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Abstract: Only a few scientific research studies with reference to extremely low stream flow 

conditions, have been conducted in Greece, so far. Forecasting future low stream flow rate values is 

a crucial and desicive task when conducting drought and watershed management plans, designing 

water reservoirs and general hydraulic works capacity, calculating hydrological and drought low 

flow indices, separating groundwater base flow and storm flow of storm hydrographs etc. Artificial 

Neural Network modeling simulation method generates artificial time series of simulated values of 

a random (hydrological in this specific case) variable. The present study produces artificial low 

stream flow time series of both a part of the past year (2016) as well as the present year (2017) 

considering the stream flow data observed during two different respecting interval period of the 

years 2016 and 2017. We compiled an Artificial Neural Network to simulate low stream flow rate 

data, acquired at a certain location of the partly regulated semi-urban stream which runs through 

the eastern exit of Kavala city, NE Greece, using a 3-inches U.S.G.S. modified portable Parshall 

flume, a 3-inches conventional portable Parshall flume, a 3-inches portable Montana (short Parshall) 

flume and a 90° V-notched triangular shaped sharp crested portable weir plate. The observed data 

were plotted against the predicted one and the results were demonstrated through interactive tables 

providing us the ability to effectively evaluate the ANN model simulation procedure performance. 

Finally, we plot the recorded against the simulated low stream flow rate data, compiling a log-log 

scale chart which provides a better visualization of the discrepancy ratio statistical performance 

metrics and calculate the derived model statistics featuring the comparison between the recorded 

and the forecasted low stream flow rate data. 

Keywords: artificial neural network; discrepancy ratio; drought; low flow data; Parshall flume 

 

1. Introduction 

Low flow regimes in rivers and streams are of paramount importance to the ecological 

conditions of any land surface hydrological feature. Any shift in the flows pattern throughout any 

hydrological year, stemming, for instance, from either individual activities e.g., groundwater 

abstraction, precipitation shortage, riparian areas encroachment, stream channelizing due to 

urbanization etc., or a combination of them, may contribute to stream ecology changes that cannot be 

undone [1]. Low flow analysis and forecasting is also fundamental when building works along 

watercourses (e.g., dams, reservoirs, water deviation channels for irrigation purposes etc.) and for 
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watercourse rehabilitation plans regarding which a knowledge of hydrological fluctuation is of 

fundamental importance in designing sustainable rehabilitation works. 

Another type of low flow analysis, specifically probability distribution analysis, was performed 

in the past analyzing the observed data collected at the same gauging station between 14th of May 

2016 and 31th of July 2016 revealing that Pearson type 6 (3P) demonstrated the highest final goodness 

of fit obtained score based, simultaneously, on all available (Anderson-Darling, Chi-Squared and 

Kolmogorov-Smirnov) goodness of fit criteria [2]. Furthermore, as far as the same gauging station, 

similar type of analysis was elaborated considering, this time, the observed data collected at the same 

gauging station both between 14th of May 2016 and 29th of August 2016 revealing that Wakeby type 

(5P) demonstrated the highest final goodness of fit obtained score based on the Kolmogorov-Smirnov 

goodness of fit criterion and employed to generate an artificial low flow time series for the same time 

interval [3,4]. 

Especially within the last decade, a great number of ANN models have been designed for stream 

flow and sediment transport rates simulation. In a scientific research article, an ANN model was 

employed to design a model for streamflow forecasting respecting San Juan River basin, Argentina, 

using meteorological data from Pachon meteorological station built at 1900 m of altitude and proved 

distinctively effective of fitting remarkably well the observed stream flow data [5]. In a scientific 

research article, an ANN model was developed and proved effective of simulating well the daily both 

high and low flows, in Mesochora catchment, (drained by the Acheloos River), central mountain 

region of Greece [6]. In another scientific research article, the performance of three different ANN 

Schemes (a–c) was tested in order to calculate bed load transport rate in gravel-bed rivers running 

within the Snake River Basin, USA [7]. In another scientific research article, an ANN model was 

developed and proved capable of stream flow modeling of Savitri catchment, India [8]. In another 

scientific research article, an ANN model was designed and performed adequately of stream flow 

modeling of Nestos River, NE Greece [9]. 

