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Abstract: In recent years, mercury (Hg) concentration that exceeds the Maximum Contaminant
Level Standard set by the World Health Organisation for drinking water has been detected in the
groundwater of Skiathos Island in Greece. The island single source of urban water is groundwater;
as a result, tap water has been characterised as unsafe for drinking and people rely on bottled water
for their everyday needs. The origin and speciation of Hg in the aquifer is investigated with the use
of the Pourbaix diagram, while the possible correlation with groundwater salinization due to
seawater intrusion is examined.
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1. Introduction

During the last few decades, there has been a growing interest worldwide in mercury and the
mechanisms that govern its concentrations in air, soil and water. In many parts of the world, health
authorities are becoming increasingly concerned about the effects of heavy metals on the
environment and human health [1]. Mercury is one of the most important heavy metal environmental
pollutants because of its volatility and accompanying long-range atmospheric transport, its toxicity
and its ability to bioaccumulate in organisms [2,3]. Unlike organic contaminants, metals do not
undergo microbial or chemical degradation, persisting in their original quantities after their
introduction into the environment. Some of them also accumulate in living organisms, causing
various diseases and disorders [4]. Mercury has often been used in the chloralkali process, the wood
pulping industry, technical instruments (thermometers, barometers), electrical equipment (batteries),
dentistry, paints, and military applications, inevitably leading to soil and groundwater
contamination [5].

A serious problem that is raised considers the mercury contamination of aquifers used as sources
of potable or irrigation water. The subsurface environment may be contaminated either from the
mobilization of Hg in geological deposits or from anthropogenic sources [6]. Often, high Hg
concentrations in sediments have a natural origin, an example being the Mediterranean Sea, where
the basin contains about 65% of the total world Hg mineral resources [7,8]. Mercury enters the
environment as either ionic divalent mercury [Hg(II)] or elemental mercury [Hg?] subjected to
various biotic and abiotic transformations. As the chemical speciation of mercury greatly affects its
toxicity and transport, the fate of mercury in the subsurface is critical to groundwater quality and
public health. Mercury sulfide (HgS, known as cinnabar and meta-cinnabar), is a major ore mineral,
and one of the largest Hg sinks in contaminated sediments and soils. Dissolution of cinnabar in
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aquatic environments is complex and the process could be conceptually simplified in two steps, (a)
ionic dissociation of HgS to Hg? and S* in water and (b) chemical transformations of the ionic
dissociation products [9]. A variety of environmental factors may enhance or inhibit cinnabar
dissolution by affecting the aforementioned chemical transformations, most important being the
redox tendency (pe or En) of the subsurface local environment, including groundwater, as well as the
presence of Hg binding ligands [10].

Aquifer over exploitation near coastal areas disrupts the hydrostatic equilibria established by
hydraulic connections that possibly exist between the water reservoirs and seawater [11]. Hydraulic
gradients following intensive withdrawal of freshwater in this type of aquifer can favor salt-water
intrusion, which degrades the quality of water. Due to the drinking water standards established by
various authorities (EU, USA, Canada), salinity values are required to remain low [12]. In addition,
aquifer salinisation is often linked with the presence of Hg, as in Tuscany, Italy and New Jersey, USA
[2,13,14].

In New Jersey, potable supply wells were found to yield water in which concentrations of total
Hg (unfiltered samples) exceed the State and US Environmental Protection Agency drinking-water
maximum contaminant level of 2 ug/L [14,15]. In Tuscany, specifically in the Orbetello-Mt.
Argentario area, routine analyses of several wells in the mid-1990s revealed anomalies in Hg
concentration, far beyond the upper limit for drinking water standards fixed by Italian law (1 ug/L).
This was not an isolated case along the southern Tuscany coast, since about 50 km north, in the Gulf
of Follonica, three wells used for drinking water were forced shut in 1995 on account of Hg
contamination. Interestingly, in both cases, contamination was coupled with a steep increase in Cl~
values related to the intrusion of seawater [13]. Furthermore, along the coast of the province of
Grosseto in southern Tuscany, the well water of five areas started to present Hg concentrations above
the limit for drinkable water in 1998. In this part of Tuscany, mercury occurs both as ore deposit and
as clastic material within shallow alluvial sediments. Grassi and Netti [2] also observed a close
relationship between CI~ and Hg in different areas, concluding that higher CI~ contents always
correspond to higher Hg concentrations in water.

