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Abstract: Hospital patients recovering from major cardiac surgery are at risk of paroxysmal atrial
fibrillation (AF), an arrhythmia which can be life-threatening. Wearable sensors are routinely
used for electrocardiogram (ECG) monitoring in patients at risk of AF, providing real-time AF
detection. However, wearable sensors could have greater impact if used to identify the subtle
changes in P-wave morphology which precede AF. This would allow prophylactic treatment to
be administered, potentially preventing AF. However, ECG signals acquired by wearable sensors
are susceptible to artefact, making it difficult to distinguish between physiological changes in
P-wave morphology, and changes due to noise. The aim of this study was to design and assess the
performance of a novel automated P-wave quality assessment tool to identify high-quality P-waves,
for AF prediction. We designed a two-stage algorithm which uses P-wave template-matching to
assess quality. Its performance was assessed using the AFPDB, a database of wearable sensor ECG
signals acquired from both healthy subjects and patients susceptible to AF. The algorithm’s quality
assessments of 97,989 P-waves were compared to manual annotations. The algorithm identified
high-quality P-waves with high sensitivity (93%) and good specificity (82%), indicating that it may
have utility for identifying high-quality P-waves in wearable sensor data. Measurements of P-wave
morphology derived from high-quality P-waves could be used to predict AF, improving patient
outcomes, and reducing healthcare costs. Further studies assessing the clinical utility of the presented
tool are warranted for validation.
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1. Introduction

Continuous electrocardiogram (ECG) monitoring using wearable sensors enables early
identification of several types of arrhythmia. However, data acquired by wearable sensors are
susceptible to artefacts (e.g., due to poor sensor contact or motion artefact). Hence, a challenge in the use
of continuous wearable monitoring, where data are collected without clinical supervision, is ensuring
that only high-quality signals are used to derive clinical measurements. Physiological parameters
extracted from artefact-corrupted signals may be inaccurate, which can lead to a high frequency of
false alarms [1]. Therefore, assessment of signal quality is a crucial step for accurate and precise data
analysis, such as extracting features, identifying deteriorations, and generating alerts.

Hospital patients recovering from major cardiac surgery are at high risk of paroxysmal atrial
fibrillation (AF), an arrhythmia which can be life-threatening. Wearable sensors are routinely used to
monitor patients at risk of AF. The sensors typically have 3 or 5 ECG leads which are attached to the
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chest and an optional wired finger probe and are carried in a bag tied to the patient. The sensors provide
ECG, respiratory rate, and arterial blood oxygen saturation monitoring. The data are transmitted
in real-time to a central monitoring station, and alarms are sounded when arrhythmias, such as AF,
are detected. Hence wearable sensors currently provide early recognition of AF, allow for it to be
treated promptly, and help minimize the resulting complications. However, wearable sensors could
have greater impact if used to predict AF before its onset, rather than simply detecting it when it occurs.
This would allow prophylactic treatments to be administered, potentially preventing the arrhythmia,
and consequently reducing the risk of complications, and healthcare costs.

Subtle alterations in P-wave morphology have been found to be predictive of AF [2,3].
However, the relatively low amplitude of the P-wave makes it highly susceptible to noise, severely
affecting the extraction and quantification of its features. This makes it difficult to distinguish between
physiological changes in morphology and changes due to noise. Thus, the clinical utility of techniques
for predicting AF could be highly limited by parameters being estimated erroneously from low
quality P-waves, causing false alerts. Therefore, it is essential to exclude artefact-corrupted P-waves
from analyses. Previously, this has been performed either manually, where expert cardiologists
excluded unreliable P-waves by hand [2], or automatically, with a conventional template-comparison
method [3,4]. In the latter, individual P-waves were discarded if they had a cross-correlation coefficient
lower than 0.7 with a template P-wave obtained with an averaging procedure [3,4].

In this study, we built on the previous work by developing an optimized P-wave quality
index (PQI) designed to identify high-quality P-waves, from which clinical measurements can be
reliably derived. This tool was designed using several P-wave quality assessment features, and its
performance was assessed through comparison with manually annotated P-waves from a database of
ECG recordings acquired using wearable sensors.

2. Materials and Methods

2.1. Data Description

The openly available paroxysmal AF prediction database (AFPDB) [5] was used to develop and
assess the performance of the PQI. This database was originally assembled to develop techniques
for predicting paroxysmal AF. The dataset contains wearable ECG recordings during sinus rhythm,
acquired from both healthy controls and patients who subsequently developed AF. All ECG signals
have a duration of 30 min, and are excerpts from recordings acquired with a two-channel long-term
Holter wearable sensor at a sampling frequency of 128 Hz and with a 12-bit resolution [5].