In the present scientific research study, ANNs have been employed to design a forecasting 

model for the daily low flows of Perigiali Stream (at the exit of the homonymous watershed), Kavala 

city, Eastern Macedonia & Thrace Prefecture, NE Greece. Their selection is founded on the fact that 

they perform remarkably well (together within other sectors of scientific interests) in the field of 

hydrology, although, in some occasions, there is not available adequate information respecting all 

the variables contributing to the watershed system driving forces.  

2. Study Area 

The stream flow rate gauging station established in Kavala city coastal area, is located at the 

north of the Aegean Sea, across the Thassos Island, and surrounded by the Lekani mountain series 

branches to the North and East and the Paggaion Mountain ramifications to the West, (established in 

the proximity of the city urban web center and at the eastern exit of the city as well), located at the 

specific co-ordinates 40°56′727″ N and 24°25′929″ E, Perigiali city area, and operated during specified 

time intervals, bridging a time interval period from 14 May 2016 to 7 October 2017, as illustrated in 

Figure 1. It should be noted that since it is located just a few decades of meters upstream the sea shore 

and simultaneously at the exit of the entire Perigiali area watershed, between the sea shore and the 

Old National Road connecting the eastern exit of the Kavala city to the Xanthi city, drained by the 

homonymous Perigiali area stream, the associated stream flow rate measurements provide 

profooundly valuable scientific information respecting the entire regime of the water resources, 

(incorporating headwaters and lower order streams to higher order streams and the main stream 

channel), of the Perigiali area watershed. 
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Figure 1. Parshall flumes and V-Notched weir gauging station, Perigiali Stream area, Kavala city, 

Greece. 

3. Materials and Methods 

We considered the stream flow data observed during two different center interval period of the 

years 2016 and 2017, more precisely, during part of May (from the 14th of May 2016), June, July and 

part of August 2016 (until the 30th of August 2016), part of December 2016 (from the 24th of December 

2016), part of January 2017 (until the 5th of January 2017) as well as part of May (from the 24th of May 

2017), June, July, August, September and part of October 2017, until the 7th of October 2017, without 

filling the consecutive data gaps for the rest, ungauged gaps, of the years 2016 and 2017, (see 

supplementary materials). 

The distinctively shallow waters, exacerbated by the extremely low water stream flow velocity 

occurring at the gauging station, make impossible to perform the area-velocity method in order to 

calculate the stream flow rate (discharge), using a current meter mounted on a wading rod, due to 

the fact that there isn’t adequate depth to submerge the current meter; Moreover, the pronounced 

low water stream flow velocity is not sufficient enough to trigger the operation of a current meter. 

Under those noticeable circumstances the only other remaining options, are the use of either a small-

sized portable weir (all those its implementation brings difficulties due to the fact that weirs, in 

general, demand a relatively great head loss which is not available at areas in proximity to 

watersheds’ outlets, where, in most cases, the natural slope of the channel bed is extremely low if not 

zero) plate or/and a small-sized flume or/and a set of small-sized weir and flumes which, eventually, 

was our final selected option, more specifically, a “3-inch U.S.G.S. Modified Portable Parshall Flume”, 

“3-inch U.S.G.S. Conventional Portable Parshall Flume” and a “90° V-Notched Triangular-Shaped 

Sharp-Crested (Sharp-Edged) U.S.G.S. Portable Weir Plate” [10–20], made of sea plywood, covered 

with a sprayed thin smooth polyester coating, (identical to that usually the industry covers the 

outside surface of high-speed sea boats, in order to reduce the friction developing between the 

outside area of those sea boats and the sea water, thus securing that the friction developed between 

the bottom as well as the walls of the stream flow rate gauging apparatus is minimized/restricted to 

a minimum. 
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Meteorological data has been collected from Dexameni-Kavala city—Eastern Macedonia & 

Thrace Prefecture—Greece private meteorological station (located at 40°56′25″ N–E 24°24′01″ E, 

Altitude: 90 m).  