Overall, in many studies, concerns have been expressed for the increased salt intrusion into the
coastal aquifer in regards to the release of heavy metals, such as Hg, to the drinking water supply
[16]. For different reasons, such as groundwater over-exploitation, sea-level rise and increased salt
applications for winter deicing in northern watersheds, many areas in the US, Europe, and Canada
face the same problem, i.e., the contamination of the water supply with Hg [1,2,13-17]. The causes of
such elevated heavy metal concentrations in response to the increased salt concentrations have been
attributed to cation exchange, complex formation with CI~ and colloidal dispersion [17]. In this paper,
a preliminary study for the speciation of Hg in the water system of Skiathos Island, Greece is
presented. The possible reasons for the observed Hg contamination are examined and an evaluation
of the possible relations to the intrusion of seawater is presented.

2. Materials and Methods

The island of Skiathos is one of the most popular Greek Islands; it has 5000 permanent residents,
while island population grows rapidly during the summer tourist season lasting 5 to 6 months and
peaking in August. The tourism industry is a key sector of the island’s economy [18]. The island of
Skiathos has a small water distribution network with a total of about 3500 water consumption meters;
the water demands present high variability and seasonality, while its network has reportedly some
of the highest water leakage in Greece. The island faces serious water supply issues, since potable
water comes from groundwater of low quality due to aquifer salinization [19]. The entire island water
network is mainly supported by a single drilling in the area of Ftelia, while a second smaller one has
recently become operational in Ag. Antonios.

According to the water utility company of Skiathos (DEYASK), which is conducting monthly
samplings in the water system for quality testing, Hg has been detected above the permitted limit.
The concentration of Hg has been measured repeatedly to attain values up to 6 pg/L, while the
maximum permitted European limit for total Hg in the drinking water is 1 ug/L [20,21] (appearing
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as a red line in Figure 1). According to data from DEYASK, the increase in Hg concentration shows
the same periodicity pattern as the water consumption. Increased pumping seems to lead to increased
concentrations of Hg in the water, with a hysteresis of 1-4 months as seen in Figure 1.

The increase of Hg concentration in the water system is a cause of concern, particularly from
2008 onwards, without a firmly substantiated explanation. The absence of possible anthropogenic
sources of Hg in the vicinity of Skiathos suggests that the observed Hg in groundwater comes from
natural sources, in particular Hg-rich underground minerals. The decrease in Hg concentration after
February of 2015 that is observed in Figure 1 is artificial since DEYASK started to mix the
contaminated water with uncontaminated water from the second supplementary drilling, in order to
achieve lower concentrations in the water distribution network [22].
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Figure 1. Mean daily water consumption (green bars) and Hg concentration (blue line) from 2008 to
2016 for the island of Skiathos. The red line is the Maximum Concentration Limit of Hg for drinking
water.

The island’s water problem is aggravated by two key factors: the seasonal sharp increase in
water consumption due to tourism and the impact of climate change resulting in a temperature rise
and rainfall reduction [23,24]. According to Kofinas et al. [25], the increase in water demand is directly
related to tourist arrivals in Skiathos, which results in summer water demand being about 170%
higher than that of winter. In order to satisfy the growing needs of the island during the tourist
season, groundwater pumping increases, resulting in the influx of sea water that makes the water
brackish.

Since mercury is naturally found on the earth’s crust mainly in the form of the mineral cinnabar
(HgS), it would be reasonable to assume that the same form is present in the subsurface minerals of
the Skiathos island, conforming to the relatively high abundance of mercury in the underlying crustal
bed of the Mediterranean [7,8]. However, since HgS is practically insoluble in water with an
extremely low solubility product Ks of 1.4 x 107*° [26], we postulate that due to groundwater
salinisation, the increase in chloride ion concentration shifts the reaction equilibria towards a higher
degree of mercury solubilization by complexation with Cl~ anions, resulting in the appearance of Hg
in the water, as emerged by the chemical analyses carried out by DEYASK. By this process, a part of
Hg contained in the minerals escapes to the water and consequently to the main network of the island.
A first step for the investigation of the contamination with Hg in the Skiathos water system is to
identify the speciation of Hg in groundwater.

