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Abstract: Classical linear regression has been used to measure the relationship between rainfall data 
and altitude in different meteorological stations, in order to evaluate a linear relation. The values of 
rainfall are supposed as dependent variables and the values of elevation of each station as 
independent variables. It has long been known that a classical statistical relationship exists between 
annual rainfall and the station elevation which in many cases is linear as the one examined in this 
article. However classical linear regression makes rigid assumptions about the statistical properties 
of the model, accepting the error terms as random variables, and the violation of this assumption 
could affect the validity of the classical linear regression. Fuzzy regression assumes ambiguous and 
imprecise parameters and data. For this reason it may be more effective than classical regression. In 
this paper we evaluate the relationship between annual rainfall data and the elevation of each 
station in Thessaly’s meteorological stations, using fuzzy linear regression with trapezoidal 
membership functions. In this possibilistic model the dependent measured elevations are crisp, and 
the independent observed rainfall values as well as the parameters of the model are fuzzy. 

Keywords: fuzzy regression; trapezoidal parameters; fuzzy linear programming; possibilistic 
models 

 

1. Introduction 

The scope of constructing in engineering a model is always to attempt to maximize its 
usefulness. This aim is closely connected with the relationship among three key characteristics of 
every systems model: complexity, credibility, and uncertainty. Our purpose in systems modelling is to 
estimate an optimal level of uncertainty for each modelling problem. In 1965 Zadeh in [1], introduced 
the theory of fuzzy sets, in which the fuzziness of a system incorporated all the types of uncertainty, 
in contrast with probability theory, which was capable of representing only one of several distinct 
types of uncertainty. 

In Hydrology, rainfall measurement models have been extensively used in the design process of 
water resource projects such as hydrological prediction, spillway design, climatic change studies, 
rainfall and runoff correlation etc. Rainfall measurements in a specific area are commonly displayed 
in the form of time series, where recorded values can be either continuous or discrete. In many 
instances, there is a correlation between rainfall data that belong to different stations and comprise 
measurements with differing range and stations elevations. Correlation analysis is used to depict the 
relation between the independent variable (usually the meteorological station elevations) and the 
dependent variables (meteorological stations rainfall data). 
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In classical linear regression, the difference between measurement values and estimated values, 
is a random variable with normal distribution and is considered to be caused by measurement errors. 
Upper and lower bounds of the estimated value are calculated and the probability that the estimated 
value will lie between them represents the estimation confidence. According to this, classical 
regression is considered to be probabilistic and has many uses, but can be rendered problematic if 
the data set is small, if it’s hard to prove that error distribution is normal, if there is fuzziness between 
dependent and independent variables or if linearity acceptance is not proper [2]. 

Nowadays, new regression models have been introduced, based on fuzzy logic [3–13]. In fuzzy 
regression the difference between measurement values and estimated values is attributed to the 
inherent fuzziness of the system as well as to the fuzziness of input and output data. In contrast with 
classical regression analysis, fuzzy regression analysis uses fuzzy functions for the regression factors 
and usually meets one of the three cases: (a) Crisp input values ݔ௜௝  and crisp output values ݕ௝ 
(CICO); (b) Crisp input values ݔ௜௝ and fuzzy output values ݕ෤௜ (CIFO); and (c) Fuzzy input values ݔ෤௜௝ and fuzzy output values ݕ෤௜ (FIFO). In all of these three cases, estimated values ෨ܻ௜ are fuzzy. 

Most of the cited above writers have used tridiagonal fuzzy functions for the formulation of the 
problem. However the need to use trapezoidal functions, results of the following reasons [14]: (a) we 
need to optimize the fuzziness of the model and (b) we need to restrict experimental data inside the 
estimated value range. Using trapezoidal membership functions for estimated values [14–18] allows 
us to achieve inclusion for output data with triangular membership functions ݕ෤௝  and estimated 
values with trapezoidal membership functions ෨ܻ௝, for confidence level h = 1, for which the kernel is 
not minimized in a point: [ݕ෤௝]௛ୀଵ ⊆ [ ෨ܻ௝]௛ୀଵ. In addition, for a level of confidence h = 0, we can achieve 
inclusion: 	[ݕ෤௝]௛ୀ଴ ⊆ [ ෨ܻ௝]௛ୀ଴ . Due to the linearity of the membership function, inclusion for those 
levels of confidence, allows us to ensure that inclusion is possible for every level of confidence: [ݕ෤௝]௛ ⊆ ൣ ෨ܻ௝൧௛, ∀ℎ ∈ [0,1]. Consequently, trapezoidal fuzzy parameters have higher capability to model 
varieties of fuzziness than triangular fuzzy parameters. 