Low stream flow rate values were forecasted employing MLFP that is an appropriate type of 

ANNs both for meteorological as well as for river stream flow rate predictions. 

4. Results and Discussion 

Employing MATLAB software, various different designs of MLFP were elaborated with 

different number of neurons within both the input as well as the hidden layers. The superb model 

for daily forecasting (in the present study, M13.10.1) is described within the first following subsection 

whilst the referenced statistical criteria are displayed within the second following one. The three important 

identification characteristics of the model are as following: the number of neurons in input (i), hidden (j) 

and output (k) layers respectively. 

4.1. Structure of Artificial Neural Network (M13.10.1) 

A custom neural network (abbreviated as M13.10.1) was employed in order to simulate all the 246 

site-measured values of the observed stream flow rate, (as depicted within Table A1), with the 

following architecture: Network Type: Feed-forward back propagation, Training Function: 

TRAINGDX, Adaption Learning Function: LEARNGDM, Performance Function: MSE, Number of 

Layers: 2, Number of Neurons: 10, Transfer Function: LOGSIG. It should also be stressed that epochs 

was selected equal to 1000. The input data for 246 site measurements were arranged as a time series 

with length of 246 data.  

The selected custom neural network’s architecture used for this simulation is depicted within 

Figure 2. 

 

Figure 2. ANN (M13.10.1) architecture plot of Perigiali Stream. 

The input layer for this network consists of thirteen neurons representing total daily rainfall R, 

cumulative total daily rainfall RC, mean daily wind velocity UWave, maximum daily wind velocity 

UWmax, mean daily air temperature Tave, minimum daily air temperature Tmin, maximum daily air 

temperature Tmax, mean daily air humidity Have, minimum daily air humidity Hmin, maximum daily 

humidity Hmax, mean daily air pressure Pave, minimum daily air pressure Pmin and maximum daily 

pressure Pmax. For this network 10 neurons were selected for the hidden layer. 

The validation performance of the ANN (M13.10.1) is illustrated within Figure 3. 

The training regression performance of the ANN (M681) is illustrated within Figure 4. 
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Figure 3. ANN (M13.10.1) validation performance plot of Perigiali Stream. 

 

Figure 4. ANN (M13.10.1) training regression performance plots of Perigiali Stream. 

4.2. Model Statistical Efficiency Criteria and Performance Metrics 

The respective statistical criteria values concerning Perigiali Stream regarding the selected 

artificial neural network (M13.10.1) are depicted within Table 1 [21]. It is noted that the relative error 

value depicted within Table 1 represents the average value of the relative errors calculated for each 

pair of calculated and site measured low stream flow rate values. 

The plot depicted within Figure 5 represents the discrepancy ratio concerning Perigiali Stream 

with reference to the selected artificial neural network, depicting graphically, more specifically, as far 

as the present study is concerned, the percentage of the computed low stream flow rate values lying 

between the double and the half of the corresponding recorded values. At this point, it should be 

noted that both coordinate axes are in logarithmic scale; therefore, the equations y = x, y = 0.5x and y 

= 2.0x are represented graphically by parallel straight lines [22]. 

In general, the obtained values of the statistical criteria RMSE, RE, EC for Perigiali Stream can 

be considered fairly satisfactory. Additionally, the degree of linear dependence between computed 

and observed low daily stream flow rate is very high. 

The dates of all measurements as well as both the site measured as well as the calculated stream 

flow rates of Perigiali Stream are presented in Table A1. 
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Table 1. Statistical criteria values of Perigiali Stream (ANN M13.10.1). 

