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Abstract: Optimizing water distribution systems is an essential part of water resources allocation 
planning. It leads to challenging combinatorial optimization problems, for which meta-heuristics 
have been applied, notably genetic algorithms and ant colony optimization. The present paper 
introduces the application of the physarum algorithm, a recent biologically inspired algorithm, 
utilized hitherto for path finding problems in networks. Direct comparison is presented to ant 
colony optimization applied to a typical water supply system. 
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1. Introduction 

The optimization of water distribution systems is a challenging complex problem and it has 
been treated so far by various methods, both conventional and meta-heuristic. The typical problem 
concerns sizing of the distribution system. A specific and common instance of the problem consists 
in the determination of the pipe diameters for the purpose of minimizing the total cost of materials. 
Due to the inherent difficulty of the problem, meta-heuristic methods are preferred in order to deal 
with the complexity and nonlinearities of both the objective function and the constraints. Genetic 
algorithms, harmony search, particle swarm optimization and ant colony optimization are among 
the methods employed and noted in the literature.  

In this paper a recently developed algorithm inspired from the behavior of physarum 
polycephalum is applied. This algorithm was originally designed for the solution of network 
combinatorial optimization problems, such as the shortest path problem in an undirected graph. The 
biological basis of the algorithm is the observed ability of the single-cell organism physarum to 
detect shortest paths through a maze in order to reach food sources.  

Regarding water distribution systems, no application of the physarum algorithm is noted in the 
literature. In the present paper, branched water distribution systems are optimized, in order to 
demonstrate the efficacy and efficiency of the proposed algorithm. A typical water supply system is 
optimized both by the physarum algorithm and by ant colony meta-heuristic. The latter entails 
certain similar concepts and a comparison is deemed to be appropriate. The comparison turns out to 
be in favor of the physarum algorithm. Application of the physarum algorithm to pressurized 
irrigation network has been presented in [1]. 
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2. Problem Description 

A branched water supply system is characterized by one or more reservoirs and a pipe system 
that conveys water to selected discharge locations. The pipe system extends in space without loops. 
Given the reservoir hydraulic head and the architecture of the water supply network, the required 
discharges the pressures at the junctions can be determined. It remains to choose the diameters so as 
to achieve an economic design under the proper restrictions. 

Let  

= + +
2

j j
j j

p v
H z

ρg g
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be the hydraulic head at the node j, where vj is the velocity and zj the elevation at the same node. If Hi 
denotes the corresponding quantity for node i which is connected to and upstream of node j, then 

= −j i fijH H h  (2) 

where hfij denotes the linear losses from i to j. 
Finally, from Equation (1), the pressure at j can be approximated as 
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p
H z

ρg
 (3) 

The linear losses along a pipe of length l, diameter d and with velocity v are given by 
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where f is a friction factor, given by a formula of Chen [2]: 
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where k is a roughness coefficient and Re the Reynolds number given by  

=Re vd
ν

  

where ν is the kinematic viscosity. 
It is clear from Equations (1)–(5) that, given the pipe diameters of a branched water distribution 

system, successive heads and pressures can be determined at the ends of the conduits. 
The optimization problem is then formulated as follows:  
Select the pipe diameters for the conduits such that the total cost is minimized. The total cost 

equals  

=
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where li is the length of pipe i, ci the cost per unit length of the chosen pipe i. The cost ci is taken to be 
proportional to the unit weight of the chosen pipe. 

The constraints imposed upon the possible solutions are: 

( )> 15ip
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 (6) 
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( )≤ ≤0.5 1.5 / seciv m  (7) 

Equation (6) implies a constraint on the diameter ranges, given that  
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The choice of the diameters is further restricted by the availability of specific commercial types of 
pipes. 

As an example, a typical branched water supply system (BWSS) is shown in Figure 1, taken 
from the textbook of [3]. 

 
Figure 1. Water supply system schematic. 

It will be assumed that the required discharges for each conduit have been determined on the 
basis of the local water needs. These discharges, qi are shown in Table 1. The outgoing discharges can 
be read directly from Figure 1. 

For the problem depicted in Figure 1, the available commercial diameters are given in Table 2. 
By combining the diameter constraint (Equations (7) and (8)) with the data of the third column 

of Table 2 the allowable diameters for each pipe of the problem can be determined. As a result, the 
possible diameters for each one of the pipes are as shown in Table 3. The diameters are designated 
by the numbers of the first column of Table 2. 

