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Abstract: In the present paper, different clustering techniques were applied to detect significant
patterns describing single-household water consumption in a residential neighborhood of the City
of Naples, basing on hourly time series aggregated at the monthly scale. Comparisons among results
were performed by means of a selection of Clustering Validity Indices, that were adjusted to
overcome a bias caused by sparsely populated clusters. The most performant cluster solution
proved to be the one resulting from the application of a mixed strategy, namely a Self-Organized
Map followed by K-means performed on first level cluster centroids.
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1. Introduction

Water demand modeling and forecast is a key issue in modern approaches to an efficient water
management. A comprehensive knowledge of water consumption allows for a correct planning of
water supply, for the estimate of leakages in the water distribution networks and for the development
of innovative approaches and attractive plans to consumers.

The increasing interest towards water systems efficiency has led to the implementation of “Smart
Water Grids” within urban areas, with significant portions of customers connected to a telemetry
system for flow data reading and collection. Smart grids allow for the collection of large amounts of
data, usually on an hourly basis or less [1] that water companies can utilize to calibrate bills on the
short term, and to perform research to increase efficiency on the long term. Understanding
consumption drivers at the customer scale can be a challenging task in a complex urban environment
because of the extreme variability in the characteristics of households, such as the number of
individuals served by each flow meter, water usage (which can be related to either residential or
commercial activities), different life habits of the end users. One common approach to solve this
problem is the profiling, namely a detection of demand patterns based on a large amount of data; this
is a typical approach in the electricity sector [2-6], with a few applications for water demand
modeling [7,8]. Profiling of consumption data is typically performed to catch differences in the
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customers behavior, with particular focus on the weekdays/weekends distinction, especially when
no previous information is known.

2. Materials and Methods

2.1. Data Description

The District Metering Area (DMA) which is the subject of the study is located in the North-
Western part of the City of Naples (Italy). This area was chosen as a pilot area for a Smart Water Grid
implementation, with particular focus on the remote monitoring of flow meters, as part of a
cooperation between the University of Naples and ABC—Napoli, which is the local water company.
The DMA is provided with 4254 customer connections whose flow meters were completely replaced
during the last three years. There are 3701 (87% of the total number) residential flow meters, whereas
the remaining 553 (13%) correspond to commercial flow meters, consistently with the residential
purpose of the neighborhood. Moreover, 2999 (81% of the residential flow meters) connections relate
to single households, whereas the remaining 702 (19%) flow meters serve multiple households, such
as duplexes or whole apartment buildings.

The present paper focuses on single-household flow meters; for each flow meter 12 months of
hourly consumption measurements are available, dating 1 January 2016 to 31 December 2016. After
a data cleansing process, which caused the elimination of a certain number of time series, data were
standardized and aggregated at the monthly scale:
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where Yi is the standardized monthly data, N is the number of hourly data X contained in one year
(N =8784) and M is the number of hourly data Xj contained in one month. Furthermore, the analysis
is limited to a selection of 168 single-household time series randomly chosen within the initial dataset.
In future research, clustering results will be extended to the remaining time series by means of a
supervised classification.

2.2. Clustering

Clustering is a data mining technique that consists in dividing an initial set of multidimensional
data in different meaningful subsets containing objects that share similar characteristics, with the aim
of discovering hidden recurring patterns [5,9]. An efficient clustering provides a number of final
clusters such that the distance among data belonging to different clusters (usually referred to as
“between-clusters distance”) is maximized, whereas the distance among data belonging to the same
clusters (“within-clusters distance”) is minimized [3,7]. Given a couple of multidimensional data X;
and ¥;, the most common definition of their reciprocal distance d(fl-, fj) is the Euclidean norm [10]:
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However, a large number of alternative distance metrics are available, including cosine distance,
Mahalanobis distance, cosine wavelets and piecewise probabilistic measures among others [11-14].

A common classification of clustering techniques based on the clustering criterion is among
“partitioning” or “non-hierarchical” methods (i.e, K-means), “hierarchical” methods (i.e.,
dendrogram) and “model-based” methods (i.e., Self-Organizing Maps) [5]. K-means is a clustering
algorithm consisting in the crisp partition of multidimensional data into K subsets, with the number
of clusters K defined by the user prior to the analysis [15]. The partition is made assigning each data
to the nearest cluster center, or “centroid”; initial cluster centroids are assigned randomly and any

available distance metric can be used. A number of iterations must be run in order to minimize the
effect of the initial cluster centroids choice [5].