Number of Paired Values RMSE (ltrs/s) RE (%) EC r r2 Discrepancy Ratio 

246 0.1479 −0.4080 0.9468 0.9732 0.9472 0.6789 

 

Figure 5. Discrepancy ratio plot of Perigiali Stream (ANN M13.10.1). 

5. Discussion-Conclusions-Further Research 

Lots of models based on ANN procedure concept have been employed and proposed by 

researchers so far in order to model daily stream flow and sediment transport rate worldwide. In the 

present study, a custom neural network (abbreviated as M13.10.1) was employed in order to simulate 

all the 246 site-measured values of the observed low stream flow rate, (as depicted within Table A1), 

with the certain architecture, using as inputs several meteorological parameters, (exogenous 

variables of the runoff generating processes), prevailing around the study area, and turned out, 

among others, to be the most appropriate to simulate the recorded daily low stream flow rate data. 

The resulted statistical efficiency criteria proved a strong relationship between those meteorological 

parameters involved and the daily stream flow rate of Perigiali Stream, Kavala city, Greece, 

suggesting that that ANN modeling concept is able to efficiently simulate observed daily low stream 

flow rate data which is essential for water resources management at a watershed level in terms of 

drought forecasting and management, water reservoir and water deviation works design, 

agricultural schemes planning at a regional level, filling gaps within low stream flow rate time series, 

low-flow indices calculation for environmental purposes, model implementation in ungaged 

catchments in order to generate artificial low stream flow rate data etc. Furthermore, the fact that the 

observed data represents short time intervals instead of an adequately long continuous time series 

can be definitely considered as a limitation underlining the need of more collected low stream flow 

rate recorded data in order to prove that our model can be regarded as an undoubtedly reliable one. 

In future, provided that proper and adequate apparatus is available, we intend to monitor water 

quality parameters in order to perform statistical analysis and assessment [23,24] and apply stochastic 

models [25] to predict future respecting values which are essential towards the establishment of a 

holistic Perigiali watershed management scheme. 

Supplementary Materials: The following are available online at 

https://www.youtube.com/watch?v=Wu8KBj3qqXg, Video S1: Watershed Stream Flow Measurement-Stream 

Perigiali-2016.06.18-Kavala City-Greece, https://www.youtube.com/watch?v=-

HbPZLNGplY&feature=youtu.be, Video S2: Watershed Stream Flow Measurement-Stream Perigiali-

2017.07.27(a)-Kavala City-Greece (08:16:49 a.m.).  

Conflicts of Interest: The authors declare no conflict of interest. 
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Appendix A 

The dates of all measurements as well as both the site measured as well as the calculated stream 

flow rates of Perigiali Stream are presented in Table A1. 

Table A1. Stream flow rate measurements of Perigiali Stream. 

No. Date 
Stream Flow Rate (m3/s) 

Site-Measured 

Stream Flow Rate (m3/s) 

Calculated (M13.10.1) 