This study used 44 records (23 from controls and 21 from AF patients) from the AFPDB. After
pre-processing with a bandpass filter with cut-off frequencies of 0.5 and 40 Hz, the ECG lead in which
P-waves were most visible for each record was chosen, and P-wave quality was manually annotated
and double-checked. P-waves were classified into three distinct classes, as illustrated in Figure 1:

Class A: High-quality clean P-waves;
Class B: Complete noise and absent P-waves. This included P-waves with no resemblance to normal

P-wave morphology, either due to motion artefacts, severe baseline wander, muscular
activation interference, or simply the absence of a P-wave;

Class C: Unreliable, noise-distorted P-waves. This included P-waves that had some resemblance
to normal P-wave morphology, but were still unreliable (i.e., their morphology was still
excessively affected by noise). The degree of distortion varied from mildly to heavily distorted
(see Figure 1).

This resulted in 22 h of recording, corresponding to 97,989 P-waves: 88,606 annotated as class A
(90.4%), 5102 as class B (5.2%), and 4281 as class C (4.4%).
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Class A: 
Clean P-waves

Class C:
Noise-distorted P-waves

Class B: 
Complete noise

Increasing distortion

Figure 1. P-waves were classified into three different classes: high-quality clean P-waves (class
A), unreliable, noise-distorted P-waves (class C), and complete noise or absent P-waves (class B).
Even though class C P-waves had some resemblance to normal P-wave morphology, they were still
considered unreliable. For that class, the degree of distortion varied from mildly to heavily distorted.

2.2. P-Wave Quality Index (PQI) Algorithm

The PQI tool algorithm is depicted in Figure 2. Briefly, the process started with P-wave detection
and signal extraction and was followed by two different decision-making stages based on template
comparisons. The first decision stage aimed to remove P-waves with no resemblance to the normal
P-wave morphology (class B), while the second was more refined, removing P-waves still excessively
distorted by noise, and hence unreliable (class C).

Removal of
class B P-waves

P-wave signal
extractionECG P-wave quality

labels

Decision Stage 1

Removal of
class C P-waves

Decision Stage 2

Figure 2. The P-wave quality index (PQI) tool consisted of three steps. In the first, the P-waves were
identified in the electrocardiogram (ECG) and extracted. P-wave template morphologies and P-wave
features were extracted from these P-waves and were used in two different decision-making stages.
This resulted in each P-wave being labelled as either high (class A) or low quality (classes B and C),
allowing artefact-corrupted and unreliable P-waves to be excluded from the analysis.

2.2.1. P-Wave Signal Extraction

The first step towards assessing the P-waves’ quality was to detect them in the ECG and extract
them. This signal extraction step was of high importance, as proper P-wave quality assessment was
only possible with accurate P-wave signal extraction. Firstly, P-wave peaks were identified. To do so,
each R-peak was identified using the widely used Pan, Hamilton and Tompkins algorithm [6], followed
by P-wave peak detection using the phasor transform delineation algorithm [7]. Finally, P-wave signals
were then extracted by taking a window of width 300 ms, centered on the corresponding P-wave peak.
This window length ensured that the whole P-wave plus its surrounding baseline signal were captured.
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2.2.2. Decision Stage 1: Removal of Completely Noisy or Absent P-Waves

The aim of the first decision-making stage was to exclude P-waves which were heavily distorted
by noise or absent P-waves (class B). This first stage had the additional purpose of removing P-waves
that could influence the more refined templates created during the second decision-making stage.

A P-wave template was created for each 30-min recordings as the average shape of the P-waves
in that time period. Then, those P-waves were aligned with that template, and several features were
extracted to retrieve information about them. These features were then used as candidate features for
the PQI to assess P-wave quality. The following features were tested:

1. P-wave template-comparison features:

(a) Pearson’s correlation coefficient between P-wave and template (Tcorr);
(b) Root mean square difference between P-wave and template (Trmsd);
(c) Pearson’s correlation coefficient between P-wave and template derivative (dTcorr);
(d) Root mean square difference between P-wave and template derivative (dTrmsd).

2. P-wave signal features:

(a) Standard deviation of P-wave (Pstd);
(b) Number of zero-crossings of P-wave (Pzc);
(c) Area of P-wave (Parea);
(d) Kurtosis of P-wave (Pkurtosis);
(e) Skewness of P-wave (Pskewness);
(f) Standard deviation of P-wave derivative (dPstd).

A decision tree was built using a selection of those features (Figure 3). This model was estimated
assuming both classes’ probability as equal, allowing one to balance sensitivity and specificity.
Furthermore, the decision tree had a maximum of five splits (decisions), to avoid overfitting.

Clean
(class A)

Noise
(class B)

Noise
(class B)

Clean
(class A)

Noise
(class B)

Tcorr < 0.88

dTcorr < 0.68 Trmsd < 0.09

Trmsd < 0.06

Tcorr ≥ 0.88

dTcorr ≥ 0.68 Trmsd ≥ 0.09

Trmsd ≥ 0.06

(a) Decision stage 1 model

Clean
(class A)

Distorted
(class C)

Clean
(class A)

dPstd < 0.06

Tcorr < 0.95

dPstd ≥ 0.06

Tcorr ≥ 0.95

(b) Decision stage 2 model

Figure 3. Decision trees used in the decision-making stages of the P-wave quality index (PQI) tool.
These models used features obtained from the P-wave signal and P-wave template comparisons.
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2.2.3. Decision Stage 2: Removal of Distorted P-Waves

More refined P-wave templates could be created after removal of completely distorted P-waves.
These were then used in a final decision stage with the aim of removing distorted and unreliable
P-waves (class C), while being able to accommodate possible P-wave morphological variations.

