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Abstract: The scope of this paper is to evaluate the short-term predictive capacity of the stochastic
models ARIMA, Transfer Function (TF) and Artificial Neural Networks for water parameters,
specifically for 1, 2 and 3 steps forward (m =1, 2 and 3). The comparison of statistical parameters
indicated that ARIMA models could be proposed as short-term prediction models. In some cases
that TF models resulted in better predictions, the difference with ARIMA was minimal and since
the latter are simpler in their construction, they are proposed for short-term prediction. Artificial
Neural Networks didn’t show a good short-term predictive capacity in comparison with the
aforementioned models.
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1. Introduction

The central part of River Nestos flow is one of the areas with the most intensive anthropogenic
interference because of the construction and operation of Thesaurus and Platanovrissi dams. The
purposes of the these dams are (a) hydroelectric power for the increased needs in the areas of
Eastern Macedonia and Thrace; (b) anti-flooding protection of villages, cities, agricultural and
touristic activities in Nestos downstream; (c) irrigation of the fertile deltaic plain and (d) ecological
protection and preservation in Nestos Delta, which is one of the 11 Hellenic areas that is included in
the Ramsar’s Convention [1,2].

In the deeper section of the reservoir basin, upstream of the Thesaurus dam, a floating
telemetric station (Figure 1) was anchored to record changes in water temperature (Tw) and
dissolved oxygen (DO) at four different depths (1, 20, 40 and 70 m). For these parameters, the daily
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records of the years 2004 to 2007 were analyzed and evaluated [3-6]. This research was completed by
the end of the year 2007.
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Figure 1. Thesaurus floating station and measurement depths during the year [7].

This study aims to evaluate the predictive capability of ARIMA, Transfer Function (TF) and
Artificial Neural Networks (ANN) models for short-term prediction and more specifically for 1, 2
and 3 steps forward (m =1, 2 and 3).

2. Methodology

An adequate number of continuous measurements (1440 on a daily basis) of the DO and Tw
parameters, were used for the period from 19 January 2004 to 28 December 2007 and corresponded
to four different depths (1, 20, 40 and 70 m). In order to evaluate the predictability of the models, the
data set was split into two subsets: (a) the historical period with 1420 measurements and (b) the
forecasting period with the last 20 measurements. The former was used to select the best adapted
model in the data, while the latter was used in order to forecast the m step forward ( )7t (m)) [7-9].

If m = k then the prediction occurs for “k steps forward”; this means the prediction of the
observation at time t + k, given the observations up to time t, which is called start time. Four
statistical parameters, MSE, RMSE, MAPE and NSC, were used in order to assess the forecast.
Finally, 95% confidence intervals were calculated for all the models selected [10].

The linear and nonlinear stochastic models which were tested are: (a) ARIMA, (b) Transfer
Function and (c) Neural Network models. Their compilation, as well as the prediction results for m =
1, are discussed in detail in Sentas et al., 2016 [10].

The 20-day forecast was considered sufficient as the Thesaurus reservoir was first operated in
2000. Moreover, since the end of 1997, when its construction was completed, its water filling has
begun. From the end of 1997 to the early 2000 some intense phenomena of water’s stationarity were
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observed, accompanied by anoxia, with reductive processes to dominate, by hydrogen sulfide
production in the hypolimnion and by the development of sulfurbacteria [11].

By the time the reservoir started operating and the water being discharged for various uses
(hydroelectric production, irrigation, flood protection, ecological), from the beginning of the year
2000 until nowadays, is still trying to restore the conditions of equilibrium between the natural
environment and human interventions.

Thus, a period of four years (early 2004-late 2007) would be necessary for monitoring the
hydro-system of Nestos-Thesaurus complex’s characteristics, throughout the water column and at
various depths. This is because slight changes occur in those characteristics (e.g., the temperature in
hypolimnion). In any other case of an existing reservoir, it would take a maximum of 2 years for
complete monitoring and reliable results’ extraction. Nevertheless, in the case of the Thesaurus, it
was considered that a database of 4 consecutive years is required.

