not repeat the development of
the formalism here but only discuss the differences of the 3D case compared to the 2D case [9], and
introduce notation to make the discussion self-contained. Given a simple cubic lattice, one assigns a
set of discrete variables to the links (or, bonds, ), {«;}, with a link factor f({«;}) depending on the
occupancy number of the link, and one defines a site factor g; = g({«;};) that depends only on the
links attached to the jth site. The partition function is then written as Z = Tr [, A, I1; B;, where:

Ap = H exp
a7#0

and Bj= [T exp |A({a}) [T &uvéinl-

{ap} be{b};

[_le,h b +§a,h Sap
Vi) Vf(a)

Here, the variables &, ¢, &', and ¢’ are Grassmann variables living on the bonds of the lattice. The
factors A({ay };) are related to the site factors in a non-trivial way and have to be computed. The easiest
expansion we can use for such a computation is the high temperature series expansion of the Ising
model partition function, first obtained by Kramer and Wannier [11], for a lattice with N sites, in an
external field h:

Z=7p) [T +sisi0) [T +siw0),
{si} (if) i

where v = tanh 8, w = tanhh and Zy = (cosh 8)*N(cosh#)N. One finds for the link factors that
f(0) =1and f(1) = v and for the site factors that

g(0)=¢(2)=g(4)=g(6) =1 g(1)=g(3) =¢g(5) =w.

These are related to the A factors by the following relations,

M=w A=1-—w? A=-2w+2w> M= —2+8w?— 6w

1
As = 16w — 40w® + 24w’;  Ag = 16 — 136w?* + 210w* — 40w®. @

We can now take the thermodynamic limit N — oo and set i = 0. The partition function can then be
written as follows:
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Equation (2) is the starting point for the formulation of the Feynman rules. By Taylor-expanding
the non-Gaussian term, the partition function takes the form

U +1)"
Z=2), ), ( |) (V(x1)...V(xn)),
n=0x1...Xn n:
and can be evaluated by means of Wick’s theorem. The Feynman rules for the spin correlator
G(0,r) at the order n + 1 are:

1. Draw all the n topologically different connected diagrams connecting the origin with site r. Any
occupied bond contributes 1 to the expansion order 7.

2. The n bare propagators live on the links (they are local), and are represented by a pair of
Grassmann variables. A pair contributes a factor v in magnitude to the weight of the diagram.
Propagation lines have no arrows.

3. The (n+ 1) interaction vertices live on the sites of the lattice, and can be of different type: the
origin and end vertex belong to the V;, V3 or Vs class, the (n — 1) others belong to V,, V4 or V4
class, whose weights are in accordance with Equation (1). All j legs of the vertices V; must be
connected by propagator lines.

4. If a link is multiply occupied, a minus sign occurs when swapping 2 Grassmann variables. The
minus signs can equivalently be inferred by identifying all fermionic loops.

5. The total weight will be (—1)P(1)71+92(—2)%%44(16)95 960", being P the signature of the exchange
permutation, and g; is the sum of al vertices V; that are of type j, j = 1,..., 6. It follows that the
weight of a diagram is an integer number times v".

2.2. Results of the simulations

The details of the algorithm are discussed in [9]. The output of the code, which generates and
evaluates all possible Feynman diagrams for the spin correlator up to order 10, is a table shown in
Table 1.

Table 1. The table shows the number of diagrams connecting the origin with the corresponding site.
The second column lists the symmetry factor associated with each site on a cubic lattice.

Site [ A VL V- V- S VL o v® v7 v8 v v10
(1,0,0) 6 0 1 0 4 0 40 0 456 0 6100 0
(1,1,0) 12 0 0 2 0 16 0 170 0 2144 0 30334
(1,1,1) 8 0 0 0 6 0 54 0 648 0 8840 0
(4,0,0) 6 0 0 0 0 1 0 40 0 1156 0 24136
(410 24 0 0 0 0 0 5 0 202 0 5006 0
411 24 0 0 0 0 0 0 30 0 936 0 21474
(4200 24 0 0 0 0 0 0 15 0 748 0 18647
421) 48 0 0 0 0 0 0 0 105 0 3507 0
422) 24 0 0 0 0 0 0 0 0 420 0 13440
430 24 0 0 0 0 0 0 0 35 0 2219 0
431 48 0 0 0 0 0 0 0 0 280 0 11060
432) 48 0 0 0 0 0 0 0 0 0 1260 0
433) 24 0 0 0 0 0 0 0 0 0 0 4200
(7,0,0) 6 0 0 0 0 0 0 0 1 0 112 0
(7,100 24 0 0 0 0 0 0 0 0 8 0 802
7,1,1) 24 0 0 0 0 0 0 0 0 0 72 0
(72,0 24 0 0 0 0 0 0 0 0 0 36 0
(721) 48 0 0 0 0 0 0 0 0 0 0 360
(7300 24 0 0 0 0 0 0 0 0 0 0 120
(9,0,0) 6 0 0 0 0 0 0 0 0 0 1 0
9,100 24 0 0 0 0 0 0 0 0 0 0 10

(10,0,0) 6 0 0 0 0 0 0 0 0 0 0 1
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The sum of the number of diagrams weighted by the symmetry factor of the cubic lattice
contributes to the series coefficients for the expansion of the susceptibility. The series for the
susceptibility, obtained after a calculation lasting about one hour on a laptop equipped with an
Intel Core i5 2.5 GHz processor with a maximum resident set size of about 9 Gbytes, is

B lx =Y xu0"
n
=1+60v+ 300+ 1500° + 726 v* 4+ 35100° + 16710 0°
+ 79494 v7 + 375174 0% 4 1769686 v° + 8307678 v'° + O (v'l),

which coincides up to the order under consideration with the result of Campostrini [12].

Since the susceptibility diverges at the critical temperature as (1 — v/v.) 7, the convergence
radius of the power series for x can provide information about the critical temperature and the critical
index 7y for the model. In order to obtain these, it is sufficient to compare the power series coefficients
of (1 —v/v.)~7 with x,, and to estimate the asymptotic behaviour of the ratio x» /X1,

Xn+1 Uc Uc n

A linear fit of the obtained coefficient ratios as a function of 1/# yields the value of the critical

1 y-11
e €)

temperature and the value of the critical index, as shown in Figure 1.

4 1 1 1 1 1
0 02 04 0.6 0.8 1

I/n
Figure 1. Plot of Equation (3). Black dots are the ratios of the expansion coefficients, while the red
solid line is a linear fit. The intercept provides information about T;, while the slope is related to «.
Results are in good accordance with the results found in the literature. The red dashed line is a linear
fit through the points omitting the one at n = 1 but it leads to results for T, and < that deviate from the
correct answer.

The results of the fit are such that (tanh f;) ' = 4.53(4) and (7 — 1)(tanh 8.) ' = 1.4(1), and
thus T, /] = 4.45 and -y = 1.30. These values differ from their known values [12] (T./] = 4.51149(4)
and y = 1.2371(4)) by 1.6% and 5.4%, respectively, but agree within error bars.

In summary, we have successfully benchmarked our Grassmannization approach for the 3D Ising
model and thereby obtained the high-temperature series expansion for the spin correlator.
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