This second decision stage was similar to the first, but with the single difference that a template
was created, to which P-waves were aligned, every 20 P-waves (instead of every 30 min). This aimed
to accommodate both physiological variations in the ECG over time and the greater P-wave variability
that precedes AF [2,3]. Similarly to the first decision stage, a decision tree was built, but this time
maximizing the ability to correctly identify class A P-waves (Figure 3).

2.3. P-Wave Quality Index (PQI) Performance Assessment

The performance of the PQI was assessed on the 44 records through comparison with the manual
annotations. Class A clean P-waves were considered as the positive class, while classes B and C
were merged into one unique negative class. In addition, given the higher variability in P-wave
morphology present in patients susceptible to AF, a sub-group analysis of the performance in controls
and patients who experienced AF after the recording was conducted, and significance was assessed
using a two-sample t-test at the 5% significance level. Sensitivity and specificity metrics were used
to assess performance, as they are independent of class distributions, and therefore can provide
comprehensive assessment of imbalanced learning problems, such as the present one.

3. Results

P-Wave Quality Index (PQI) Performance Assessment

The PQI was able to identify high-quality P-waves with high sensitivity (93%) and good specificity
(82%). Furthermore, no statistically significant difference was found in sensitivity or specificity between
the control and AF groups (Table 1).

Table 1. Performance of the P-wave quality index (PQI) tool on all 44 records, and comparison of
performance between healthy controls and patients susceptible to atrial fibrillation (AF).

Performance metric Total Controls AF Patients p-Value

Sensitivity 93% 92% 95% 0.33

Specificity 82% 76% 86% 0.08

4. Discussion

Hospital patients recovering from major cardiac surgery are at risk of AF, which can be
life-threatening. Wearable sensors are routinely used for ECG monitoring in the postoperative period
and could have greater impact if used to identify the subtle changes in P-wave morphology which
are predictive of AF. This would potentially allow AF to be prevented, reducing risks and costs.
However, ECG signals acquired by wearable sensors are susceptible to artefact, making it difficult
to distinguish between physiological changes in P-wave morphology, and changes due to noise.
Hence, the future implementation of techniques that use the P-wave to predict AF will rely on proper
P-wave quality assessment.

In this study, we proposed the PQI, a novel and optimised tool for automatically identifying
low quality P-waves. Briefly, the algorithm starts by detecting and extracting the P-waves’ signal,
which is then used in two decision-making stages: the first with the aim of removing highly noisy or
absent P-waves, and the second with the aim of removing less distorted, but still unreliable, P-waves.
The PQI identified high-quality P-waves with high sensitivity (93%) and good specificity (82%) and
performed similarly on healthy subjects and patients susceptible to AF, indicating that it was able to
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accommodate the P-wave variability that precedes AF [2,3]. The high performance of the PQI suggests
that it may have utility for identifying high-quality P-waves in wearable sensor data, which could be
used to perform unsupervised predictions of AF.

The proposed tool was built and tested using a large dataset containing almost 100,000 manually
annotated P-waves across different morphologies, and trialed 10 different P-wave quality assessment
features, some of them novel. In addition, the proposed tool was built using simple decision tree
models, making it more likely to perform well on novel data. The proposed tool can work on a near
real-time basis, an important feature of quality assessment tools for use in continuous monitoring.
Despite requiring 30-min signal portions, such time precision is enough to predict and act upon atrial
arrhythmias such as AF.

Even though the presented tool exhibited high performance, future assessments of its clinical
utility are warranted for validation. For instance, future studies should investigate whether the
use of the PQI results in more precise measurements of P-wave features, and whether the PQI
can be used to improve unsupervised predictions of AF. In addition, future studies should assess
the PQI on independent datasets containing heart rhythms other than sinus rhythm and AF.
Finally, the methodology of the PQI might be further improved in future studies. For instance,
it is assumed that, during the creation of a P-wave template each 30 min, noise is cancelled out and,
therefore, the obtained signal reflects a clean P-wave. This may not be the case during poor electrode
contact for long periods of time. This can be safeguarded against in future works with the addition of
a template-verification stage where, for example, the obtained template signals could be compared
with a Gaussian function.

5. Conclusions

This paper presented a novel P-wave quality assessment tool, which was able to identify
high-quality P-waves with high sensitivity (93%) and good specificity (82%). Measurements of P-wave
morphology derived from high-quality P-waves could be used to predict AF using wearable ECG
monitoring, potentially improving patient outcomes, and reducing healthcare costs. Further studies
assessing the clinical utility of the PQI tool are warranted for validation.
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