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Abstract: To enable independent living for people in need of care and to accommodate the increasing
demand of ambulant care due to demographic changes, a multitude of systems and applications
that monitor activities and health-related data based on ambient sensors commonly found in smart
homes have been developed. When such a system is used in a multi-person household, some form
of identification or separation of residents is required. Most of these systems require permanent
participation in the form of body-worn sensors or a complicated supervised learning procedure
which may take hours or days to set up. To resolve this, we study several unsupervised learning
approaches for the separation of activity data of multiple residents recorded with ambient, binary
sensors such as light barriers and contact switches. We show how various clustering methods on data
from a tracking system can, under optimal conditions, separate the activity of two residents with low
error rates (<2%, Rand Index of 0.959). We also show that imprecisions in the underlying tracking
algorithm have a significant impact on the clustering performance and that most of these errors can
be corrected by adding a single “identifying sensor area” into the environment. As a consequence,
activity monitoring applications need to rely less on body-worn sensors, which may be forgotten or
biometric sensors, which may be perceived as a violation of privacy.

Keywords: ambient sensing; identification; ambient assisted living; multi-target tracking; smart
healthcare; smart monitoring

1. Introduction

Recent changes in demographic structure have caused an increase in the efforts to research
technical support systems for ambulant and residential care. The atomization of households [1],
coinciding with a prolonged life expectancy [2], has put an increased care demand into the hands
of third parties—according to the German Federal Statistical Office, the ratio between ambulant
care personnel supply and demand will halve between 2009 and 2030 while the number of single
households will increase sixfold in relation to the population numbers [3]. Furthermore, increased life
expectancy and improved medical care are causing a rise in the proportion of population living with
chronic diseases. Lastly, there is a general trend towards outpatient care by hospitals. According to
the Avalere Health analysis of American Hospital Association Annual Survey [4], the percentage of
outpatient (vs. ambulant) revenue for community hospitals in the United States has increased from
28% to about 46% between 1994 and 2014.

Previous research on technical support systems in ambulant care environments has shown the
feasibility of using simple, low-cost sensors to detect, measure and react to several care-related
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observations, such as falls [5], changes in gait [6] and performance during Activities of Daily Living
(ADLs) [7].

The above-mentioned applications require different types and numbers of sensors but they share
a common obstacle—the perceived intrusion of privacy. Especially complex sensors, such as cameras
and microphones, are rarely accepted in living spaces. At the same time, some applications depend on
the identification or at least separation of individuals.

The focus of this work thus lies on the use of binary sensors such as light barriers and motion
sensors for the separation of residents for the long-term collection of activity data. These sensors have
relatively little power consumption, are easy to retrofit and can be installed unobtrusively. The amount
of information provided by an individual binary sensor is small but a network of such sensors may
help collect sufficient data to differentiate between multiple residents.

It has been shown that a tracking algorithm can track an individual in a network of binary sensors
with sufficient accuracy over short periods of time [8]. However, unless an identifying or body-worn
sensor such as an RFID tag or biometric sensor is added, the resulting tracking data usually does not
contain sufficient information in order to connect tracks to create a motion or behavior profile and to
detect individual changes in activity over time.

We hypothesize that tracks of binary signals provide sufficient information to separate two
residents over large periods of time by grouping the data into “motion profiles”—sets of tracks
describing residents’ activity over several days or weeks. To test this hypothesis, we use three methods
of unsupervised learning—fuzzy clustering, constrained clustering and contrained evidential fuzzy
clustering—to combine tracking data lacking identification into clusters representing each resident’s
motion profile. To achieve this, we identify data and metadata that can be used to distinguish tracks
of all residents and guests, such as activity in unique locations, at unique times of the day or relative
gait speed.

It should be noted that clustering of activity data helps to separate activity of multiple residents
but it does not identify them because none of the sensors provides any identifiying information.
However, once the residents’ activities are separated, identifying data on any of the residents’ activities
can then be generalised to the whole cluster. We show an example of such identifying data in the
second part of our evaluation (Section 5.2).

The remainder of this article is structured as follows—Section 2 introduces work on similar
methods of separation or identification of residents in smart home environments. Section 3 describes
the data and procedures used. Section 5 describes the results of the evaluation and subsequent steps
taken. Section 6 summarizes the findings and describes possible directions to take from here.