The dendrogram method consists in a bottom-up agglomeration of data based on reciprocal
distance [16]. Starting from a condition where each data is a separate cluster, pairwise distances are
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computed and the two nearest data are merged into a new cluster, whose centroid is evaluated and
pairwise distances are updated. The merging of couples of clusters continues until the desired
number of clusters, which is defined by the user prior to the analysis, is achieved [5,17].

Self-Organizing Map (SOM) is an unsupervised clustering technique based on neural networks
[18]. The main concept is that an input layer made up of initial data must be reduced in size and
connected to an output layer by means of network parameters and adjustable weights [19]. The
output layer usually consists of a bidimensional grid made up of a number K of typically hexagonal
elements, or “output neurons”, which represent the maximum possible number of clusters, defined
by the user prior to the analysis. SOM is also known as “topology feature preserving map” because
the algorithm preserves data topology; in other words, close neurons in the output layer have similar
characteristics because they were generated by similar input data [19,20]. The final output of SOM is
represented by the output neuron grid, where each neuron can be empty, if no input data was found
to be related to it, or filled with one or more input data, so that each neuron can be regarded to as a
separate cluster. However, the in-deep insight of SOM results, implying visual inspection of
neighboring distances and component planes, also taking additional information such as data labels
into account [20,21], can lead to a merging of the nearest neurons with the consequent reduction of
clusters.

There is no confirmation in literature about which is the most performant clustering algorithm,
since each method has both advantages and drawbacks [2,3,5]. However, different methods are
usually coupled with specific applications. As concerns smart metering data, several examples exist
that adopt SOM clustering for energy consumption data to recognize multiple consumers typologies
or to discriminate weekdays from weekends consumption [2,6,20]. In the field of water consumption
pattern analysis, recent applications include K-means [7] and SOM [21]. Dendrogram applications
are rare, since this method implies a deep computational effort to compute the dissimilarity matrix
when the initial dataset is large [22].

Whichever the algorithm used for clustering, one key parameter is the number of clusters K (or
its equivalent for SOM, namely the output grid dimension). In practical applications, some prior
information is usually available so that the choice of K is data-driven and not arbitrary (for instance,
when using K-means the number of consumers typologies could be known). As concerns SOM, the
choice of the output grid dimension (which is the square root of the maximum allowed number of
neurons) can follow two different strategies. The first approach consists in setting a very large output
dimension in order to obtain an output map made up of groups of neurons occupied by one or few
data, delimited by groups of empty neurons. This method is usually applied when there is a prior
knowledge about data labeling (for example the corresponding day of the week is known) and the
merging of close neurons into clusters is straightforward. At the opposite, when no prior information
or labeling is available, it is more useful to set a small grid dimension and let each neuron be hit by a
considerable number of data. When this happens, the output neurons coincide with the final clusters,
although a posterior merging of the nearest neurons can always be considered.

In general, when prior knowledge is little or absent, it is a common practice to repeat
computations with different values of K and compare results, looking for the best “cluster solution”
in terms of clustering quality. The performance of a cluster solution can be evaluated by means of the
Clustering Validity Indices (CVIs). A large number of CVIs has been proposed in literature [2,23] and
there is no general consensus about which should be the most useful [5]. A general approach is to
pick the cluster solution that either minimizes/maximizes a certain CVI or corresponds to an
elbow/local peak of the function [23]. However, it is important to understand that taking more than
one CVI into account at the same time could lead to problematic clustering evaluation, because
multiple CVIs seldom give the same results; the choice of which CVI to use and the interpretation of
results should be considered heuristic [23].

Among all the proposed CVIs the most frequently used are based on the definition of between-
clusters distance SSB and within-clusters distance SSW, which account for the definition of distance
proposed in Equation (2):
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where #x is the number of data in cluster k, C,, is the centroid of cluster k and M is the mean of all
data in the dataset. In other words, SSB is defined as the sum of square distances of the centroids of
each cluster from the mean, weighed by the size of each cluster. For the evaluation of SSW, for each
cluster the square distance of all data belonging to that cluster from the cluster centroid must be
computed, and their sum is computed for all the clusters in the cluster solution. Whichever the
algorithm adopted and the initial dataset, by definition SSW increases and SSB decreases for
increasing K, and their sum remains constant [3]. SSB and SSW can be used in combination with other
CVIs or even alone to make some preliminary cluster evaluation: for example, the best cluster number
K could be chosen as that value where SSB and SSW stabilize to an asymptote [2].