Trapezoidal membership function models have been used by [14,15,19–21,22–24]. Charfeddine 
in [19] extended Tanaka’s method for the case of trapezoidal membership functions with crisp 
measured input and output values. She used a fuzzy level function ሚ݂, with four crisp level functions ௔݂, ௕݂, ௖݂ , ௗ݂  For, ௔݂, ௕݂ , she used Tanaka’s method [8], whereas for ௕݂, ௖݂ , she used classical linear 
regression, which led to function ሚ݂ and standard deviation σ of the model. Based on this ௕݂, ௖݂ , 
become: ௕݂ = መ݂ − ,ߪߣ ௖݂ = መ݂ + with λ ߪߣ  being an adjustment factor. Ganesan and Veeramani in 
[22], described a fuzzy linear programming with symmetric trapezoidal fuzzy parameters. They 
proved fuzzy analogues of some important theorems of linear programming and they gave a 
numerical example, leading to a solution of fuzzy linear programming problems. Fung et al. in [25], 
proposed a new model for asymmetric trapezoidal fuzzy parameters. Kumar and Kaur in [24] 
presented a new method, called Mehar’s method, suitable for solving fuzzy linear programming 
problems with trapezoidal fuzzy parameters. They proved that this method is easy to apply to fuzzy 
linear programming problems, with respect to existing methods. Kheirfam and Verdegay in [23] 
extended the dual simplex method to fuzzy linear programming, with symmetric trapezoidal fuzzy 
parameters. They studied the variation of values to a certain limit, so that the fuzzy optimal solution 
remains invariant. 

In this article, a possibilistic model (Tzimopoulos et al. model) is described, where membership 
functions are trapezoidal, measured input values are crisp and measured output values are fuzzy 
triangular [13]. In this model, a rather simple two-phase method was used, with one crisp measured 
input value and one fuzzy measured output value. During step 1, measured input and output values 
were considered crisp, while parameters were considered fuzzy and supports were estimated using 
Tanaka’s method. In step 2, estimated supports were considered to be the known kernel of the 
trapezoidal membership functions and in the inclusion they were transferred to the known terms. 
Supports for the trapezoidal membership functions of the estimation were calculated. Triangular 
membership functions were used for measured output values. 
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Further, we present one application of the above model, concerning a hydrological problem in 
the region of Central Thessaly (Greece), where twenty rainfall measurement stations of the region 
with rainfall data and their elevation have been used. 

2. Mathematical Model 

2.1. Model of Tzimopoulos et al. (2006) 

2.1.1. Generalities 

Measured input values ݔ௜௝  are considered crisp and measured output values are considered 
symmetrical triangular fuzzy numbers ݕ෤௝ = ௝ିݕ) , ,௝௞ݕ (௝ାݕ  (Figure 1), while estimated values are 
considered trapezoidal fuzzy numbers ෨ܻ௝ = ൫ ௝ܵି , ௝ିܭ , ,௝ାܭ ௝ܵା൯ (Figure 2). The above problem can be 
divided into the following two steps: 

  
(a) (b) 

Figure 1. (a) Triangular membership function, (b) Trapezoidal membership function. 

 
Figure 2. Central Thessaly meteorological stations. 
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2.1.2. Step 1 

According to the kernel inclusion constraint mentioned above, we have: ݕ௝௞ ∈ ൣ ௝ܻି, ௝ܻା൧௛ୀଵ (1) 

Namely, the kernel of experimental output values is within the kernel of estimated values. 
According to Shapiro et al. (2009), for the case of crisp output values (only the kernels of measured 
values), if we apply Tanaka’s method (Tanaka 1987), the range [ ௝ܻି, ௝ܻା]௛ୀଵ = ௝ିܭ] ,  ௝ା]௛ୀଵ encirclesܭ
the kernels of experimental values. In this stage, only triangular functions ܣሚ଴(ݎ଴, ܿ଴), ,ଵݎ)ሚଵܣ ܿଵ) are 
applied for the method of Tanaka and the possibilistic model used is: ෨ܻ௝ = ሚ଴ܣ + ଵ௝ݔሚଵܣ . Thus, the 
problem of determining the estimated values in this step is: 

min(ܿ) = ଴ܿܯ + ܿଵ෍ݔଵ௝ெ
௜ୀଵ  (2) 