Therefore, the forecasting was chosen to be performed at the end of the four-year period
(December 2007), with no interim periods e.g., the spring of the same or the previous year, otherwise
it would not exactly correspond to the interpretation of the physical problem.

3. Results

To test their predictive capacity, the following stochastic models were constructed and tested:
(1) ARIMA, (2) Transfer Function and (3) Neural Network models. For each depth, an ARIMA
model, a neural network model and a TF model were adapted to the dissolved oxygen time series. In
total, four ARIMAs, four neural network models, and four TF models with a time-out of dissolved
oxygen at each depth and input variable were adapted to the water depth of the corresponding
depth. Using all of the above models, provision was made for m =1 step forward [12-15].

ARIMA Models

For each depth, an ARIMA model, a neural network model and a TF model were adapted to the
dissolved oxygen time series [12]. In total, four ARIMAs, four neural network models and four TF
models with output variable the dissolved oxygen at each depth and input variable the temperature
of the corresponding water depth, were adapted. By using all the aforementioned models, a
short-term prediction was attempted for m =1, 2 and 3 steps forward [16-18].

Details for the construction of the above models, as well as the prediction results for m = 1, are
detailed in the paper Sentas et al.,, 2016 [10]. In the present paper, the results for 2 and 3 steps
forward (m = 2 and 3) are reported. In parallel, the results for m = 1 are recorded in order to ensure
better comprehension of short-term forecasting.

At 1m water depth the results are presented in Table 1. 7,(m), represents the forecast at the

time t+m of a time series, in which observations are known up to time ¢. Similarly the results for
depths 20, 40 and 70 meters are given in Tables 2—4, respectively.

The values listed in Table 1 lead to the conclusion that for both m=2 and m =3, the TF
model shows slightly better values for the statistical parameters than ARIMA and better than ANN,
except in the case of the parameter NSC according to which the ANN model precedes.

At water depth of 20 m, according to Table 2, for m =1, 2 and 3, the ARIMA model results in
better predictions with slight differences from the TF models.

At 40 m water depth, according to Table 3, in all cases (m =1, 2 and 3) the TF models show
better statistics. Also, the difference in the statistical parameters for steps 1, 2 and 3 between ARIMA
and TF models is small.

At 70 m water depth, according to Table 4, for prediction of 1, 2 and 3 steps forward (m =1, 2
and 3) the ARIMA models seem to precede in comparison to the others.
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Table 1. Statistical parameters for comparison observed and predicted values using ARIMA, TF and

ANN models and m =1, 2 and 3 (depth 1 m).

Thesaurus Station—DO Parameter—Depth 1 m

Y,(M) Model MSE RMSE MAPE NSC
ARIMA 0442 0.665 7.947 0.614

m=1 TF 0452 0672 7974 0.605
ANN 0523 0723 8934 0544

ARIMA 0852 0923 11.158 0.256

m=2 TF 0816 0903 10589 0.196
ANN 1010 1.005 12.002 0.599

ARIMA 0960 0979 11713 0.163

m=3 TF 0938 0968 11562 0.532
ANN  1.182 1.087 12182 0.545

Table 2. Statistical parameters for comparison of observed and predicted values using ARIMA, TF

and ANN models and m =1, 2 and 3 (20 m depth).

Thesaurus Station—DO Parameter—Depth 20 m

Y,(M) Model MSE RMSE MAPE NSC
ARIMA  0.0077 0.0877 1.0552 0.7992

m=1 TF 00079 0.0891 1.0752 0.7931
ANN  0.0434 02084 2.6721 -0.1303

ARIMA 0.0154 0.1241 1505 0.9913

m=2 TF 00163 0.1278 1.6945 0.5751
ANN  0.0570 0.2387 3.0021 0.0191

ARIMA 0.0215 0.1466 1.9787 0.9881

m=3 TF 00228 0.1511 2.0194 0.4061
ANN  0.0882 02969 32124 0.0072

Table 3. Statistical parameters for comparison of observed and predicted values using ARIMA, TF

and ANN models and m =1, 2 and 3 (40 m depth).