2. State of the Art

Previous work on separation and identification of residents in smart homes covers a wide range
of technologies and algorithms. Wearable and body-worn sensors require continuous participation of
the residents and are therefore often perceived as a burden. High-resolution sensors such as cameras
and microphone arrays are commonly rejected for reasons of privacy. We will therefore limit this
section to approaches relying on low-resolution ambient sensors only.

Ivanov et al. [9] present a thorough overview of existing presence detection technologies and
the kind of information they are able to provide. The list ranges from binary passive-infrared (PIR)
sensors, which merely detect movement or physical activity, to video cameras, which can be used
to count, identify and locate individuals. The authors suggest that low-price sensors are too low in
resolution for person identification. While higher-resolution sensor technologies allow identification,
they are commonly more expensive and pose a psychological barrier as their use is often considered
an invasion of privacy.

Wilson & Atkeson [10] use a particle filter to track multiple residents’ location and activities in
a home equipped with motion sensors, pressure mats and contact switches. The main goal of their
work is room-level tracking and rudimentary activity recognition. Beside keeping track of presence
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count and motion paths, this approach also allows identification of residents through motion models.
Similar to the sensor graph used in the algorithms presented here, this approach maintains a room
transition probability matrix to calculate likely motion paths.

Mokhtari et al. [11] built an ambient sensor system to identify residents of a smart home based
on PIR motion sensors and an array of ultrasound sensors. The “Bluesound” system is installed in
doorways and uses motion sensors to detect a person’s walking direction and an ultrasound sensor
array to detect the person’s height. A linear discriminant analysis can distinguish between residents
with an accuracy of at least 97.4% if the height difference is at least 4cm and as little as 59.5% if the
height difference is 1cm.

Yun and Lee [12] developed a “data collection module” to detect direction, distance, speed and
identity of a passing individual based on the raw data of three PIR sensor modules. Using three
modules with four PIR sensors each, mounted in a hallway on two opposite walls and the ceiling,
the authors achieve a 95% classification accuracy. Fang et al. [13] use a similar system—one module
composed of up to eight PIR sensors with diverse detection regions—to identify up to 10 individuals
using one trained Hidden Markov Model (HMM) for each individual and assigning the identity of the
HMM with the highest likelihood of having produced the observation.

Crandall and Cook [14] use the binary signal of PIR motion sensors, contact switches and other
smart home sensors to train Markov models on labelled data of multiple residents. Each model
generates a resident identifier based on a fixed-length sequence of sensor events. The models achieve
an identification accuracy of up to 90%. The data is recorded in the living lab at the Washington State
University’s Center of Advanced Studies in Adaptive Systems, which is also the source of the data in
our first evaluation.

Zeng et al. [15] show that two residents can be distinguished with the help of WiFi signal analysis
based on differences in gait with 92% accuracy. The “WiWho” system is trained on Channel State
Information from a wifi signal that is optimized to separate based on stepping and walking parameters.

All identification approaches described here have one thing in common—they rely on labelled
data to train a supervised learning system. Supervised learning brings certain advantages—the
correctness of the system can be verified immediately after learning and the residents are not just
separated but identified. However, the recording of training data is an elaborate task, which usually
takes several hours, if not days, during which the system cannot be used. Furthermore, if these systems
are to be used in hundreds or thousands of households, the labelling of said data will be a costly
requirement.

3. Approach

Common smart home sensors, such as motion sensors, contact switches and light barriers usually
provide a binary signal (activity—no activity) that contains no identifying information. We hypothesize,
however, that tracks of such binary signals may provide sufficient information to separate the data
into clusters that represent each resident’s activity.

3.1. Data Preprocessing

The idea of identification based on activity data relies on the assumption that people are
discriminable from another based on the features and metadata of their activities. People might
be distinguishable by their daily routine, such as presence and absence during specific times of the
day. Other factors might be the presence in specific areas of the house such as separated bedrooms or
a home office and motion parameters such as gait speed. Furthermore, metadata such as temporal
overlap of tracks may provide additional information to improve the identification procedure.