1 14-5-2016 0.4370 0.3151 

2 15-5-2016 0.5080 0.5156 

3 16-5-2016 0.4030 0.5368 

4 17-5-2016 0.4030 0.3824 

5 18-5-2016 0.4720 0.4206 

6 19-5-2016 0.5830 0.3695 

7 20-5-2016 0.5080 0.5401 

8 21-5-2016 2.7460 2.7714 

9 22-5-2016 1.0110 1.0422 

10 23-5-2016 0.8300 0.7277 

11 24-5-2016 0.8740 0.8777 

12 25-5-2016 0.6620 0.6884 

13 26-5-2016 0.6620 0.3522 

14 27-5-2016 0.3700 0.3328 

15 28-5-2016 0.2488 0.1621 

16 29-5-2016 0.3701 0.2290 

17 30-5-2016 0.2775 0.2464 

18 31-5-2016 0.3381 0.2399 

19 1-6-2016 0.2488 0.1881 

20 2-6-2016 0.1700 0.2775 

21 3-6-2016 0.3701 0.4214 

22 4-6-2016 0.5451 0.3349 

23 5-6-2016 0.3381 0.2148 

24 6-6-2016 0.5450 0.4573 

25 7-6-2016 0.3072 0.3277 

26 8-6-2016 0.1950 0.3244 

27 9-6-2016 0.1238 0.5328 

28 10-6-2016 0.1238 0.2220 

29 11-6-2016 0.1950 0.1596 

30 12-6-2016 0.1238 0.2532 

31 13-6-2016 1.4650 1.4400 

32 14-6-2016 0.6220 0.5874 

33 15-6-2016 0.4371 0.6716 

34 16-6-2016 0.3072 0.3144 

35 17-6-2016 0.2213 0.2456 

36 18-6-2016 0.3072 0.1447 

37 19-6-2016 0.2775 0.0960 

38 20-6-2016 0.1950 0.1450 

39 21-6-2016 0.2775 0.1379 

40 22-6-2016 0.0832 0.1844 

41 23-6-2016 0.1028 0.0345 

42 24-6-2016 0.0115 0.0324 

43 25-6-2016 0.0344 0.1006 

44 26-6-2016 0.1462 0.0823 

45 27-6-2016 0.1462 0.2139 



Proceedings 2018, 2, 578 8 of 13 

 

46 28-6-2016 0.2775 0.3824 

47 29-6-2016 0.1700 0.2488 

48 30-6-2016 0.0652 0.1717 

49 1-7-2016 0.1700 0.1751 

50 2-7-2016 0.1700 0.1731 

51 3-7-2016 0.3701 0.2599 

52 4-7-2016 0.2775 0.1681 

53 5-7-2016 0.2775 0.1840 

54 6-7-2016 0.0652 0.1986 

55 7-7-2016 0.2213 0.2425 

56 8-7-2016 0.0218 0.2421 

57 9-7-2016 0.0832 0.2085 

58 10-7-2016 0.1028 0.1696 

59 11-7-2016 0.1028 0.0924 

60 12-7-2016 0.1028 0.1883 

61 13-7-2016 0.0489 0.1802 

62 14-7-2016 0.1238 0.2023 

63 15-7-2016 0.0652 0.1956 

64 16-7-2016 0.2213 0.3563 

65 17-7-2016 0.1462 0.1511 

66 18-7-2016 0.0344 0.2032 

67 19-7-2016 0.1950 0.2087 

68 20-7-2016 0.1028 0.1845 

69 21-7-2016 0.0344 0.1792 

70 22-7-2016 0.3381 0.1551 

71 23-7-2016 0.2213 0.1385 

72 24-7-2016 0.1950 0.1859 

73 25-7-2016 0.1238 0.1675 

74 26-7-2016 0.0340 0.2132 

75 27-7-2016 0.1028 0.1404 

76 28-7-2016 0.0489 0.2120 

77 29-7-2016 0.0832 0.1716 

78 30-7-2016 0.1238 0.1539 

79 31-7-2016 0.3701 0.2470 

80 1-8-2016 0.0652 0.1286 

81 2-8-2016 0.1950 0.1875 

82 3-8-2016 0.1028 0.2106 

83 4-8-2016 0.1462 0.1703 

84 5-8-2016 0.2488 0.1431 

85 6-8-2016 0.3381 0.1404 

86 7-8-2016 0.1238 0.1855 

87 8-8-2016 0.1950 0.1470 

88 9-8-2016 0.3701 0.3080 

89 10-8-2016 0.1950 0.0914 

90 11-8-2016 0.3381 0.1474 

91 12-8-2016 0.2488 0.1523 

92 13-8-2016 0.1950 0.1698 

93 14-8-2016 0.2488 0.1911 

94 15-8-2016 0.2219 0.2268 

95 16-8-2016 0.2775 0.2724 

96 17-8-2016 0.4371 0.3402 

97 18-8-2016 0.3701 0.3989 
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98 19-8-2016 0.4031 0.3530 