Table 1. Discharges carried by the conduits. 

Conduit No Length (m) Discharge (L/s) Elevation (m) 
1 2000 48.89 100.00 
2 1000 1.04 100.00 
3 1000 1.04 100.00 
4 1000 43.34 100.00 
5 1000 3.82 100.00 
6 1000 30.49 100.00 
7 1000 2.08 100.00 
8 1000 27.71 100.00 
9 1000 1.04 100.00 
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Table 2. Available commercial diameters. 

No External Diameter Internal Diameter Unit Weight (Unit Cost) 
1 50 45.2 0.55 
2 63 57.0 0.85 
3 75 67.8 1.22 
4 90 81.4 1.75 
5 110 99.4 2.61 
6 125 113.0 3.34 
7 140 126.6 4.18 
8 160 144.6 5.47 
9 200 180.8 8.51 

10 225 203.4 10.80 
11 250 226.2 13.20 
12 280 253.2 16.60 
13 315 285.0 20.90 
14 321 321.0 26.50 

Table 3. Possible diameters. 

Conduit No Possible Diameters 
1 11,12,13,14 
2 1 
3 1 
4 10,11,12,13,14 
5 2,3,4 
6 9,10,11,12 
7 1,2,3 
8 9,10,11,12 
9 1 

3. The Physarum Algorithm 

The physarum polycephalum algorithm has been applied to the problem of finding shortest 
paths in undirected and directed networks [4]. The underlying biological prototype is based on the 
behavior of the physarum polycephalum, which is a amoeboid organism that develops a network of 
tubular elements in order to approach food sources. The shape of the network is suitably adjusted so 
as to extend in an optimal manner to the location(s) of the food sources. During this process the 
thickness of the tubes is suitably adjusted in order to accommodate the occurring variable flow 
through the nodes of the network. The tubes tend to grow in diameter as the flux grows, while they 
tend to disappear as the flux attenuates. Modeling of this behavior has given rise to the solution of 
the maze problem and to algorithms for finding shortest paths and Steiner trees in networks. The 
maze solving mechanism has been described in [5]. The derived mathematical model and algorithm 
for the shortest path and for the shortest tree in a given network is described in [6].  

The mathematical problem for which the physarum algorithm was first employed, is 
formulated as follows [7]: 

Let G = (V, E) be a graph, where V is the set of its vertices and E the set of its edges. One of the 
vertices is designated as the starting node and a number of other vertices are defined as terminal 
nodes. A cost is associated with each one of the edges. A connected subgraph of G, spanning all the 
terminal vertices is called a spanning tree. A minimal spanning tree is defined as the one of minimal 
cost, where the cost of the tree is the sum of the costs of its edges. If there is only one terminal node, 
then the problem is reduced to the shortest path problem from the start to the end node.  

The physarum algorithm is based on a physical simulation model based on the hydraulics of 
Poiseuille flow. More specifically, if i and j are vertices of the graph, then the flux Qij through the 
tube connecting them is related to the pressures pi and pj at the ends of the tube as follows: 

= −ij
ij i j ij

ij

D
Q p p u

L
( )  (9) 
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where Lij is the length and Dij the conductivity of the tube ij. The variable uij is defined as: 


= 

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i j
u   

On the other hand, continuity imposes the following requirement on the set of the tubes 
converging on vertex j: 
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In the above Equation (1) stands for the start node and n for the end node, assuming that there 
is only one such vertex. The sign convention in the above summation assigns a positive sign to the 
incoming fluxes and a negative sign to the outgoing ones. 

