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Abstract: This paper tackles the problem of object recognition in high-resolution aerial imagery and
addresses the application of Deep Learning techniques to solve a challenge related to detecting the
existence of geospatial elements (road network) in the available cartographic support. This
challenge is addressed by building a convolutional neural network (CNN) trained to detect roads
in high resolution aerial orthophotos divided in tiles (256 x 256 pixels) using manually labelled data.
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1. Introduction

Machine-learning techniques have become increasingly important in the paradigm shift toward
data-intensive sciences [1]. The use of appropriate statistical analysis and artificial intelligence
algorithms allows us to better analyse geospatial data. In addition, aerial imagery proved to be
equally important for many applications including infrastructure monitoring. These applications
traditionally required manual identification of objects, but recent deep learning methods enable the
automation of such tasks and achieve great success in imagery classification by means of
convolutional neural networks [2].

Nowadays, scientists in geomatics are exploiting the power of deep learning to tackle existing
challenges and instigated a new wave of promising research [3,4]. Studies have indicated that feature
representations learned by CNNs are highly effective in large-scale image recognition [5]. Deep
neural networks are experiencing a rapid development fuelled by big tech companies” investments
in research and by the support shown by tech communities (open source projects like
TensorFlow/Keras) [6].

Remote sensing image analysis has been a hot research topic in recent years. Researchers have
successfully analysed land use patterns in urban neighbourhoods using large-scale satellite imagery
data and state-of-the-art computer vision techniques based on deep convolutional neural networks
[7]. In [8], the authors train a simple one-dimensional CNN that contains five layers (an input layer,
a convolutional layer, a max-pooling layer, a fully connected layer, and an output layer) to directly
classify hyperspectral images. The authors of [9] focused on road extraction from aerial images and
purposed a semantic segmentation neural network tested on a public road dataset which
demonstrated great effectiveness. Recently, the detection of roads from aerial imagery was
approached from a spatio-temporal perspective, by training a deep fully convolutional neural
network for image segmentation and adding a temporal processing block [10].

The goal of this project is to build a CNN capable of learning the relationships between training
inputs and training categories using supervised learning. We evaluate the network’s efficiency levels
through the accuracy metric given by its performance on the test data.
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2. Material and Methodology

The specific machine-learning problem in this case is binary classification (an instance of
supervised learning). The research is experimental and has a quantitative approach, the variables
being pixels of orthoimages divided in tiles (256 x 256 pixels).

2.1. Data

Labelled data was needed for training and testing the CNN. This dataset was generated by
visually comparing the aerial images (PNOA — Plan Nacional de Ortofotografia Aérea) to existing vector
data (MTN25—Mapa Topogrifico Nacional 1:25.000) via a web viewer built for this task. This way we
were able to assign the correspondent label to each tile (category 1—no road, category 2—road) and
allowed the network to learn about the existence of roads in any given tile. For consistency reasons,
the same zoom-level has been used during the labelling operations. We took into consideration
representative areas in Spain (samples of vegetation coverage—Figure 1) and built a dataset
containing around 9000 labelled tiles (png format) with a size on disk of approximately 1.22 GB. On
this dataset we follow the convention in the literature of using half of the images for training and half
for testing.

(b)

Figure 1. Examples of tiles extracted from the labelled dataset (a) Category 1—"No road” and (b)
Category 2—“Road exists”.

2.2. Network’s Architecture

In the scientific literature we can find a variety of CNNs built for different tasks (AlexNet,
GoogLeNet, VGG16, VGG19, ResNet) often with depths of more than 50 layers and trained with large
datasets. However, we built a smaller ConvNet better suited for our task.

In this case, the tiles are passed through four convolutional layers, where we use filters with a 3
x 3 receptive field. Spatial pooling is carried out by four max-pooling layers, which follow every
convolutional layer. Max-pooling is performed over a 2 x 2-pixel window. Next, a flatten operation
on the tensor reshapes the tensor to have a 1-d share that is equal to the number of elements contained
in the tensor.

Finally, the stack of convolutional layers is followed by two Fully-Connected (FC) layers: the
first has 512 channels while the second performs the 2-way classification and contains 1 channel. Five
of the eleven hidden layers are equipped with ReLU [11] non-linearity activation functions, while the
last FC uses sigmoid activation function.

2.3. Network’s Training

Convolution operates over 3D tensors and works by sliding these filters of size 3 x 3 over the 3D
tensor, stopping at every possible location. It consists of learning to map input data to known targets
(annotations) given a set of labelled examples.

The only pre-processing done was turning the image files to pre-processed tensors. Given that
our model has few samples we had to control the overfitting. To do so, we augmented the sample via
a number of transformations (rotation, zoom range, horizontal flip, height and width shift)—Figure
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2. This allows the model to generalize better given it never sees same image twice. Furthermore, we
added a dropout layer (with a dropout rate of 0.5) before the fully connected layers.
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Figure 2. Data augmentation process: (a) Original tile; (b) Transformed tiles (rotated, flipped, zoomed).

For compiling the model we used binary crossentropy as loss, given that we’ve chosen to end
the network with a sigmoid unit. RMSprop was chosen as optimizer, with a learning rate set at 0.0001.
The model was trained for 200 epochs using a Linux cloud computing system with TensorFlow
installed and an integrated GPU (Nvidia Tesla K80).

3. Results and Discussion

The network achieved a classification accuracy of 90% on the training and test set (Figure 3a), the
loss decaying to less than 0.3 (Figure 3b). We consider these error rates to be small considering the
size of the dataset and the number of convolutional layers. Our results show that a large, deep
convolutional neural network is not always necessary for achieving high accuracy results on a
challenging dataset using only supervised learning.
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Figure 3. Evaluation of the model’s performance: (a) Model’s Accuracy; (b) Model’s loss.



Proceedings 2019, 19, 17 4 of 4

Thus far, our results have not improved as we have made our network larger (added 1 and 2
convolutional layers + 1 fully connected layer) or trained it for longer (500 epochs). The accuracy of
the model should increase with the number of training samples and would be interesting to see how
the model reacts when the dataset increases.

Deep learning proved to be an extremely powerful tool for remote-sensing data analysis,
convolutional networks being known for their performance in addressing visual-classification
problems. Next, we plan to review two more techniques for applying deep learning to small datasets:
feature extraction with a pretrained network and fine-tuning the pretrained model and to use image
segmentation techniques to extract such the infrastructures in the form of vector data layers. We also
plan to increase the dataset and improve these values. We hope to obtain high efficiency levels that
could reduce reliance on human participation in detecting changes in geospatial elements, help state
administration in reducing mapping costs and the citizens by having up-to-date cartography in less
time.
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