Basing on Equations (3) and (4), two CVIs were proposed that are the most frequently used for
clustering evaluation, namely the Calinski-Harabasz index CH and the Davies-Bouldin Index DBI
[24,25]:
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Computation of CH is straightforward once SSB and SSW have been calculated, whereas for the
computation of DBI some successive steps must be accomplished. First of all, for each cluster k in the
cluster solution the mean d, (“average within distance”) of all distances of data in the cluster from
the cluster centroid must be computed. Then, for each pair of clusters in the cluster solution the
quantity R« must be computed which is the sum of average within distances of the clusters in the
pair, normalized by the distance between the two centers. Finally, for each cluster k the maximum of
Ry is found, and DBI is the average of maximum R values. The best cluster solution is the one that
minimizes DBI or maximizes CH.

As seen, the state of the art related to clustering provides different techniques, along with
different approaches to set relevant parameters and performance criteria, and there is no algorithm
nor CVI performing suitably well in every context. For this reason, in the present paper a “mixed
clustering strategy” was adopted that consists in combining different techniques to detect clusters in
very large datasets, where single methods could perform poorly [26-28]. Specifically, a base
partitioning was obtained with a first-level clustering by SOM, and a second-level clustering was
performed to the centroids of the first-level clusters. For first-level clustering different output grid
dimension values were tested, whereas for second-level clustering both K-means and dendrogram
were applied with different cluster numbers K. Clustering performances were compared by means
of DBI and CH indices.
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3. Discussion of Results

No preliminary information is available that suggests a possible reliable cluster number K, nor
literature points towards a specific clustering technique. As a consequence, different methods were
applied and results were compared to find the optimal cluster solution. The in-depth analysis of
cluster solutions required the estimation of several CVIs (CH and DBI were chosen) which, as stated
in the previous sections, must be considered as a heuristic decision tool to be supported by additional
observations about clusters consistency and meaningfulness.

Different models were applied to perform clustering, labeled model “A”, model “B” and models
“C”. Model A and model B consist in the application of two ordinary techniques, namely K-means
and dendrogram respectively, to the dataset made up of 168 monthly-aggregated normalized time
series. For both models the algorithm was run with 27 different cluster numbers (henceforth called
K2) chosen in the range 2-64. Models C consist in a mixed strategy made up of a first-level clustering
by SOM (with output grid dimension identified by the first number following letter “C”) and a
second-level clustering by K-means (second number following letter “C” is 1) or dendrogram (second
number following letter “C” is 2). For models C, SOM was run with 5 different output grid dimension
JK; ranging between 4 and 8, where Ki is the number of clusters of the 1st-level clustering. However,
it must be noted that for high Ki values not all the neurons could be occupied (for instance in models
C81 and C82 the largest cluster solution is Ki = 63 because one neuron was found empty), so that Ki
should be interpreted as the maximum possible number of clusters. As 2nd-level clustering, both K-
means and dendrogram were run with Kz ranging between 2 and Ki-1 with unit pace. To better
understand the proposed procedure, the main points are summarized with a reference to a fictional
model Ca:

e  As1st-level clustering, a SOM is run with grid dimension set to g, so that the maximum allowed
number of clusters is a2. To minimize random errors, SOM is run 10 times and the best result is
chosen as the one that minimizes the sum of distances data/cluster centroid. For each cluster, the
centroid is computed as the mean of all the patterns in the cluster.

e  As 2nd-level clustering, another clustering method (K-means for d = 1, dendrogram if d = 2) is
run where the 4? centroids are used as the input and Kz is set to a value b ranging between 2 and
a?-1. K-means is run 10 times with K2 = b and for each run the algorithm replicates are set to 1000,
in order to reach convergence and minimize the influence of initial points (same parameters
were used for model A). Again, the best result is chosen as the one that minimizes the sum of
distances data/cluster centroid. If the dendrogram is used, Kz is set to b and there is no need to
iterate computations, since the method is only based on initial distances.

e Finally, the original 168 patterns that were used as the input for 1st-level clustering are
reassigned to the b new clusters, and DBI and CH can be computed with reference to the final
partition, called “cluster solution”.