By combining the above Equations, 

− =
− = + =




1, 1

u 1,
0,otherwise

ij
i j ij

i ij

jD
p p j n

L
( )  (10) 

In case there are more than one terminal node, the above Equation is modified as follows: 
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where n1, n2, …nN are the terminal vertices. 
The conductivities Dij follow an adaptation course according to the following differential 

Equation [4]: 

( )= −ij
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where r is an attenuation coefficient and f(|Q|)=|Q|. 
The above Equation is discretized as 
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The physarum algorithm is based on the above Equations and runs as follows: 

Do 

Initialize 
← 0.5ijD

 

Set ← 0np  
Compute pi’s from Equation (11) or (12) 
Compute Qij’s from Equation (9) 
Compute +1n

ijD ’s from Equation (13) 

Until + − < 1n n
ij ij

i j

D D ε  

Theoretical considerations related to convergence proofs can be found in [8]. Shortest path 
determination is noted through the conductivities Dij that finally dominate. These mark the sequence 
of the successive tubes that constitute the sought for shortest path. Specific examples are given, 
among others, in [6]. Applications in the formation of transport networks are noted in [9]. The next 



Proceedings 2018, 2, 598 6 of 8 

section shows how the physarum algorithm can be applied to the problem of minimizing the cost of 
a water distribution system, as formulated in the Section 2. 

4. Application of the Physarum Algorithm to the Design of a Water Distribution System 

The basic idea is to construct a virtual graph originating from the actual graph of the BWSS and 
to find paths of minimal length in the virtual graph. Every edge of the virtual graph is assigned a 
length equal to the cost of the actual pipe that it represents. Since there is generally more than one 
choice for each actual pipe, the virtual graph will consist of the same junctions as the actual one and 
of multiple alternative connections between these junctions, as in Figure 2, which depicts the virtual 
graph corresponding to the actual graph of Figure 1. The numbers on the graph of Figure 2 
correspond to the numbers of the individual conduits of Figure 1. The alternative paths between 
connected nodes are clearly shown. They represent the possible diameters of Table 3.  

The physarum algorithm will be applied to the virtual graph of Figure 2. Equation (12) will be 
employed in the implementation of the algorithm, since the graph includes more than one terminal 
node. Also, the application of Equations (10), (12) and (13) requires unique connections between the 
nodes. For that reason, additional fictitious nodes have been added, marked by white circles, as 
shown in Figure 2. 

 
Figure 2. Virtual graph of the BWSS. 

By running the physarum algorithm on the virtual graph of Figure 2, the optimal tree is 
determined and the sum of the lengths of its edges is obtained as a candidate for the optimal solution 
of the BWSS problem. 

Regarding constraints, the one of the velocity range (Equations (7) and (8)) is automatically 
observed due to the existence of the alternative connections in the virtual graph. However, 
adjustments are still necessary in order to satisfy the pressures constraint of Inequality 6. Obviously, 
the pressures pi, i = 1, 2, …, n, where n is the number of the conduits, are functions of the set of 
selected diameters di, i = 1, 2, …, n, since they are determined from the linear losses and the 
successive heads by means of Equations (1)–(5). Therefore, 

pi = pi(d),  

where d is the vector of the diameters d = (d1, d2, …, dn). 

A constraint function is defined as  

gi(d) = 15 − pi(d), i = 1,2,..,n  

Then the algorithm for the determination of the optimal diameters will runs as follows: 

1. Apply the physarum algorithm to the virtual graph. 
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2. Obtain a preliminary diameters vector d 
3. Compute pi(d) and gi(d) for i = 1,2,..n through the hydraulic analysis (Equations (1)–(5)) 
4. If gj(d) > 0, for some j, then the unit cost cj is adjusted as in step 5. 

Otherwise exit the loop.  

5. ( )← +j j jc c λg d  

6. The same adjustment is imposed on all pipes upstream of pipe j 
7. The virtual lengths of the respective virtual edges are renewed 
8. The physarum algorithm is applied and a new diameter vector d is obtained 
9. Go to step 3 

The coefficient λ of step 5 above, is a problem dependent adjustment or penalty parameter. 

5. Results and Discussion 

For purposes of comparison, the same BWSS was optimized by the ACO meta-heuristic. The 
latter involves the concept of alternative paths as the physarum algorithm. References to such ACO 
applications are [10–12]. In the ACO procedure, the pheromone paths that lead to pressures 
violating the constraint of Inequality (6) are penalized by an increased pheromone deposition. The 
same constraint is handled by the physarum algorithm by the coefficient λ of the previous section. 
The physarum algorithm gave an optimal value of 67,670 after three iterations of the algorithm of 
Section 4, while ACO with 10 ants and 5 iterations gave 78,930 for the objective function of the 
sample problem of this paper. More numerical experimentation is needed with larger and more 
complex water distribution systems, in order to establish the performance of the present competitive 
and promising algorithm. 
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