Under certain conditions, when a solid mineral is exposed to an aqueous solution of inorganic
species, chemical reactions may occur on the mineral surface, yielding products which may enter the
aqueous phase if sufficiently soluble or remaining on the surface as secondary solid phases. These
mineral transformation reactions may be studied by pe-pH or Eh-pH diagrams (pe and Eh represent
the oxidation-reduction tendency of the water medium and pH represents the activity of the
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hydrogen ion H*), also known as Pourbaix or stability diagrams. Since kinetic bottlenecks are
neglected by the assumption of sufficient time available for the reactions completion, these diagrams
have been proven to be very useful in geochemistry [27], and are collected in the Pourbaix Atlas
[28,29].

In general, a Pourbaix diagram is a kind of phase diagram that shows the stability boundaries
for an interaction system consisting of several compounds of a chemical element in water within a
range of redox conditions and pH. The diagrams are divided into areas, each of which represents a
locally predominant species. A pe-pH diagram can describe not only the effects of potential and pH
but also of chemical complexation, temperature and pressure. By convention, pe-pH diagrams
always show the thermodynamically stable area of water with different marked lines [30] (Figure 2).
An aqueous solution phase is always present in such a system. At a given pH and pe, the stability of
a particular chemical form of an element may be immediately judged by the knowledge of the pH
and the redox intensity of the solution (pe), and thus, the most likely chemical form of the element at
the specified conditions can be determined [31,32].

In the present study, the Pourbaix diagrams were applied for the identification of dissolved Hg
in the water system of Skiathos, using available data from DEYASK. For the construction of Pourbaix
diagrams, the values of pH and pe are necessary. However, a direct measurement of the redox
conditions of groundwater is difficult to perform. It is therefore generally preferable to evaluate it

, whereas the

through the use of redox couples [33]. Considering the redox couples of — and
4-

concentrations of nitrogen species have been measured analytically in Sklathos, Equatlons (1) and (2)
are obtained which enable an estimation to be made for the redox intensity of the groundwater.

1 1 NO3
pey =5 log;o(Ky) — pH + > logy GNO"’D (1)
1 10 1
pe; = glOgm (Kz) — 8 —pH+ ¢ 10g1o G }) )

The values pe) = G) log,,(K;) and pe = (%) log,,(K,) are known from literature to be 14.5 and

14.90, respectively [34], where Ki and Kz are the equilibrium constants of the reduction half-reactions.
The value of the dimensionless quantity pe represents an indicator of the redox condition of the
subsoil from which the water is pumped.

Grassi and Netti [2] identify the source of Hg in well waters using its Pourbaix diagram in the
Mediterranean area of Grosseto, Tuscany during the summer of 1998. The areas of Grosseto and
Skiathos have many similarities, both located near the coast with groundwater salinisation due to
seawater intrusion and a comparable seasonal variability due to tourism; furthermore, cinnabar may
exist in both areas. Considering that the pH of groundwater was found to vary within the range 6.3
to 8.0, it was concluded that HgS could be stable only in significantly reducing conditions. On the
other hand, Hg® has a wider stability field, remaining stable under both reducing and oxidizing
conditions (Figure 2). Due to the similarities of Grosseto and Skiathos, the former Pourbaix diagram
[2] is used here for the identification of dissolved Hg speciation.
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Figure 2. Pourbaix diagram for Hg solid phases, in contact with a water solution with CI~ and SO~

concentrations of 10 mol/kg at 1 bar total pressure.

3. Results and Discussion

By using the DEYASK monthly data for pH and the concentrations of NO3,NO;,NOj, the values
of pe,, pe, were calculated by equations 1 and 2 on a monthly basis; they were then averaged on a

yearly basis from 2003 to 2017, and they are presented in Table 1.

Table 1. Yearly Average of pe,, pe, from 2003-2017 based on pH values for Skiathos water system.