Comparison of models A and B shows that model B is preferable since it has the lowest DBI and
the highest CH for each cluster solution; however, models A and B perform poorly if compared to
models C. As concerns models C, results are conflicting since DBI and CH not only provide for
opposite results in terms of K, but also the best cluster solutions systematically coincide with the
highest or lowest possible cluster numbers, implying that the estimate of the CVIs is somehow biased.
This circumstance can be explained observing that in the 1st-level clustering provided by SOM each
cluster solution is made up of a small number of highly populated clusters and a large number of
highly compact clusters containing a very small number of time series. Such a heterogeneity could
distort the evaluation of the proposed indices.

In order to overcome such a bias and to extract useful information from CVIs inspection, for each
cluster solution provided by the mixed-strategy models only the clusters containing more than 5
patterns were considered and DBI and CH were recomputed. Figure 1 shows original and
recomputed CVIs for models C71 and C72 as an example; considerations are similar for all the other
models. It must be noted that for original CVIs K coincides with the number of clusters in the cluster
solution, whereas for recomputed CVIs K must only be interpreted as a label for comparison
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purposes, and the actual number of clusters can be lower than or equal to K. As concerns DBI (Figure
la), recomputed values provide an optimal solution which is far more acceptable than the one
provided by original DBI, since K is now intermediate with respect to the extreme values. Moreover,
the new optimal solution has a lower DBI value, because neglecting sparsely populated clusters
emphasizes the meaningfulness of the remaining ones. Recomputed CH values (Figure 1b) provide
solutions that are now coherent with those provided by the recomputed DBI; also, CH is now
characterized by pronounced spikes highlighting clustering solutions that are significantly
meaningful than the others.
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Figure 1. Comparison between original and recomputed CVIs for models C71 and C72 in terms of
DBI (a) and CH (b).

A visual inspection of the best cluster solution for each model suggests that the optimal cluster
solution is K =31 for model C71, which is characterized by 5 clusters containing more than 5 patterns.
This solution is a relative maximum of recomputed CH (the absolute maximum values having an
inconsistent number of meaningful clusters) and at the same time it corresponds to a recomputed
DBI value which is very close to the minimum. Also, recomputed CH and DBI for this particular
solution are among the maximum and minimum values, respectively, among all the solutions
provided by the different tested models. Once the optimal solution was found, the 26 sparsely
populated clusters were manipulated and suitably merged, reducing their number to 19 (5 highly
populated plus 14 sparsely populated clusters).

Figure 2 shows the clusters of the optimal cluster solution, along with cluster centroids. Clusters
1-5 have more than 5 pattern each, and they can be considered meaningful because they have
correctly detected different customers behaviors especially related to summer consumption.
Specifically, cluster 2 shows a consumption increase in August, presumably related to customers that
spent summer 2016 in town; clusters 1, 4, 3 and 5 show a progressive decrease consumption in August
(this could be related to an increasing number of summer holidays with zero or low consumption).
In all the other months of the year, however, clusters 1-5 show a similar behavior, with a water
consumption that is quite constant. Clusters 6-10 can be considered meaningful as well since they
have detected anomalous behaviors probably caused by instrumental problems; alternatively, they
can be considered representative of households which were not occupied for large periods of the
year. Clusters 11-19 are singleton clusters; such patterns were not assigned to any of the other clusters
since their Euclidean distance from any of the centroids was larger than the average within distance
in Equation (7).
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Figure 2. Clusters provided by the best cluster solution.

4. Conclusions

In the present paper a procedure is presented to detect water consumption patterns describing
significant consumers behaviours. The methodology presents some novelty elements. The adoption
of SOM, although frequent in the framework of electrical consumption, is very rare for water demand
problems. Moreover, the case study represents a useful example of mixed clustering strategy; the
final partitioning stems from an in-deep analysis of clustering parameters that, apparently, provide
for contradictory information whose interpretation is not straightforward.

The research was strongly supported by the local water company, who provided for water
consumption data, because of the high potentialities of results for both research and management
purposes. Detected patterns will be of great aid in inferring about non-monitored connections; this
will allow for: (i) a more realistic calibration of bills; (ii) the efficiency increase on the long term; (iii)
the evaluation of water balance in the WDN and, as a consequence, the estimation of leakage
volumes; (iv) the evaluation of the outputs at significant spatial scales, such as the census scale, with
the aim of seeking correlations with socio-demographic parameters.
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