99 20-8-2016 0.3072 0.3288 

100 21-8-2016 0.1950 0.1659 

101 22-8-2016 0.2213 0.1439 

102 23-8-2016 0.4371 0.1598 

103 24-8-2016 0.2775 0.1746 

104 25-8-2016 0.2213 0.1580 

105 26-8-2016 0.2775 0.3003 

106 27-8-2016 0.2775 0.4087 

107 28-8-2016 0.3072 0.2810 

108 29-8-2016 0.4371 0.1957 

109 30-8-2016 0.6616 0.1487 

110 24-5-2017 0.1210 0.0630 

111 25-5-2017 0.0820 0.2088 

112 26-5-2017 5.9150 5.8006 

113 27-5-2017 0.2130 0.3294 

114 28-5-2017 0.0820 0.0721 

115 29-5-2017 0.0650 0.1313 

116 30-5-2017 0.1010 0.0732 

117 31-5-2017 0.0490 0.0942 

118 1-6-2017 0.0340 0.0577 

119 2-6-2017 0.0650 0.0701 

120 3-6-2017 0.0650 0.0926 

121 4-6-2017 0.0820 0.1520 

122 5-6-2017 0.0650 0.1203 

123 6-6-2017 0.0820 0.1310 

124 7-6-2017 0.0650 0.0775 

125 8-6-2017 0.0820 0.0967 

126 9-6-2017 0.1010 0.2323 

127 10-6-2017 0.0820 0.0822 

128 11-6-2017 5.8560 5.7520 

129 12-6-2017 1.4010 0.1787 

130 13-6-2017 0.0650 0.1244 

131 14-6-2017 0.1010 0.0562 

132 15-6-2017 0.0820 0.0934 

133 16-6-2017 0.0820 0.1727 

134 17-6-2017 0.1010 0.0953 

135 18-6-2017 0.0820 0.2393 

136 19-6-2017 0.0650 0.1153 

137 20-6-2017 0.0650 0.2136 

138 21-6-2017 0.0650 0.0858 

139 22-6-2017 0.0650 0.1791 

140 23-6-2017 0.0650 0.0815 

141 24-6-2017 0.0490 0.0913 

142 25-6-2017 0.0650 0.0944 

143 26-6-2017 0.0490 0.1180 

144 27-6-2017 0.0490 0.1054 

145 28-6-2017 0.0490 0.0907 

146 29-6-2017 0.0490 0.0868 

147 30-6-2017 0.0490 0.0799 

148 1-7-2017 0.0490 0.0761 

149 2-7-2017 0.0490 0.0405 
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150 3-7-2017 0.0645 0.0220 