Year pH Yearly Average pg, Yearly Average pe,

2003 7.55 6.93 5.31
2004 7.73 7.08 4.99
2005 7.64 7.23 5.28
2006  7.90 6.89 5.04
2007 8.29 6.11 4.64
2008 7.65 7.64 5.45
2009 8.08 7.32 4.93
2010 8.04 7.25 4.93
2011 7.96 7.39 5.02
2012 8.02 7.24 4.92
2013 794 7.38 5.06
2014 8.33 6.83 4.53
2015 8.07 7.18 4.87
2016  8.05 7.29 4.87
2017 7.44 7.58 5.54

Considering the Pourbaix diagram shown in Figure 2 and the Skiathos average pH value range
(7.44 to 8.33), the resultant values of pg; span the range 6.11 to 7.64 (Table 1), whereas the values of
pe; are even lower in the range 4.53 —5.54 (Table 1). Both indicators suggest that Hg is predominantly
in the form of elemental (metallic) Hg® and possibly small amounts of solid Hg,Cl, (calomel).
Compared with the results of Grassi and Netti [2], it appears that the underground environment,
from which water in Skiathos is pumped, is less oxidizing. According to data for the period 2003—
2017, the approximate average chloride ion concentration in the water was 800 mg/L while that for
the sulphate anions was 90 mg/L.

In the Pourbaix diagram constructed by Grassi and Netti [2], it was assumed that CI~ and SO;>
concentrations are 1073 M, which is not fully applicable in the case of Skiathos, where Cl~
concentration was measured to be 20 times higher (~0.023 M). The higher CI~ content of the Skiathos
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groundwater is expected to result in the presence of chlorine-containing Hg species in the form of
water-soluble HgCl, and HgCI2™* complexes.

The solubility of metallic Hg in water is 45 pg/L [33], which corresponds to a concentration of
2.24 x 1077 M at a temperature of 20 °C. The solubility of Hg,Cl, in pure water is determined by the
solubility product of K, ug,c1, = [Hg5" ] [C17]* = 1.43 x 1078 at 20 °C, therefore the concentration
of a saturated solution of Hg,Cl, is 8 x 107¢ M, which corresponds to 3.8 x 107® mg/L Hg,Cl, or
7.7 mg/L Hg. Considering the relatively high average concentration of CI~ of approximately 0.023 M
in water and its “common-ion effect” on the solubility product, the solubility of Hg,Cl, decreases
dramatically, with a final value of [Hg3*] = 2.7 X 107'°* M corresponding to 2 pg/L Hg. This
approach suggests that Hg at such CI~ concentrations is not expected to be found as a dilute solution
of calomel (Hg,CL,).

Consequently, a first estimate of the speciation of dissolved Hg in Skiathos water system is the
presence of mostly metallic Hg, followed by traces of Hg,Cl, and chlorine-containing complexes of
Hg(Il) without being able to exclude organic forms, such as methylmercury (CH;Hg*). Moreover,
concentrations in the order of 1.5 pg/L for the total Hg measured in Skiathos groundwater are
consistent with mercury being predominantly in the form of dissolved metal (Hg’) whose water
solubility is appreciably higher (45 ug/L).

4. Conclusions

The water system in Skiathos has been impacted by high Hg concentrations in the last two
decades, rendering water in the island unsafe to be consumed. The island faces water scarcity
problems especially during the summer when the number of island residents is rapidly increasing
due to tourism. In the study area, the presence of Hg is due to natural causes since the mineral HgS
most likely exists in the bedrock of Skiathos. However, concentrations of Hg exceeding the Maximum
Concentration Level Standard are being observed only since 2003.

A preliminary investigation of the Hg speciation in the water system of Skiathos is presented in
this article, by utilizing the Pourbaix diagram for Hg as constructed by Grassi and Netti [2] and the
concentrations of nitrogen species (NO3, NO; and NHY) for the estimation of the redox indicator (p¢)
of groundwater. The latter suggests that metallic Hg is the dominant form of mercury present in the
groundwater of Skiathos. A comparison of the pe values between the two case studies (Skiathos and
Grosseto, Tuscany) suggests that in Skiathos the subsurface environment appears to possess a lower
oxidative tendency, resulting in lower pe values in the Pourbaix diagram.

In coastal areas, aquifer overexploitation due to increased summer demands leads to
groundwater salinisation. In turn, high concentrations of CI~ appear to correlate with the presence of
Hg in Skiathos, which is in agreement with other relevant studies on different study areas [2,13-15].
Thus, it appears that the role of increased ClI™ concentration in the aquifer is directly linked to the
mobilization of Hg. These preliminary results warrant further investigation and must be supported
with a monitoring regime and relevant data, in order to reach conclusive results about the speciation
of Hg and finally, to develop a strategic plan for its mitigation.
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