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Abstract: Water network protection from accidental and intentional contamination is one of the 
most critical issues for preserving the citizen health. Recently, some techniques have been proposed 
in the literature to define the optimal sensor placement. On the other hand, through the definition 
of permanent DMAs (District Meter Areas), water network partitioning allows significant 
reduction in the number of exposed users through the full isolation of DMA. In this paper, the 
optimal sensor placement is coupled with water network partitioning in order to define the best 
location of isolation valves and control stations, to be closed and installed respectively. The 
proposed procedure is based on different procedures, and it was tested on a real water network, 
showing that it is possible both to mitigate the impact of a water contamination and simplify the 
sensor placement through the water network partitioning. 
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1. Introduction 

The “divide and conquer” concept has recently been gaining attention in the management of 
water distribution networks (WDNs), since dividing large-scale networks into smaller and 
manageable subsystems (District Metered Areas, DMAs), offers advantages for the monitoring and 
control of consumption and leakage. In the scientific literature, numerous works were dedicated to 
the design of DMAs, based on the application of graph and spectral theory algorithm [1–5], or based 
on the concept of modularity function [6–9]. 

In this framework, one of the main research issues lies in determining the optimal location of 
sensors, able to detect the most common water parameters and, as a result, to monitor the WDN by 
identifying possible contaminations [10–13]. This paper explores the benefits of network partitioning 
for the optimal placement of quality sensors for water distribution network (WDN) protection from 
contaminations. The global aim is to show how the water network partitioning improves the 
protection of the WDNs against a possible contamination, both accidental and intentional. The 
proposed methodology was tested on a real WDN, showing that the partitioning successfully 
mitigates the impact of contaminations in terms of affected population, thanks to the reduction in the 
total number of water paths in the WDN. 
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2. Materials and Methods 

The methodology is based on the combination of two main procedures: the former procedure 
enables WDN partitioning by clustering network nodes for district metered area (DMA) 
identification, and by separating the DMAs through gate valve closure or flow meter installation at 
each boundary pipe; the latter procedure is for the optimal placement of quality sensors in 
undivided or partitioned WDNs. 

2.1. Network Partitioning 

WDN partitioning is carried out in two main phases: 

• clustering, in which the optimal shape and size of the clusters are defined by minimizing the 
number of edge-cuts (boundary pipes) and by simultaneously balancing the number of nodes 
of each cluster, and 

• dividing, in which clusters are separated from each other by closing isolation valves at some 
boundary pipes and installing flow meters at the remaining boundary pipes. 

In this work, the clustering layout is obtained exploiting the properties of the normalized 
Laplacian matrix L = D − A, in which D is the diagonal matrix containing the node degree ki of each 
node, and A is the adjacency matrix, which elements aij = aji = 1 if nodes ni and nj are connected by a 
pipe, aij = aji = 0 otherwise. On the Laplacian matrix the spectral clustering algorithm was applied, for 
which the main steps in the case of a WDN are described in [14]. The graph of the WDN was 
considered un-weighted (every connection between the nodes has the same importance). The 
clustering phase provides the optimal cluster layout and the edge-cut set Nec. 

Regarding the dividing phase, the choice must be made whether either a gate valve must be 
closed, or a flow meter must be installed in the generic boundary pipe, in a way that, the sum of 
closed gate valves Ngv and installed flow meters Nfm must be equal to Nec. Closing gate valves could 
reduce the service pressure, so it is important to guarantee that the service pressure in each point 
was higher than the desired threshold value hdes. In this work, the trade-off between leakage and 
WDN reliability was explored through the bi-objective optimization, performed through the 
NSGAII genetic algorithm [15]. The first objective function f1 to minimize was the daily leakage: 

f1 = Vl, (1)

The second objective function f2 relates to the global resilience failure index GRF index 
proposed by [16], which is the sum of the resilience (Ir) and failure (If) indices evaluated at the 
generic instant of WDN operation: 
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where d and quser are the vectors of nodal demands and water discharges delivered to users, 
respectively, at WDN demanding nodes. In this work, quser was evaluated as a function of d and 
pressure head h at each node through the pressure driven formula of [17]. H and H0 are the vectors of 
nodal heads at demanding nodes and sources, respectively. Hdes is the vector of desired nodal heads, 
which are the sum of nodal elevations and desired pressure heads hdes. Finally, Q0 is the vector of the 
water discharges leaving the sources. The GRF index has the advantage of being always within 
range [−1, 1]. Higher values of GRF indicate higher power delivered to WDN users and, therefore, 
higher service pressure. The objective function f2 was calculated with the relationship suggested by 
[16], f2 = median(GRF). 