To generate the required data, we first separate the data of multiple residents collected in living
spaces equipped with ambient sensors with a multi-target tracking algorithm. This algorithm separates
the stream of sensor events into tracks based on spatial adjacency of the triggered sensors (“tracking
on a graph”). The result is a database of tracks consisting of sensor signals and associated timestamps
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signifying human motion. The tracks vary in length, both temporally and in the number of sensor
events. The length of tracks as well as their accuracy depend on the number of people present, their
spatial proximity, the range of each sensor and the number of sensors installed. The premises and the
sensor setups used are presented in Section 4. The tracking algorithm is described in Müller et al. [8].

For the clustering and classification procedures, for each track we extract

• day of the week,
• time of day, represented as sine and cosine so as to encode the cyclical nature of time,
• a binary value for each sensor in the graph representing whether it was triggered during the track

or not, and
• relative gait speed, calculated by the median transition time between all pairs of adjacent sensors.

3.2. Resident Discrimination

3.2.1. Supervised

In order to verify our hypothesis that the data produced by the tracking algorithm lends itself to a
separation of two or more residents, we first label the tracks produced from the WSU living lab data
with IDs 1 and 2 for Resident A and B and run the labelled data through a classification algorithm. If a
supervised learning method shows that the two residents can be separated with sufficient accuracy
based on the track data, we can continue to find an unsupervised method, so that the system can run
without human interference, learning periods and manual labelling. If, however, the classifier shows
poor performance, it is unlikely that an unsupervised algorithm will be able to perform satisfactorily.

As the classifier, we chose a C4.5 decision tree [16] as implemented in the Waikato Environment
for Knowledge Acquisition (WEKA) [17]. We train the decision tree with ten-fold cross validation
with default parameters (confidence threshold for pruning = 0.25, minimum number of instances per
leaf = 2) on a database of 11000 sensor events. Gait speed was not considered in this evaluation.

97.98% of tracks were correctly associated with another, with a weighted precision and recall
averaged over the two classes for both residents of 0.98. The classifier also gives insight into the
separation criteria of the tracks. The average merit (“merit” is based on the order of selection of
classification criteria of the algorithm, which in turn is based on the information gain of said criterion
at each branching step. It is computed by summing the rank (1 for the criterion with the highest
information gain, 2 for the second, etc.) for this criterion over all folds and dividing by the number of
folds (in our case 10)) for the criteria is: Sensor− ID 0.688, Time = 0.118 and Day = 0.021. This shows
us that (a) unsupervised learning might be successful and (b) the location plays a significant role in the
classification and the role of the day-of-the-week feature is negligible.

3.2.2. Unsupervised

The classification procedure shows that the activity of the two residents is generally
distinguishable. However, as described in Section 2, we reject the idea of a system that has the
collection and labeling of data as a requirement. Instead, we seek an unsupervised learning method
that is able to separate the tracks of two or more residents without a tedious setup process.

Fuzzy Clustering

A simple clustering algorithm such as K-Means [18] could be applied. However, we assume that
there is an intra-individual variation of activity characteristics that might cause clusters to overlap.
For example, gait speed might be slower in the morning than at noon and the daily rhythm might vary
by several minutes.

In order to accommodate these possible variations, we apply Fuzzy C-Means [19], a fuzzy
clustering algorithm. This algorithm will not return a strict separation of the data into clusters but a
matrix of cluster membership probabilities. The closer a data point is to the cluster center, the higher is
its membership probability.
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The fuzzy clustering approach also allows us to further filter the data based on the membership
probabilities—we can choose to not include data in further analysis where the maximum membership
probability is less than a certain percentage. In a two-cluster scenario, this number could be 60 or 70%.

Constrained Clustering

In the fuzzy clustering approach, we use day of week, time of day, location and time difference (i.e.,
gait speed) between sensors as features. However, this approach ignores important meta-information
in the dataset—tracks that overlap in time cannot originate from the same person. Since this might be
useful information in the process, we also employed COP K-Means clustering [20] in order to be able
to include them in the clustering decision.

Beside minimising the distance of objects to a cluster center, constrained clustering techniques
also take into account a set of constraints that describe the relationship between data points. In the
case of COP K-Means, these are must-link and cannot-link constraints. Each of these sets contains a
two-column matrix, each line describing a pair of data points that either belong (must-link) or do not
belong (cannot-link) to the same cluster [20].