151 4-7-2017 0.0486 0.0528 

152 5-7-2017 0.0486 0.0771 

153 6-7-2017 0.0486 0.1173 

154 7-7-2017 0.0486 0.0557 

155 8-7-2017 0.0486 0.0526 

156 9-7-2017 0.0486 0.0943 

157 10-7-2017 0.0344 0.0954 

158 11-7-2017 0.0344 0.1002 

159 12-7-2017 0.0645 0.1101 

160 13-7-2017 0.0344 0.0953 

161 14-7-2017 0.9872 0.0938 

162 15-7-2017 0.1007 0.1689 

163 16-7-2017 0.0819 0.0594 

164 17-7-2017 0.1421 0.1343 

165 18-7-2017 0.1208 0.0546 

166 19-7-2017 0.1007 0.1309 

167 20-7-2017 0.0819 0.1488 

168 21-7-2017 0.0486 0.1666 

169 22-7-2017 0.0645 0.0871 

170 23-7-2017 0.0645 0.0853 

171 24-7-2017 0.0645 0.0791 

172 25-7-2017 0.0344 0.0470 

173 26-7-2017 0.0486 0.0324 

174 27-7-2017 0.0486 0.1451 

175 28-7-2017 0.0486 0.0401 

176 29-7-2017 0.0486 0.0833 

177 30-7-2017 0.0486 0.0854 

178 31-7-2017 0.0486 0.0917 

179 1-8-2017 0.0344 0.1454 

180 2-8-2017 0.0344 0.1289 

181 3-8-2017 0.0344 0.0650 

182 4-8-2017 0.0344 0.0745 

183 5-8-2017 0.0344 0.0478 

184 6-8-2017 0.0486 0.0646 

185 7-8-2017 0.0344 0.0831 

186 8-8-2017 0.0344 0.0593 

187 9-8-2017 0.0344 0.0648 

188 10-8-2017 0.0344 0.0761 

189 11-8-2017 0.0344 0.0717 

190 12-8-2017 0.0344 0.0536 

191 13-8-2017 0.0344 0.0579 

192 14-8-2017 0.0344 0.0325 

193 15-8-2017 0.0344 0.0407 

194 16-8-2017 0.0344 0.0666 

195 17-8-2017 0.0344 0.0412 

196 18-8-2017 0.0221 0.0871 

197 19-8-2017 0.2060 0.0963 

198 20-8-2017 0.1890 0.0784 

199 21-8-2017 0.1670 0.0463 

200 22-8-2017 0.0486 0.1150 

201 23-8-2017 0.1210 0.0395 
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202 24-8-2017 0.0486 0.0695 

203 25-8-2017 0.0486 0.0432 

204 26-8-2017 0.2070 0.0584 

205 27-8-2017 0.1690 0.0670 

206 28-8-2017 0.0344 0.0642 

207 29-8-2017 0.0486 0.0653 

208 30-8-2017 0.1770 0.1272 

209 31-8-2017 0.1710 0.0511 

210 1-9-2017 0.0730 0.0719 

211 2-9-2017 0.0470 0.0651 

212 3-9-2017 0.1930 0.0619 

213 4-9-2017 0.9439 0.0466 

214 5-9-2017 0.0344 0.0558 

215 6-9-2017 0.0360 0.0309 

216 7-9-2017 0.0320 0.0423 

217 8-9-2017 0.0430 0.1097 

218 9-9-2017 0.1390 0.1766 

219 10-9-2017 0.1370 0.1078 

220 11-9-2017 0.0220 0.0488 

221 12-9-2017 0.0344 0.0442 

222 13-9-2017 0.1450 0.0686 

223 14-9-2017 0.0344 0.1917 

224 15-9-2017 0.1610 0.1379 

225 16-9-2017 0.1490 0.0648 

226 17-9-2017 0.0486 0.0852 

227 18-9-2017 0.1080 0.0699 

228 19-9-2017 0.0486 0.0667 

229 20-9-2017 0.0344 0.0622 

230 21-9-2017 0.0990 0.0127 

231 22-9-2017 0.0714 0.0565 

232 23-9-2017 0.1380 0.0165 

233 24-9-2017 0.0996 0.0243 

234 25-9-2017 0.0934 0.1726 

235 26-9-2017 4.6003 4.6082 

236 27-9-2017 0.1870 0.0140 

237 28-9-2017 0.1510 0.0125 

238 29-9-2017 0.1790 0.0118 

239 30-9-2017 0.0330 0.0174 

240 1-10-2017 0.1280 0.1406 

241 2-10-2017 0.1420 0.0136 

242 3-10-2017 0.0910 0.0124 

243 4-10-2017 0.0650 0.0139 

244 5-10-2017 0.1050 0.0147 

245 6-10-2017 0.0590 0.0550 

246 7-10-2017 1.1245 1.1225 
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