The Pareto front of optimal solutions will be re-evaluated also in terms of Nfm (as a surrogate for 
the partitioning cost) and demand satisfaction rate Ids (that represents the effectiveness of the service 
to WDN users); in particular, it can be calculated as the ratio between delivered water volume wd 
(m3) and WDN demand wtot (m3). 
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2.2. Optimal Sensor Placement 

Let a set S of significant contamination events, each of which featuring a certain location, 
starting time, duration and total mass, be defined. In this context, sensor placement can be 
formulated as a bi-objective optimization problem [13], in which the first objective function f3 is the 
number Nsens of installed sensors (as a surrogate for the installation cost for the WDN protection) 

f3 = Nsens, (3)

and the second objective function f4 is related to the contaminated population popr before the first 
detection of the generic r-th contamination event. This corresponds to the sum of the inhabitants 
served by the contaminated nodes and can be evaluated using the EPANET quality solver [18], 
considering an unreactive contaminant as assumption of the first attempt. 

The time interval ∆treact (the time for a warning to interrupt network service) is set to 0 
hereinafter for simplifying purposes but can be set to other values without loss of validity of the 
whole methodology. The function f4 is calculated as the weighted average value pop of popr, that is: 

ସ݂ = ݌݋݌ = ∑ ௪ೝ௣௢௣ೝೄೝసభ∑ ௪ೝೄೝసభ , (4)

where wr is a weight coefficient associated with the generic contamination event. 
Functions f3 and f4 are minimized simultaneously through the NSGAII genetic algorithm [15]. In 

the population individuals of NSGAII, the number of genes is equal to the number of network nodes 
where sensors can be installed. Each gene can take on the two possible values 0 and 1, which stand 
for absence and presence of the sensor in the node associated with the gene, respectively. 

3. Case Study 

The methodology described above was tested on the WDN of Parete [19], which is a small town 
located in a densely populated area to the south of Caserta (Italy), with population of 11,150 
inhabitants. This WDN has 182 demanding nodes (with ground elevations ranging from 53 m a.s.l. 
to 79 m a.s.l.), 282 pipes and 2 sources with fixed head of 110 m a.s.l. (Figure 1). 

A uniform desired pressure head hdes = 9 + 10 = 19 m was assumed for the demanding nodes (9 
m is the height of the average building in Parete while 10 m is the surplus of head as prescribed by 
the Italian guidelines). 

Reference was made to the day of maximum consumption in the year with an average value of 
the node water demand of 36.3 L/s. The leakage volume of the networks in the day of maximum 
consumption adds up to 930 m3 (about 23% of the total outflow from the sources). 

The water quantity simulations were run for one day of WDN operation. For the construction of 
the set S of contamination events, all the 182 demanding nodes were considered as potential 
locations for contaminant injection, 24 possible contamination times in the day (hour 0, 1, 2, …, 22, 
23), a single value of the mass injection rate equal to 350 gr/min, and a single value of the injection 
duration equal to 60 min were assumed. 

The values for mass injection and duration were sampled from those proposed by [11]. 
According to the procedure of [13], and considering the previous assumptions, the total number S of 
contamination events was 182 × 24 × 1 × 1 = 4368. The weight of the generic event wr was set to 1 to 
give identical relevance to all of them. The water quality simulations were run for 3 days of WDN 
operation to make sure that even contaminants injected close to the sources at the last instant of the 
first day had enough time to leave the network. 

After the definition of the optimal partitioning, two cases were analysed, in particular, Case 1, 
with Optimal sensor placement on the original un-partitioned WDN, and Case 2, with Optimal 
sensor placement on partitioned WDN. In all the applications, the NSGAII was applied with a 
population of 300 individuals and a total number of 300 generations. 
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4. Results and Discussion 

Following, the results were presented for both Cases, comparing them in terms of exposed 
population. The water network partitioning leads to produce 5 DMAs; in Table 1, the number of 
nodes obtained in each DMA is reported, as well as the number Nec of boundary pipes. 

Table 1. Number of nodes in the various DMAs and Nec of boundary pipes for the partitioning of the 
Parete WDN in 5 DMAs. 

DMA1 DMA2 DMA3 DMA4 DMA5 Nec 
20 35 39 41 49 21 

For the dividing phase, the optimization through NSGAII yielded the Pareto front reported in 
Figure 1a, showing, as expected, growing values of median (GRF) with Vl growing, since both 
variables are growing functions of the service pressure in the WDN. 

 
Figure 1. Dividing phase for the Parete WDN. Pareto front of optimal solutions in the trade-off 
between daily median GRF index and leakage volume Vl (a), re-evaluated solutions in terms of 
number of installed flow meters Nfm (b) and of demand satisfaction rate Ids (c). In all graphs, the 
selected solution is highlighted with a grey vertical line. 