Constrained Fuzzy Clustering

To combine the advantages of fuzzy and constrained clustering, we lastly use an implementation
of Constrained Evidential C-Means (CECM) [21]. In evidential clustering, the cluster membership of
a data point is described by a belief function. CECM is a variant that takes pairwise must-link
and cannot-link constraints into account. The constraints are integrated into the cost function,
whereby—unlike in COP K-Means—constraints may contradict each other. Each constraint that
is not satisfied by a cluster association reduces the value of the belief function for this association.

Equation (1) shows the cost of violating constraints: M and C are the set of must-link and
cannot-link constraints and pli×j(θ) and pli×j(θ̄) describe the plausibilities of objects xi and xj
belonging and not belonging to the same class. Equation (2) shows the update to the original Evidential
C-Means cost function JECM(M, V), where M is the cluster association matrix and V describes the
cluster centers. θ controls the weight balance between the constraint violations and the cluster
center distance.

JCONST =
1

|M|+ |C| [ ∑
(xi ,xj)∈M

pli×j(θ̄) + ∑
(xi ,xj)∈C

pli×j(θ)] (1)

JCECM(M, V) = (1− ξ)JECM(M, V) + ξ JCONST (2)

4. Evaluation

The procedures described in Section 3 are tested on two datasets, one recorded in a living lab
and one recorded in the home of an elderly couple situated in an assisted living facility. Both datasets
encompass regular daily activities; we do not filter or differentiate by the type of activity residents
are engaging in, as our aim is to track and separate them across any activity and location throughout
daily life.

4.1. Dataset 1: Living Lab

The data used for this evaluation was recorded at the University of Washington’s Center for
Advanced Studies in Adaptive Systems (CASAS) [22]. The laboratory is a 4-room, 2-story apartment
and was inhabited by two volunteer students for approximately 8 months. The laboratory is equipped
with various sensor technologies but for this evaluation we consider the data recorded by the 45 motion
sensors only as they already provide a very thorough coverage and precision with low amounts of noise.
Each sensor is mounted on the ceiling and pointing downwards to cover an area of approximately
1.5 × 1.5 m. The layout of the laboratory and the sensor placement is depicted in Figure 1.
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Figure 1. Blueprint of the WSU CASAS living lab, showing the location of contact (D) and motion (M)
sensors. After Crandall & Cook [23].

Due to our specific interest in multi-target tracking, we focus on data for which both residents
were present and active. The data was retroactively annotated with the identity of the resident based
on video recordings. We chose the first 20 time frames for which the following conditions were met:

• The time frame is at least 20 min long or contains at least 300 sensor events,
• none of the residents remained in one room for the whole time frame, and
• neither resident is sleeping (i.e., inactive) for more than 20% of the time.

The resulting time frames cover 6985 sensor events, where the tracks range from 10 to 338 events
and last between 24 min and 8 h and 50 min.

4.2. Dataset 2: Field Trial

The flat equipped for the field trial is part of a retirement complex and inhabited by a couple
(75 and 82 years) with separate bedrooms.

The floor plan of the flat with the location of the sensors and actuators is shown in Figure 2.
The flat is about 80 m2 in size. In total, we are using 38 sensors and actuators installed in the
flat—10 passive-infrared motion sensors (M), 11 contact sensors on doors and windows (D), 11 light
switches (L) and 6 roller shutter actuators (R). The data contains 24 h of data or 4083 events spread
across 230 tracks, during which both residents were present at all times. For privacy reasons, no video
recording was possible. Therefore, the tracks were labelled by hand using a blueprint of the flat and
the timestamps of sensor events.
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Figure 2. Blueprint of the flat equipped with contact (D) and motion (M) sensors as well as light
switches (L) and roller shutter (R) actuators.

5. Results

The tracking algorithm used in the data preprocessing step can be inaccurate and produce tracks
that contain data from multiple residents (referred to here as “noise”). Therefore, we first test all
procedures on a subset of the data which has been verified to be error-free. Additionally, we will test
the procedures also on the whole dataset which contains tracking errors. That way, we can determine
the correctness of an individual procedure and also determine its utility under realistic conditions.