௝ܻା = ௝ାܭ =෍ݎ௜ݔ௜௝ଵ
௜ୀ଴ +෍ܿ௜ݔ௜௝ଵ

௜ୀ଴ ≥  ௝௞ (3a)ݕ

௝ܻି = ௝ିܭ =෍ݎ௜ݔ௜௝ଵ
௜ୀ଴ −෍ܿ௜ݔ௜௝ଵ

௜ୀ଴ ≤ ,௝௞ݕ ଴௝ݔ = 1 (3b) 

ܿ଴, ܿ௜ ≥ 0 (3c) 

Through the solution of this system we get the surroundings [ ௝ܻି, ௝ܻା]௛ୀଵ = ௝ିܭ] , ௝ା]௛ୀଵܭ  as 
follows: 

௝ܻା = ଴ݎ) + ܿ଴) + ଵݎ) + ܿଵ)ݔ௝ (4a) 

௝ܻି = ଴ݎ) − ܿ଴) + ଵݎ) − ܿଵ)ݔ௝ (4b) 

As long as they meet the same constraints, these surroundings coincide with the kernel of 
trapezoidal functions, resulting in the relations below: 

௝ܻି = ௝ିܭ = ஺෨బିܭ + ,ଵ௝ݔ஺෨భିܭ ݆ = 1,…  ܯ,

௝ܻା = ௝ାܭ = ஺෨బାܭ + ஺෨భାܭ ,ଵ௝ݔ ݆ = 1,…  ܯ,
(5) 

2.1.3. Step 2 

We apply now support inclusion: [ܵ௬෤ೕି , ܵ௬෤ೕା ] ⊆ [ܵ௒෨ೕି , ܵ௒෨ೕା ] (6) 

where space [ܵ௬෤ೕି , ܵ௬෤ೕା ] is given as follows: [ܵ௬෤ೕି = ௝ିݕ = 	௝ݕ − ௝݁	 , ܵ௬෤ೕା 	= ௝ାݕ = 	௝ݕ + ௝݁	] (7) 

Based on relations (3a, 3b, 3c) and (4a, 4b), we get: 

௒෨ೕିܭ −෍ܿ௜ℓݔ௜௝ଶ
௜ୀଵ ≤ ௝ିݕ ଵ௝ݔ				, = 1 (8) 

௒෨ೕାܭ +෍ܿ௜௥ݔ௜௝ଶ
௜ୀଵ ≥ ଵ௝ݔ				,௝ାݕ = 1,			݆ = 1,2, …  (9) ܯ,

where ܭ௒෨ೕା  and ܭ௒෨ೕି are known since they have been calculated during step 1. 
The problem turns now into the following: 
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min(ܿ) = ൫ܿ଴ℓܯ + ܿ଴௥൯ + ൫ܿଵℓ + ܿଵ௥൯෍ݔଵ௝ெ
௝ୀଵ  (10) 

s.t  

௒෨ೕିܭ −෍ܿ௜௥ݔ௜௝ଶ
௜ୀଵ ≤ ෤௝ିݕ − ௝݁,				ݔ଴௝ = 1 

௒෨ೕାܭ +෍ܿ௜௥ݔ௜௝ଶ
௜ୀଵ ≥ ෤௝ାݕ + ௝݁,				ݔ଴௝ = 1,			݆ = 1,2, … ,଴ℓܿ														 ܯ, ܿ଴௥, ܿଵℓ, ܿଵ௥ ≥ 0																																																						 

(11) 

3. Applications 

3.1. Generalities 

Given the following rainfall and elevation data of twenty meteorological stations of central 
Thessaly (Greece) (Tables 1 and 2), with crisp input data and symmetric output fuzzy data, we want 
to assess the two step model of Tzimopoulos et al., using the fuzzy regression method, considering 
trapezoidal membership functions for the assessment. 