Graphs (b) and (c) report the number Nfm of installed flow meters and the demand satisfaction 
rate Ids, respectively, re-evaluated from the Pareto front and plotted against Vl. Globally, graph (b) 
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highlights that the higher values of Nfm tend to be associated with the lower values of Vl. This is 
because Vl tends to grow when fewer gate valves are closed (and then more numerous flow meters 
are installed) in the boundary pipes. Finally, graph c) shows that Ids tend to grow with Vl increasing, 
since both variables are increasing functions of the service pressure. From the graphs in Figure 1, the 
solution with the lower value of Nfm (=8), higher number of closed valves Ngv (=13), which ensures Ids 
= 100%, was finally chosen, which enables also reducing leakage around 3,7% (from 930 m3 for the 
un-partitioned layout to 895 m3). The corresponding median (GRF) is equal to 0.32, very close to the 
value of 0.36 for the un-partitioned network. 

After the definition of the optimal partitioning, the optimal sensor placement was carried out 
on the original un-partitioned network and on the partitioned one. The Pareto fronts for the optimal 
sensor placement are shown in Figure 2; the results for the original un-partitioned WDN are 
represented as solid black lines, while for the partitioned network they are reported as dotted black 
line. As expected, for both Cases, the fronts show decreasing values of pop as Nsens increases up to 20. 
However, for higher values of Nsens, the additional benefit of a further sensor installed in the network 
tends to decrease, as already pointed out by [13]. 

 
Figure 2. Pareto fronts of optimal sensor placement solutions in the trade-off between Nsens and pop, 
obtained for the original un-partitioned WDN (Case 1), and for the partitioned WDN (Case 2). 

The comparison points out better solutions for Case 2 (partitioned network), above all for low 
values of Nsens, as shown by the values of pop in Figure 2 and by the values of the percentage difference 
calculated as (value of pop for Case 1 − value of pop for Case 2)/value of pop for Case 1, in Table 2. In 
particular, for Nsens = 6, the contaminated population for the un-partitioned network is pop = 514 (a 
reduction by 81.7% compared to pop=2806 for Nsens = 0 in the un-partitioned network), while for the 
partitioned network pop = 457 (a reduction by 83.7% compared to pop=2806 for Nsens = 0 in the 
un-partitioned network). This is because the partitioning per se causes a reduction in the total 
number of water paths in the WDN and, therefore, in the contaminated population (highlighted for 
a number of sensors Nsens = 0, where the difference of the contaminated population is around 11.7%). 
Therefore, the optimal combination of Nsens sensors in a partitioned WDN always outperforms the 
corresponding one in the original WDN. 

In this regard, for the partitioned network, installing the same number of sensors in the WDN of 
Parete leads to a reduction of the contaminated population, with respect to the un-partitioned 
network, ranging from 7.3% (corresponding to Nsens = 2) to 17.9% (corresponding to Nsens = 4). In 
particular, the partitioning does not only reduce per se the contaminated population but also 
improves the efficiency of the sensor station systems. This means that, the water network 
partitioning is a valid strategy to better manage the WDNs and simultaneously to guarantee the 
water network protection from contamination (both accidental and intentional), confirming its 
dual-use. 
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Table 2. Simulation results in terms of exposed population for the two Cases for the Parete WDN 
considering the installation of Nsens up to 6. 

Nsens (−) 
(Case 1) (Case 2) Difference (%) 

Pop Reduction (%) Pop Reduction (%) Case 1-Case 2 
0 2806 0.0 2479 11.7 11.7 
1 1438 48.8 1265 54.9 12.1 
2 982 65.1 911 67.5 7.3 
3 789 71.9 648 76.9 17.9 
4 667 76.2 554 80.3 16.9 
5 589 79.0 504 82.1 14.4 
6 514 81.7 457 83.7 11.1 

The layouts in Figure 3 show the optimal location of 6 sensors obtained in the original 
un-partitioned WDN, and in the partitioned WDN. It is clear that, for the two layout of the Parete 
WDN (un-partitioned and partitioned), 5 of the 6 sensors are located about in the same areas. It 
suggests that, it is possible to define “most influential” nodes in a WDN regardless the operational 
conditions, the monitoring of which, ensures an efficient monitoring of the system. This crucial 
aspect will be further investigated in order to establish topological criteria able to individuate a priori 
these points. 

 
Figure 3. Optimal location of 6 sensors in (a) original un-partitioned WDN; (b) partitioned WDN. 

5. Conclusions 

In this work, a methodology based on WDN partitioning and on optimal placement of quality 
sensors was set up to investigate the benefits of “divide and conquer” technique for the protection of 
WDNs from contamination events. The applications concerned a real Italian WDN, which was first 
partitioned in 5 DMAs separated each other by either closing gate valves or installing flow meters at 
boundary pipes. Optimal sensor placement solutions were searched for on the original undivided 
WDN and on the partitioned layout, in the trade-off between number of installed sensors and 
affected population for an assigned set of contamination events. The results showed that, for a given 
number of installed sensors, the monitoring stations installed in the partitioned layouts offer better 
protection from contamination. Future work will be dedicated to the issues of DMA restoration after 
the generic contamination. This will be done with reference to specific real contaminants, while 
abandoning the simplifying assumption of un-reactive and conservative contaminant adopted so 
far, in an attempt to make the results more realistic. 
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