5.1. Evaluation 1: Living Lab

5.1.1. Fuzzy Clustering

After some preliminary tests, the fuzzifier value was set to 2. While the fuzzifier may be subject to
further analysis, tests showed that a higher value merely stretched the results across larger filtering
values, thus adding no benefit to the analysis but for more fine-grained control over the filtering values.

The first column of Figure 3a shows that 85.9% of tracks are correctly associated to another
using Fuzzy C-Means membership values (Rand Index = 85.8). At a filter value of 0.5, no filtering
happens in a two-cluster scenario. When filtering data points where the maximum membership value
(MMV) is less than 0.6, 45% of data is filtered but of the remaining data 89.7% is correctly associated.
When filtering MMVs of less than 0.7, 84.5% of data is filtered but 100% of the remaining data is
associated correctly.

The performance drastically decreases with the introduction of noisy data. Figure 4a shows a
correct association of 60.7% (Rand Index 0.68). No data points have an MMV as high as 0.6.

5.1.2. Constrained Clustering

COP K-Means produced a 91.5% precise clustering (Rand Index = 0.92). Due to the nature
of k-means clustering, no further filtering can be performed. The precision drops to 58.0% (Rand
Index = 0.67) with the noisy dataset.
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5.1.3. Constrained Fuzzy Clustering

Figure 3b shows that filtering MMVs below 0.4 produces a 96.5% correct clustering and a Rand
Index of 0.97. When filtering below 0.5 MMV or more, no errors remain. At this point (after removing
outliers and filtering), we are left with 70% of the original data.

(a) C-Means (b) Constrained Evidential C-Means
Figure 3. Results of living lab tracks clustering with C-Means and Constrained Evidential C-Means
and filtering over cluster membership grades (C-Means) and normalized beliefs (CECM).

As with the fuzzy clustering, the precision drops significantly (error rate of 34.6%, Rand
Index = 0.71) when the data is noisy (see Figure 4b).

(a) C-Means (b) Constrained Evidential C-Means
Figure 4. Results of noisy living lab tracks clustering with C-Means and Constrained Evidential
C-Means and filtering over cluster membership grades (C-Means) and normalized beliefs (CECM).

5.2. Evaluation 2: Identifying Sensor Areas

In reference to previous work [10] in which a single identifying sensor in a central location is
added to the system, we introduce a second set of constraints. Based on our knowledge of residents
having their own bedrooms, we associate one sensor—a sensor of which we know that is mostly
triggered by one of the residents, in our case a motion sensor in the bedroom—with each resident.
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These constraints rely on the fact that certain locations in a home can be attributed to the activity of a
single individual with high probability, such as separate bedrooms or a home office. While this data
cannot guarantee the identity of the individual, it might help us create more precise clusters which
then improve the clustering of all tracks, even those that do not pass those sensors. These constraints
are added to the list of cannot-link constraints constructed from temporal overlap of tracks.

As described in Section 3, CECM does not consider the constraints axiomatic but instead adds
an error metric to the cost function based on the number of violated constraints. Because of this, the
“identifying sensors” do not have to be triggered by one resident only; it does not break the metric if
someone else triggers the sensor occasionally.

Figure 5 shows that adding one identifying sensor region for each resident has a significant impact
on the clustering precision. While the error rate remains high (12.5%) when filtering MMVs up to 0.5
(Rand Index = 0.85), 95.5% are correctly assigned above that. The error completely disappears when
filtering maximum beliefs of 0.7 or less. At this point, we are left with 17% of the original data.

Figure 5. Results of track clustering with identifying sensor areas on living lab data with Constrained
Evidential C-Means and filtering over maximum normalized beliefs (CECM).

5.3. Evaluation 3: Field Trial

To confirm the results of the first evaluation we installed a similar but more realistic setup in the
home of an elderly couple. Here, too, the residents have separate bedrooms. However, during the
annotation process, it became apparent that, while the two residents sleep in their separate bedrooms,
both inhabited either bedroom during the day. This suggests that an identification process using
location will not work as efficiently here as in the first evaluation.

We ran CECM on the whole dataset twice, once using temporal overlap constraints only, once
including the identifying sensors.