3.2. Step 1 

We apply Tanaka’s model, considering that output data are crisp. For, the model is written as 
follows: min	(20ܿ଴ + 10926ܿଵ) 
s.t (12) ݎ଴ − ܿ଴ + ଵݎ90										 − 90ܿଵ ≤ ଴ݎ 740.7 − ܿ଴ + ଵݎ95										 − 95ܿଵ ≤ ଴ݎ …………………………………………… 611.1 − ܿ଴ + ଵݎ992					 − 992ܿଵ ≤ ଴ݎ 1594.1 − ܿ଴ + ଵݎ1000 − 1000ܿଵ ≤ ଴ݎ 1384.9 + ܿ଴ + ଵݎ90										 + 90ܿଵ ≥ ଴ݎ 740.7 + ܿ଴ + ଵݎ95										 + 95ܿଵ ≥ ଴ݎ …………………………………………… 611.1 + ܿ଴ + ଵݎ992					 + 992ܿଵ ≥ ଴ݎ 1594.1 + ܿ଴ + ଵݎ1000 + 1000ܿଵ ≥ 1384.9 

(13) 

Solving this problem we get kernel equations: ൣ ௝ܻି, ௝ܻା൧ = [yℓ, y୳], or (14a) ݕℓ = 529.493 + 0.42706x,					y୳ = 800.989 + 0.79956x (3b) 
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Table 1. Elevation and Rainfall data from meteorological stations of Central Thessaly. 

M. Stations Kallifonio Grammatiko Karditsomag. Karditsa Trikala Kalamapaka Mouza. Ypex Rahoula Meg_Ker_Ypex Agiofyllo 

X (m) 90 95 95 103 110 202 226 330 500 581 
Y (mm) 741 611 694 573 707 867 679 1065 864 823 

e = 0.15Y 111,11071 91,66502743 104,089286 86,02214 106,06393 130,10625 101,859934 159,726 129,6461372 123,495 

Table 2. Elevation and Rainfall data from meteorological stations of Central Thessaly. 

M. Stations Loutr._Ypex Amarantos Moloha Bathylakkos Malakasio Brontero Rentina Chrisomilia Argithea Kerasia 
X (m) 730 744 790 800 842 853 903 940 992 1000 

Y (mm) 841 1172 1348 1118 1045 1475 1112 1294 1594 1384,9 
e = 0.15Y 126,18743 175,8080864 202,244286 167,6779 156,731302 221,27336 166,768142 194,169 239,1214286 207,7294 

Notation: e means the spread of the rainfall data, which are symmetrical triangular fuzzy numbers. 
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3.3. Step 2 

In phase 2, the kernel is considered to be known and the model is written as follows: min	(20ܿ0ℓ + 10926ܿ1ℓ + ݑ20ܿ0 +  (ݑ10926ܿ1
s.t 

(4) 

−ܿ଴ℓ − 					90ܿଵℓ ≤ 61.70 ………………………………. −ܿ଴ℓ − 1000ܿଵℓ ≤ 220.5 ܿ଴௨ + 											90ܿଵ௨ ≥ −21.10 ………………………………. ܿ଴௨ + 			1000ܿଵ௨ ≥ −8.00 

(5) 

In Figure 3 calculation results are shown, while support equations are: ቂܵ௬෤ೕି , ܵ௬෤ೕା ቃ = [yℓ, y୳], or (6a) yℓ = 450.069 + 0.3629x,					y୳ = 887.100 + 1.20226x (17b) 

In the Figure 4a illustrates the estimated output data, Figure 4b illustrates the measured and 
predicted values at Megali_Kerasia_Ypex meteorological station, while Figure 3a, b illustrate the 
predicted parameters ܣሚ଴ and ܣሚଵ respectively. 

 

Figure 3. (a) Predicted parameters ܣሚ଴, (b) Predicted parameters ܣሚଵ. 

  
(a) (b) 

Figure 4. (a) Estimated fuzzy output data, (b) Measured and predicted output at Meg._Ker._Ypex 
station. 
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4. Comments-Conclusions 

The two-step model has the advantage of using only four unknown quantities during each 
phase, in contrast with Bisserier and Fung models, which use eight.  

In all the above cases, the presented model can be applied for all confidence levels and have the 
following property: data kernels are included into estimated kernels and data supports are also 
included into estimated supports. 

In the case of rainfall measurement observations, station association is achieved, even for small 
samples and we can extend the shorter time series, due to fuzzy correlation for more rainfall stations. 
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