Thesaurus Station— DO Parameter — Depth 40 m

y,(M) Model MSE RMSE MAPE NSC
ARIMA 00167 0.1293 1.5882 0.9167

m=1 TF 00131 0.1144 14791 0.9341
ANN 00170 0.1305 1.6781 0.9154

ARIMA 00545 02334 25415 0.9245

m=2 TF 0.0301 0.1732 2.0954 0.7155
ANN 00510 02258 27102 0.6112

ARIMA 00741 02722 3.6787 0.9611

m=3 TF  0.0515 02269 3.0231 0.5930
ANN 00893 02988 37487 0.4327

Table 4. Statistical parameters for comparison of observed and predicted values using ARIMA, TF
and ANN models and m =1, 2 and 3 (70 m depth).

Thesaurus Station—DO Parameter—Depth 70 m

Y,(M) Model MSE RMSE MAPE NSC
ARIMA 0.1376 0.3709 4.4140 -0.170

m=1 TF 01413 03759 43697 —-0.202
ANN 01913 04375 5860 -0.628
ARIMA 0.1470 03834 5.1874 —-0.1809

m=2 TF 01725 04153 54653  0.0325
ANN 02130 04615 59012 -0.1109

ARIMA 0.1760 0.4195 6.2807 -0.1771

m=3 TE 02010 04484 67227  0.0298
ANN 02278 04772 7.0136 -0.0208
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3. Conclusions

This paper is focused on the comparative evaluation of the short-term predictive capacity of the
stochastic models ARIMA, Transfer Function (TF) and Artificial Neural Networks. An adequate
sample of four years daily monitoring program (19 January 200428 December 2007), of
approximately 1440 records of Dissolved Oxygen (DO) and Water Temperature (Tw) parameters in
Lake Thesaurus, were used in Monitoring Stations in four different depths (1, 20, 40 and 70 m).

In order to evaluate the predictability of the models, the data set was split into two subsets: (a)
the historical period with 1420 measurements and (b) the forecasting period with the last 20
measurements. The former was used to select the best adapted model in the data, while the latter
was used in order to forecast the m step forward ( ¥, (m) ) [7-9].

For the short-term prediction of m = 1, 2 and 3 steps forward, the performance of ARIMA
models and —in some cases—TF models, is better with slight difference. This is due to the fact that as
the distance between the starting point and the forecast increases (m increases), the contribution of
the parameter observed values to the estimation of the forecast is diminished. ARIMA models could
be proposed as short-term prediction models, although in some cases TF models resulted in better
predictions, because (a) the difference with ARIMA models was not statistically significant and (b)
the latter are simpler in their construction. On the other hand, Artificial Neural Networks didn’t
show a good short-term predictive capacity in comparison with the aforementioned models.

In order to predict more precisely the Y,(m) values, the estimated values of Y, are used and

not the observed ones. Therefore, the contribution of the observed values of water temperature at the
corresponding depths, becomes more significant to the estimation of the forecasting values and the
TF models result in better predictions than ARIMA.

To summarize, short-term forecasts of up to four days could be performed by both ARIMA and
TF models. Nevertheless, ARIMA models are proposed due to their simplicity both regarding their
compilation and use [6,7,17,18].

Further research can take place in three aspects: (a) applying forecasting for long—term
prediction (m = 10, 15,...); (b) comparing these models with other forecasting models and (c)
applying these models in other deep water bodies and assess the comparison between them. The
statistical analysis and stochastic modelling are very helpful tools to the assessment of water quality
and quantity issues and could set the fountains for the Integrated Management of both aquatic
ecosystems and water resources.
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