Figure 6a confirms the observation from the labelling procedure—location is a less identifying
feature in this household than in the living lab, therefore the clustering precision is a lot lower. Even
when filtering data points with a maximum cluster membership belief of less than 0.7, there are as
many correctly as incorrectly clustered tracks.
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Figure 6b shows that adding one identifying sensor region for each resident has a significant
impact on the clustering precision. While the rate of false cluster assignments is still high when
filtering low membership beliefs, 86.9% are correctly assigned when filtering MMVs of under 0.5 (Rand
Index = 0.87). The error completely disappears when filtering maximum beliefs of 0.6 or less. At this
point, we are left with 26% of the original data.

(a) Without identifying sensor (b) With identifying sensor

Figure 6. Results of track clustering on field trial data with Constrained Evidential C-Means and
filtering over cluster membership grades (C-Means) and normalized beliefs (CECM).

6. Discussion

Previous research on identification and separation of residents in smart homes has exclusively
utilised body-worn sensors or biometric sensors and supervised learning techniques. To enable a less
costly and time-consuming procedure, we explored several clustering techniques in order to separate
activity data of multiple residents in an unsupervised manner.

Our experiments showed that, for the datasets used in our experiments, location was the primary
predictor for the identity of a resident. Day of week proved to be useless as a predictor in our datasets.
Gait speed also proved difficult—first, there was great variation of gait speed in all datasets. Second,
for n sensors there are, on average, 3n pairs of adjacent sensors. Thus, for our dataset with 45 sensors,
there are an additional 135 new features for gait speed alone. This increased state size requires more
data to accurately measure than the few days of data we use.

The first evaluation has shown that two residents can be well separated based on binary activity
sensor data if they show significant differences in their whereabouts during presence. Both fuzzy and
constrained fuzzy clustering successfully separated tracks of two residents based on location mostly.
COP K-Means, a constrained k-Means algorithm, proved unsuitable for the task. First, the algorithm
performs a “hard” clustering, which means it does not leave room for further filtering. Second, it treats
the must-link and cannot-link constraints as irrevocable—if any two constraints are contradictory,
the clustering will simply fail. Although contradicting constraints might be rare in our dataset, errors
introduced by the tracking algorithm might cause this procedure to fail.

The evaluation further showed that noise in the tracking data (errors in data association during
the tracking procedure) significantly reduces the precision of both clustering techniques. It is likely that
false associations of sensor events to residents during the tracking pre-processing causes the clustering
algorithms to dismiss location as an important clustering feature, thus causing poor results.

To compensate for the noise, we finally introduced an identifying sensor area for each resident to
be used to introduce cannot-link constraints for constrained clustering. The CECM algorithm does not
treat the constraints as axiomatic but rather as an extra parameter in the cost function, whereby each
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violated constraint increases the cost. As a result, we are able to correctly associate 96% and 100% of
two datasets of two residents after filtering with a maximum cluster belief of less than 0.6. It should
be noted, however, that the data used in the evaluation stems from two-person households. Those
are—beside one-person households—the ones most commonly found in the target demographic of
assistive technologies. It must be assumed that the clustering error rate would increase with increasing
number of people present.

The approach suggested in this article does not solve the identification problem. Identification
requires either a body-worn sensor or supervised learning. However, our results show that, at least for
a subset of the data, it is sufficient to provide vague identifying information concerning a small area of
the monitored space to correctly associate large amounts of data.

Future work will compare these results to ambient sensors combined with body-worn sensors
in order to establish whether a clustering can be constrained using short periods of data tagged by a
body-worn sensor. The good results using “identifying sensor” constraints must further be compared
to the performance given an actual identifying sensor, whether this is a centrally located RFID reader
or a biometric sensor.

Ultimately, the tracking and identification precision required from a smart home system depends
on the application. To determine the changes in gait speed of an ambulant care patient, it is sufficient
to identify them once a day while the cost of false identification is high. To enable personalised
automation, such as light switching or heating, the resident must be permanently identified but the
consequences of a wrong identification are less critical. In safety-critical applications, a biometric or
body-worn solution is preferable. For all other cases, we have shown a way to solve the problem
without additional hardware or complicated setup.
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